Skip to main content

Multichannel Sensors Based on Biphenyl and Cyclohexane Conformational Changes

  • Chapter
  • First Online:
Book cover Designing Receptors for the Next Generation of Biosensors

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 12))

  • 1517 Accesses

Abstract

Conformational changes as a transduction mechanism are considered in both biphenyl- and cyclohexane-based chemosensors. The sensors under study have been designed by following the binding site-signaling unit approach. Modifications in the dihedral angle of the biphenyl and bipyridine system induced by complexation with target molecules can give rise to major changes in the sensor’s UV–Vis, fluorescence, and electrochemical properties. This behavior has been used to detect both cations and anions in different solvents. 1,2,4,5-Tetrasubtituted cyclohexane derivatives with a trans-transoid-trans configuration and appropriate binding sites have also been used in carboxylate and dicarboxylate sensing. Diastereoisomeric and enantiomeric selectivity has been explored in addition to the discrimination between α,ω-dicarboxylates of different lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CD:

Circular dichroism

CV:

Cyclic voltammetry

DC2:

Oxalate

DC3:

Malonate

DC4:

Succinate

DC5:

Glutarate

DC6:

Adipate

DMSO:

Dimethyl sulfoxide

HBA:

Hydrogen-bond acceptor

HBD:

Hydrogen-bond donor

MeCN:

Acetonitrile

SCE:

Standard carbon electrode

SQWV:

Square wave voltammetry

TBA:

Tetrabutylammonium

TBA(t-BuO):

Tetrabutylammonium t-butoxide

TBAOH:

Tetrabutylammonium hydroxide

THF:

Tetrahydrofuran

TMA:

Tetramethylammonium

TMB:

Tetramethylbenzidine

References

  1. De Silva AP, Gunaratne HQG, Huxley CP, McCoy CP, Radamacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  Google Scholar 

  2. Full issue of (2000) Coord Chem Rev 205:1–232

    Google Scholar 

  3. Martínez-Máñez R, Sancenón F (2003) Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev 103:4419–4476

    Article  Google Scholar 

  4. Gale PA (2006) Structural and molecular recognition studies with acyclic anion receptors. Acc Chem Res 39:465–475

    Article  CAS  Google Scholar 

  5. Katayev EA, Ustynyuk YA, Sessler JL (2006) Receptors for tetrahedral oxyanions. Coord Chem Rev 250:3004–3037

    Article  CAS  Google Scholar 

  6. Davis P (2006) Anion binding and transport by steroid-based receptors. Coord Chem Rev 250:2939–3051

    Article  CAS  Google Scholar 

  7. Schmidtchen FP (2006) Reflections on the construction of anion receptors: is there a sign to resign from design? Coord Chem Rev 250:2918–2928

    Article  CAS  Google Scholar 

  8. Yoon J, Kim SK, Singh NJ, Kim KS (2006) Imidazolium receptors for the recognition of anions. Chem Soc Rev 35:355–360

    Article  CAS  Google Scholar 

  9. Bowman-James K (2005) Alfred Werner revisited: the coordination chemistry of anions. Acc Chem Res 38:671–678

    Article  CAS  Google Scholar 

  10. Suksai C, Tuntulani T (2003) Chromogenic anion sensors. Chem Soc Rev 32:192–202

    Article  CAS  Google Scholar 

  11. Sessler JL, Camiolo S, Gale PA (2003) Pyrrolic and polypyrrolic anion binding agents. Coord Chem Rev 240:17–55

    Article  CAS  Google Scholar 

  12. Gale PA (2001) Anion receptor chemistry: highlights from 1999. Coord Chem Rev 213:79–128

    Article  CAS  Google Scholar 

  13. Schmidtchen FP, Berger M (1997) Artificial organic host molecules for anions. Chem Rev 97:1609–1646

    Article  CAS  Google Scholar 

  14. McFarland SA, Finney NS (2001) Fluorescent chemosensors based on conformational restriction of a biaryl fluorophore. J Am Chem Soc 123:1260–1261

    Article  CAS  Google Scholar 

  15. McFarland SA, Finney NS (2002) Fluorescent signaling based on control of excited state dynamics. Biarylacetylene fluorescent chemosensors. J Am Chem Soc 124:1178–1179

    Article  CAS  Google Scholar 

  16. Mello JS, Finney NS (2001) Dual-signaling fluorescent chemosensors based on conformational restriction and induced charge transfer. Angew Chem Int Ed 40:1536–1538

    Article  CAS  Google Scholar 

  17. Benniston AC, Harriman A, Patel PV, Sams CA (2005) A strategy for controlling the central torsion angle in biphenyl-based molecular-scale bridges. Eur J Org Chem 2005:4680–4686

