Skip to main content

Molecularly Imprinted Au Nanoparticle Composites for Selective Sensing Applications

  • Chapter
  • First Online:

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 12))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800

    Article  CAS  Google Scholar 

  2. Wilcoxon JP, Abrams BL (2006) Synthesis, structure and properties of metal nanoclusters. Chem Soc Rev 35:1162–1194

    Article  CAS  Google Scholar 

  3. Kamat PV (2002) Synthesis, structure and properties of metal nanoclusters. J Phys Chem B 106:7729–7744

    Article  CAS  Google Scholar 

  4. Murphy CJ, Sau TK, Gole AM et al (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. Phys Chem B 109:13857–13870

    Article  CAS  Google Scholar 

  5. Zayats M, Baron R, Popov I et al (2005) Biocatalytic growth of Au nanoparticles: from mechanistic aspects to biosensors design. Nano Lett 5:21–25

    Article  CAS  Google Scholar 

  6. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  7. Feldheim DL, Keating CD (1998) Self-assembly of single electron transistors and related devices. Chem Soc Rev 27:1–12

    Article  CAS  Google Scholar 

  8. Lewis LN (1993) Chemical catalysis by colloids and clusters. Chem Rev 93:2693–2730

    Article  CAS  Google Scholar 

  9. Wang L, Song S, Pan D et al (2010) Gold nanoparticle-based sensing strategies for biomolecular detection. Pure Appl Chem 82:81–89

    Article  CAS  Google Scholar 

  10. Weisbecker CS, Merritt MV, Whitesides GM (1996) Molecular self-assembly of aliphatic thiols on gold colloids. Langmuir 12:3763–3772

    Article  CAS  Google Scholar 

  11. Choi Y, Ho NH, Tung CH (2007) Sensing phosphatase activity by using gold nanoparticles. Angew Chem Int Ed 46:707–709

    Article  CAS  Google Scholar 

  12. Storhoff JJ, Elghanian R, Mucic RC et al (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120:1959–1964

    Article  CAS  Google Scholar 

  13. Obare SO, Hollowell RE, Murphy CJ (2002) Sensing strategy for lithium ion based on gold nanoparticles. Langmuir 18:10407–10410

    Article  CAS  Google Scholar 

  14. Matsui J, Akamatsu K, Hara N et al (2005) SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles. Anal Chem 77:4282–4285

    Article  CAS  Google Scholar 

  15. Matsui J, Akamatsu K, Nishiguchi S et al (2004) Composite of Au nanoparticles and molecularly imprinted polymer as a sensing material. Anal Chem 76:1310–1315

    Article  CAS  Google Scholar 

  16. Tokareva I, Tokarev I, Minko S et al (2006) Ultrathin molecularly imprinted polymer sensors employing enhanced transmission surface plasmon resonance spectroscopy. Chem Commun 3343–3345

    Google Scholar 

  17. Jiang G, Baba A, Ikarashi H et al (2007) Signal enhancement and tuning of surface plasmon resonance in Au nanoparticle/polyelectrolyte ultrathin films. Phys Chem C 111:18687–18694

    Article  CAS  Google Scholar 

  18. He L, Musick MD, Nicewarner SR et al (2000) Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc 122:9071–9077

    Article  CAS  Google Scholar 

  19. Golub E, Pelossof G, Freeman R et al (2009) Electrochemical, photoelectrochemical, and surface plasmon resonance detection of cocaine using supramolecular aptamer complexes and metallic or semiconductor nanoparticles. Anal Chem 81:9291–9298

    Article  CAS  Google Scholar 

  20. Lyon LA, Musick MD, Natan MJ (1998) Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal Chem 70:5177–5183

    Article  CAS  Google Scholar 

  21. Mauriz E, Calle A, Lechuga LM et al (2006) Real-time detection of chlorpyrifos at part per trillion levels in ground, surface and drinking water samples by a portable surface plasmon resonance immunosensor. Anal Chim Acta 561:40–47

    Article  CAS  Google Scholar 

  22. Gu H, Su X, Loh KP (2005) Electrochemical impedance sensing of DNA hybridization on conducting polymer film-modified diamond. J Phys Chem B 109:13611–13618

    Article  CAS  Google Scholar 

  23. Inoue T, Kirchhoff JR (2000) Electrochemical detection of thiols with a coenzyme pyrroloquinoline quinone modified electrode. Anal Chem 72:5755–5760

    Article  CAS  Google Scholar 

  24. Malitesta C, Palmisano F, Torsi L et al (1990) Glucose fast-response amperometric sensor based on glucose-oxidase immobilized in an electropolymerized poly(ortho-phenylenediamine) film. Anal Chem 62:2735–2740

    Article  CAS  Google Scholar 

  25. Cosnier S (2005) Affinity biosensors based on electropolymerized films. Electroanalysis 17:1701–1715

    Article  CAS  Google Scholar 

  26. Jager E, Inganas O, Lundstrom I (2000) Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation. Science 288:2335–2338

    Article  CAS  Google Scholar 

  27. Jager E, Smela E, Inganas O (2000) Microfabricating conjugated polymer actuators. Science 290:1540–1545

    Article  CAS  Google Scholar 

  28. Campos LM, Tontcheva A, Gunes S et al (2005) Extended photocurrent spectrum of a low band gap polymer in a bulk heterojunction solar cell. Chem Mater 17:4031–4033

    Article  CAS  Google Scholar 

  29. Senadeera R, Fukuri N, Saito Y et al (2005) Volatile solvent-free solid-state polymer-sensitized TiO2 solar cells with poly(3,4-ethylenedioxythiophene) as a hole-transporting medium. Chem Commun 2259–2261

    Google Scholar 

  30. Li M, Tang S, Shen F et al (2006) Highly luminescent network films from electrochemical deposition of peripheral carbazole functionalized fluorene oligomer and their applications for light-emitting diodes. Chem Commun 3393–3395

    Google Scholar 

  31. Maness KM, Terrill RH, Meyer TJ et al (1996) Solid-state diode-like chemiluminescence based on serial, immobilized concentration gradients in mixed-valent poly[Ru(vbpy)3](PF6)2 films. J Am Chem Soc 118:10609–10616

    Article  CAS  Google Scholar 

  32. Granot E, Katz E, Basnar B et al (2005) Enhanced bioelectrocatalysis using Au-nanoparticle/polyaniline hybrid systems in thin films and microstructured rods assembled on electrodes. Chem Mater 17:4600–4609

    Article  CAS  Google Scholar 

  33. Raitman OA, Katz E, Bückmann AF et al (2002) Integration of polyaniline/poly(acrylic acid) films and redox enzymes on electrode supports: An in situ electrochemical/surface plasmon resonance study of the bioelectrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems. J Am Chem Soc 124:6487–6496

    Article  CAS  Google Scholar 

  34. Morozov SV, Karyakina EE, Zorin NA et al (2002) Direct and electrically wired bioelectrocatalysis by hydrogenase from Thiocapsa roseopersicina. Bioelectrochemistry 55:169–171

    Article  CAS  Google Scholar 

  35. Kriz D, Ramstrom O, Mosbach K (1997) Molecular imprinting – new possibilities for sensor technology. Anal Chem 69:345A–349A

    Article  CAS  Google Scholar 

  36. Mosbach K (1994) Molecular imprinting. Trends Biochem Sci 19:9–14

    Article  CAS  Google Scholar 

  37. Haupt K, Mosbach K (2000) Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev 100:2495–2504

    Article  CAS  Google Scholar 

  38. Wulff G (1995) Molecular imprinting in cross-linked materials with the aid of molecular templates – a way towards artificial antibodies. Angew Chem Int Ed 34:1812–1832

    Article  CAS  Google Scholar 

  39. Liu JQ, Wulff G (2004) Molecularly imprinted polymers with strong carboxypeptidase A-like activity: combination of an amidinium function with a zinc-ion binding site in transition-state imprinted cavities. Angew Chem Int Ed 43:1287

    Article  CAS  Google Scholar 

  40. Liu J, Wulff G (2004) Functional mimicry of the active site of carboxypeptidase A by a molecular imprinting strategy: cooperativity of an amidinium and a copper ion in a transition-state imprinted cavity giving rise to high catalytic activity. J Am Chem Soc 126:7452–7453

    Article  CAS  Google Scholar 

  41. Bossi A, Bonini F, Turner APF et al (2007) Molecularly imprinted polymers for the recognition of proteins: the state of the art. Biosens Bioelectron 22:1131–1137