    Article  Google Scholar 

  18. Costero AM, Andreu R, Monrabal E, Martínez-Máñez R, Sancenón F, Soto J (2002) 4,4′-Bis(dimethylamino)biphenyl containing binding sites. A new fluorescent subunit for cation sensing. J Chem Soc Dalton Trans 2002:1769–1775

    Article  Google Scholar 

  19. Ghosh P, Bharadwaj PK, Mandal S, Ghosh S (1996) Ni(II), Cu(II), and Zn(II) cryptate-enhanced fluorescence of a trianthrylcryptand: a potential molecular photonic OR operator. J Am Chem Soc 118:1553–1554

    Article  CAS  Google Scholar 

  20. Costero AM, Bañuls MJ, Aurell MJ, Domenech A (2006) 4,4′-Subtituted biphenyl coronands. Preparation of a new selective fluorescent sensor for mercury salts. Tetrahedron 62:11972–11978

    Article  CAS  Google Scholar 

  21. Costero AM, Andreu R, Martínez-Máñez R, Sancenón F, Soto J (2002) A fluorescent chemosensor able to distinguish between ionic and covalente mercury compounds. J Inclusion Phenom Mol Recognit Chem 46:121–124

    Google Scholar 

  22. Costero AM, Bañuls MJ, Aurell MJ, Ochando LE, Doménech A (2005) Cation and anion fluorescent and electrochemical sensors derived from 4,4′-substituted biphenyl. Tetrahedron 61:10309–10320

    Article  CAS  Google Scholar 

  23. Costero AM, Sanchis J, Gil S, Sanz V, Ramirez de Arellano MC, Williams JAG (2004) Polyazapodands derived from biphenyl. Study of their behaviour as conformationally regulates fluorescent sensors. Supramol Chem 16:435–446

    Article  CAS  Google Scholar 

  24. Costero AM, Sanchis J, Gil S, Sanz V, Williams JAG (2005) Poly(amine)biphenyl derivatives as fluorescent sensors for anions and cations. J Mater Chem 15:2848–2853

    Article  CAS  Google Scholar 

  25. Costero AM, Gil S, Sanchis J, Peransí S, Sanz V, Williams JAG (2004) Conformationally regulated fluorescent sensors. Study of the selectivity in Zn2+ versus Cd2+ sensing. Tetrahedron 60:6327–6334

    Article  CAS  Google Scholar 

  26. Costero AM, Sanchis J, Peransi S, Gil S, Sanz V, Domenech A (2004) Bis(crown ethers) derived from biphenyl: extraction and electrochemical properties. Tetrahedron 60:4683–4691

    Article  CAS  Google Scholar 

  27. Gale PA (2003) Anion and ion-pair receptor chemistry: highlights from 2000 and 2001. Coord Chem Rev 240:191–221

    Article  CAS  Google Scholar 

  28. Carvalho S, Delgado R, Fonseca N, Felix V (2006) Recognition of dicarboxylate anions by a ditopic hexaazamacrocycle containing bis-p-xylyl spacers. New J Chem 30:247–257

    Article  CAS  Google Scholar 

  29. Liu S-Y, He Y-B, Wu J-L, Wei L-H, Qin H-J, Meng L-Z, Hu L (2004) Calix[4]arenes containing thiourea and amide moieties: neutral receptors towards α, ω-dicarboxylate anions. Org Biomol Chem 2:1582–1586

    Article  CAS  Google Scholar 

  30. Singh N, Lee GW, Jang DO (2008) p-tert-Butylcalix[4]arene-based fluororeceptor for the recognition of dicarboxylates. Tetrahedron 64:1482–1486

    Article  CAS  Google Scholar 

  31. Nie L, Lie Z, Han J, Zhang X, Yang R, Liu W-X, Wu F-Y, Xie J-W, Zhai Y-Z, Jiang Y-B (2004) Development of N-benzamidothioureas as a new generation of thiourea-based receptors for anion recognition and sensing. J Org Chem 69:6449–6454

    Article  Google Scholar 

  32. Evans LS, Gale PA, Lighat ME, Quesada R (2006) Anion binding vs. deprotonation in colorimetric pyrrolylamidothiourea based anion sensors. Chem Commun 965–967

    Google Scholar 

  33. Costero AM, Bañuls MJ, Aurell MJ, Ward MD, Argent S (2004) Biphenyl macrolactames in anion complexation. Selective naked-eye fluoride recognition. Tetrahedron 60:9471–9478

    Article  CAS  Google Scholar 

  34. Costero AM, Bañuls MJ, Aurell MJ, Ramirez de Arellano MC (2006) Biphenyl macrolactames as colorimetric sensors for anions through displacemente reactions. J Incl Phenom Macrocycl Chem 54:61–66