    Article  CAS  Google Scholar 

  42. Haupt K (2003) Imprinted polymers – tailor-made mimics of antibodies and receptors. Chem Commun 171–178

    Google Scholar 

  43. Martin-Esteban A (2001) Molecularly imprinted polymers: new molecular recognition materials for selective solid-phase extraction of organic compounds. Fresenius J Anal Chem 370:795–802

    Article  CAS  Google Scholar 

  44. Bajpai V, He P, Dai L (2004) Conducting-polymer microcontainers: controlled syntheses and potential applications. Adv Funct Mater 14:145–151

    Article  CAS  Google Scholar 

  45. Wulff G (2002) Enzyme-like catalysis by molecularly imprinted polymers. Chem Rev 102:1–27

    Article  CAS  Google Scholar 

  46. Davis ME, Katz A, Ahmad WR (1996) Rational catalyst design via imprinted nanostructured materials. Chem Mater 8:1820–1839

    Article  CAS  Google Scholar 

  47. Cosnier S (2003) Biosensors based on electropolymerized films: new trends. Anal Bioanal Chem 377:507–520

    Article  CAS  Google Scholar 

  48. Agarwal GS, Gupta SD (1985) Interaction between surface-plasmons and localized plasmons. Phys Rev B 32:3607–3611

    Article  CAS  Google Scholar 

  49. Riskin M, Tel-Vered R, Bourenko T et al (2008) Imprinting of molecular recognition sites through electropolymerization of functionalized Au nanoparticles: development of an electrochemical TNT sensor based on pi-donor-acceptor interactions. J Am Chem Soc 130:9726–9733

    Article  CAS  Google Scholar 

  50. Riskin M, Tel-Vered R, Lioubashevski O et al (2009) Ultrasensitive surface plasmon resonance detection of trinitrotoluene by a bis-aniline-cross-linked Au nanoparticles composite. J Am Chem Soc 131:7368–7378

    Article  CAS  Google Scholar 

  51. Riskin M, Tel-Vered R, Willner I (2010) Imprinted Au-nanoparticle composites for the ultrasensitive surface plasmon resonance detection of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Adv Mater 22:1387–1391

    Article  CAS  Google Scholar 

  52. Riskin M, Ben-Amram Y, Tel-Vered R et al (2011) Molecularly Imprinted Au nanoparticles composites on Au surfaces for the surface plasmon resonance detection of pentaerythritol tetranitrate, nitroglycerin, and ethylene glycol dinitrate. Anal Chem 83:3082–3088

    Article  CAS  Google Scholar 

  53. Riskin M, Tel-Vered R, Frasconi M et al (2010) Stereoselective and chiroselective surface plasmon resonance (SPR) analysis of amino acids by molecularly imprinted Au-nanoparticle composites. Chem Eur J 16:7114–7120

    CAS  Google Scholar 

  54. Ben-Amram Y, Riskin M, Willner I (2010) Selective and enantioselective analysis of mono- and disaccharides using surface plasmon resonance spectroscopy and imprinted boronic acid-functionalized Au nanoparticle composites. Analyst 135:2952–2959

    Article  CAS  Google Scholar 

  55. Frasconi M, Tel-Vered R, Riskin M et al (2010) Surface plasmon resonance analysis of antibiotics using imprinted boronic acid-functionalized Au nanoparticle composites. Anal Chem 82:2512–2519

    Article  CAS  Google Scholar 

  56. Ben-Amram Y, Tel-Vered R, Riskin M et al (2012) Ultrasensitive and selective detection of alkaline-earth metal ions using ion-imprinted Au NPs composites and surface plasmon resonance spectroscopy. Chem Sci 3:162–167

    Article  CAS  Google Scholar 

  57. Frasconi M, Tel-Vered R, Riskin M et al (2010) Electrified selective “sponges” made of Au nanoparticles. J Am Chem Soc 132:9373–9382

    Article  CAS  Google Scholar 

  58. Zhang J, Riskin M, Freeman R et al (2011) Electrochemically triggered Au nanoparticles “sponges” for the controlled uptake and release of a photoisomerizable dithienylethene guest substrate. ACS Nano 5:5936–5944

    Article  CAS  Google Scholar 

  59. Balogh D, Tel-Vered R, Riskin M et al (2011) electrified Au nanoparticle sponges with controlled hydrophilic/hydrophobic properties. ACS Nano 5:299–306