    Article  CAS  Google Scholar 

  35. Whitlock BJ, Whitlock HW (1990) Concave functionality: design criteria for nonaqueous binding sites. J Am Chem Soc 112:3910–3915

    Article  CAS  Google Scholar 

  36. Costero AM, Peransí S (2007) Colorimetric sensing of anions by a neutral biphenyl based amide receptor. Arkivoc IV:92–101

    Google Scholar 

  37. Amendola V, Esteban-Gómez D, Fabbrizzi L, Licchelli M (2006) What anions do to N–H-containing receptors. Acc Chem Res 39:343–353

    Article  CAS  Google Scholar 

  38. Neumann T, Dienes Y, Baumgartner T (2006) Highly sensitive sensory materials for fluoride ions based on the dithieno[3,2-b:2′,3′-d]phosphole system. Org Lett 8:495–497

    Article  CAS  Google Scholar 

  39. Badr IHA, Meyerhoff ME (2005) Highly selective optical fluoride ion sensor with submicromolar detection limit based on aluminum(III) octaethylporphyrin in thin polymeric film. J Am Chem Soc 127:5318–5319

    Article  CAS  Google Scholar 

  40. Lin Z, Zhao Y, Duan C, Zhang B, Bai Z (2006) A highly selective chromo- and fluorogenic dual responding fluoride sensor: naked-eye detection of F ion in natural water via a test paper. J Chem Soc Dalton Trans 2006:3678–3684

    Google Scholar 

  41. Costero AM, Gil S, Parra M, Allouni Z, Lakhmiri R, Atlamsani A (2008) Complexation of α, ω-dicarboxylates by 3,3′-bis(5-phenyl-1,4-dioxo-2,3,5-triaza)-2,2′-bipyridine. J Inclusion Phenom Mol Recognit Chem 62:203–207

    Article  CAS  Google Scholar 

  42. Costero AM, Gil S, Parra M, Huguet N, Allouni Z, Lakhmiri R, Atlamsani A (2008) New 3,3′-disubstitued 2,2′-bipyridines as carboxylate receptors. Conformational regulation of the bipyridine moiety. Eur J Org Chem 2008:1079–1084

    Article  Google Scholar 

  43. Palmans ARA, Vekemans JAJM, Meijer EW (1995) Intramolecular hydrogen bonding in acylated 2,2′-bipyridine-3,3′-diamines. Recl Trav Chim 114:277–284

    Article  CAS  Google Scholar 

  44. Mutai T, Araki K (2007) Fluorescent oligopyridines and their photo-functionality as tunable fluorophores. Curr Org Chem 11:195–211

    Article  CAS  Google Scholar 

  45. Samoshin VV (2005) Cyclohexane-based conformationally controlled crowns and podands. MROC 2:225–235

    Article  CAS  Google Scholar 

  46. Costero AM, Colera M, Gaviña P, Gil S (2006) Fluorescent sensing of maleate versus fumarate by a neutral cyclohexane based thiourea receptor. Chem Commun 761–763

    Google Scholar 

  47. Costero AM, Colera M, Gaviña P, Gil S, Llaosa U (2008) Fluorescent chemosensors based on cyclohexane: selective sensing of succinate and malonate versus their longer or shorter homologues. Tetrahedron 64:7252–7257

    Article  CAS  Google Scholar 

  48. Ragusa A, Rossi S, Hayes JM, Stein M, Kilburn JD (2005) Novel enantioselective receptors for N-protected glutamate and aspartate. Chem Eur J 11:5674–5688

    Article  CAS  Google Scholar 

  49. Pu L (2004) Fluorescence of organic molecules in chiral recognition. Chem Rev 104:1687–1716

    Article  CAS  Google Scholar 

  50. Costero AM, Llaosa U, Gil S, Parra M, Colera M (2009) Enantioselective sensing of dicarboxylates. Influence of the stoichiometry of the complexes on the sensing mechanism. Tetrahedron Asymmetry 20:1468–1471

    Article  CAS  Google Scholar 

  51. Costero AM, Colera M, Gaviña P, Gil S, Kubinyi M, Pál K (2008) Chiral chemosensors for enantiomeric recognition of aspartate. Tetrahedron 64:3217–3224

    Article  CAS  Google Scholar 

  52. Berova N, Nakanishi N (2000) Circular dichroism: principles and applications, 2nd edn. Wiley-VCH, New York, pp 337–382

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. Costero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Costero, A.M., Parra, M., Gil, S., Andreu, M.R. (2012). Multichannel Sensors Based on Biphenyl and Cyclohexane Conformational Changes. In: Piletsky, S., Whitcombe, M. (eds) Designing Receptors for the Next Generation of Biosensors. Springer Series on Chemical Sensors and Biosensors, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/5346_2012_14

Download citation

Publish with us

Policies and ethics