    Article  CAS  Google Scholar 

  60. Balogh D, Tel-Vered R, Freeman R et al (2011) Photochemically and electrochemically triggered Au nanoparticles “sponges”. J Am Chem Soc 133:6533–6536

    Article  CAS  Google Scholar 

  61. Yildiz HB, Tel-Vered R, Willner I (2008) Solar cells with enhanced photocurrent efficiencies using oligoaniline-crosslinked Au/CdS nanoparticles arrays on electrodes. Adv Funct Mater 18:3497–3505

    Article  CAS  Google Scholar 

  62. Bratin K, Kissinger PT (1981) Determination of nitro aromatic, nitramine, and nitrate ester explosive compounds in explosive mixtures and gunshot residue by liquid-chromatography and reductive electrochemical detection. Anal Chim Acta 130:295–311

    Article  CAS  Google Scholar 

  63. Zuman P, Fijalek ZJ (1990) Reaction of electrogenerated arylhydroxylamines and nitrosobenzene in the course of reduction of nitrobenzene under conditions of cyclic voltammetry. Electroanal Chem 296:589–593

    Article  CAS  Google Scholar 

  64. Knoll W (1998) Interfaces and thin films as seen by bound electromagnetic waves. Annu Rev Phys Chem 49:569–638

    Article  CAS  Google Scholar 

  65. Phillips KS, Cheng Q (2007) Recent advances in surface plasmon resonance based techniques for bioanalysis. Anal Bioanal Chem 387:1831–1840

    Article  CAS  Google Scholar 

  66. Schuck P (1997) Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Annu Rev Biophys Biomol Struct 26:541–566

    Article  CAS  Google Scholar 

  67. Garland PB (1996) Optical evanescent wave methods for the study of biomolecular interactions. Q Rev Biophys 29:91–117

    Article  CAS  Google Scholar 

  68. Fivash M, Towler EM, Fisher RJ (1998) BIAcore for macromolecular interaction. Curr Opin Biotechnol 9:97–101

    Article  CAS  Google Scholar 

  69. Cooper MA (2002) Optical biosensors in drug discovery. Nat Rev Drug Discov 1:515–528

    Article  CAS  Google Scholar 

  70. Kubitschko S, Spinke J, Bruckner T et al (1997) Sensitivity enhancement of optical immunosensors with nanoparticles. Anal Biochem 253:112–122

    Article  CAS  Google Scholar 

  71. Wink T, van Zuilen SJ, Bult A et al (1998) Liposome-mediated enhancement of the sensitivity in immunoassays of proteins and peptides in surface plasmon resonance spectrometry. Anal Chem 70:827–832

    Article  CAS  Google Scholar 

  72. Zayats M, Raitman OA, Chegel VI et al (2002) Probing antigen-antibody binding processes by impedance measurements on ion-sensitive field-effect transistor devices and complementary surface plasmon resonance analyses: development of cholera toxin sensors. Anal Chem 74:4763–4773

    Article  CAS  Google Scholar 

  73. Zayats M, Pogorelova SP, Kharitonov AB et al (2003) Au nanoparticle-enhanced surface plasmon resonance sensing of biocatalytic transformations. Chem Eur J 9:6108–6114

    Article  CAS  Google Scholar 

  74. Rice BM, Chabalowski CF (1997) Ab initio and nonlocal density functional study of 1,3,5-trinitro-s-triazine (RDX) conformers. J Phys Chem A 101:8720–8726

    Article  CAS  Google Scholar 

  75. Politzer P, Ma Y (2004) Noncovalent intermolecular energetics: RDX crystal. Int J Quantum Chem 100:733–739

    Article  CAS  Google Scholar 

  76. Beresneva GA, Khristenko LV, Krasnoshchekov SV et al (1988) Vibrational spectra and conformational composition of ethylene glycol dinitrate in solid phases. J Appl Spectrosc 48:614–619

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itamar Willner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tel-Vered, R., Willner, I. (2012). Molecularly Imprinted Au Nanoparticle Composites for Selective Sensing Applications. In: Piletsky, S., Whitcombe, M. (eds) Designing Receptors for the Next Generation of Biosensors. Springer Series on Chemical Sensors and Biosensors, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/5346_2012_18

Download citation

Publish with us

Policies and ethics