Advertisement

Technology and Application Opportunities for SiC-FET Gas Sensors

  • A. Lloyd Spetz
  • M. Andersson
Chapter
Part of the Springer Series on Chemical Sensors and Biosensors book series (SSSENSORS, volume 11)

Abstract

The development of SiC-FET gas sensors has proceeded for about fifteen years. The maturity of the SiC material and a deeper understanding of the transduction mechanisms and sensor surface processes behind the sensitivity to a number of target substances have recently allowed the development of market-ready sensors for certain applications. Some examples presented below are a sensor system for domestic boiler control, an ammonia sensor for control of the SCR (selective catalytic reduction) and SNCR (Selective Non-Catalytic Reduction) NO x abatement processes as well as other more or less market-ready applications. In parallel, the basic research continues in order to reach more demanding markets/new applications and also to possibly lower the production costs of the sensors. Therefore, current research and future challenges are also treated, such as the development of new types of conducting ceramics for ohmic contacts to SiC in order to increase the operation temperature beyond the present state of the art.

Keywords

Catalytic metals Combustion control Exhaust gases FET sensors Flue gases 

Notes

Acknowledgment

Financial support is acknowledged from VINNOVA, The Swedish Agency for Innovation Systems, Industrial Partners and Linköping University through the VINN Excellence Center FunMat, Functional Nanoscale Materials, at Linköping University, Sweden and from S-SENCE, Swedish Sensor Center, VINNOVA Excellence Center at Linköping University 1995–2005, and from the Swedish Research Council.

References

  1. 1.
    Lundström I, Shivaraman MS, Svensson C (1975) A hydrogen-sensitive MOS field effect transistor. J Appl Phys 26:55–57Google Scholar
  2. 2.
    Lundström I, Sundgren H, Winquist F, Eriksson M, Krantz-Rülcker C, Lloyd Spetz A (2007) Twenty-five year of field effect gas sensors research in Linköping. Sens Actuators B 121:247–262CrossRefGoogle Scholar
  3. 3.
    Löfdahl M, Utaiwasin C, Carlsson A, Lundström I, Eriksson M (2001) Gas response dependence on gate metal morphology of field-effect devices. Sens Actuators B 80:183–192CrossRefGoogle Scholar
  4. 4.
    Spetz A, Armgarth M, Lunström I (1988) Hydrogen and ammonia response of metal- silicon dioxide-silicon structures with thin platinum gates. J Appl Phys 64(3):1274–1283CrossRefGoogle Scholar
  5. 5.
    Spetz A, Helmersson U, Enquist F, Armgarth M, Lundström I (1989) Structure and ammonia sensitivity of thin platinum or iridium gates in metal- oxide -silicon capacitors. Thin Solid Films 177:77–93CrossRefGoogle Scholar
  6. 6.
    Lloyd Spetz A, Baranzahi A, Tobias P, Lundström I (1997) High temperature sensors based on metal-insulator-silicon carbide devices. Phys Stat Sol A 162:493–511CrossRefGoogle Scholar
  7. 7.
    Wright NG, Horsfall AB (2007) SiC sensors: a review. J Phys D Appl Phys 40:6345–6354CrossRefGoogle Scholar
  8. 8.
    SenSiC AB, Isafjordsgatan 39B, SE-164 40 Kista, SwedenGoogle Scholar
  9. 9.
    Fogelberg J, Eriksson M, Dannetun H, Petersson L-G (1995) Kinetic modeling of hydrogen adsorption in thin films on hydrogen-sensitive field effect devices. Observation of large hydrogen-induced dipoles at the Pd-SiO2 interface. J Appl Phys 78(2):988–996CrossRefGoogle Scholar
  10. 10.
    Wallin M, Grönbeck H, Lloyd Spetz A, Skoglundh M (2004) Vibrational study of ammonia adsorption on Pt/SiO2. Appl Surf Sci 235:487–500. doi: 10.1016/j.apsusc.2004.03.225 CrossRefGoogle Scholar
  11. 11.
    Eriksson M, Petersson L-G (1998) Real time measurements of hydrogen desorption and absorption during CO exposures of Pd: hydrogen sticking and dissolution. Appl Surf Sci 133:89–97CrossRefGoogle Scholar
  12. 12.
    Schalwig J, Kreisl P, Ahlers S, Müller G (2002) Response mechanism of SiC-based MOS field-effect gas sensors. IEEE Sens J 2(5):394–402CrossRefGoogle Scholar
  13. 13.
    Dannetun HM, Petersson L-G, Söderberg D, Lundström I (1985) The H2-O2 reaction on palladium studied over a large pressure range: independence of the microscopic sticking coefficients on surface condition. Surf Sci 152(153):559–568CrossRefGoogle Scholar
  14. 14.
    Salomonsson A, Eriksson M, Dannetun H (2005) Hydrogen interaction with platinum and palladium metal – insulator – semiconductor devices. J Appl Phys 98: 014505-1–014505-9Google Scholar
  15. 15.
    Åbom AE, Haasch RT, Hellgren N, Finnegan N, Hultman L, Eriksson M (2003) Characterization of the metal-insulator interface of field-effect chemical sensors. J Appl Phys 93(12):9760–9768CrossRefGoogle Scholar
  16. 16.
    Åbom AE, Persson P, Hultman L, Eriksson M (2002) Influence of gate metal film growth parameters on the properties of gas sensitive field-effect devices. Thin Solid Films 409:233–242CrossRefGoogle Scholar
  17. 17.
    Kahng YH, Lu W, Tobin RG, Loloee R, Ghosh R (2009) The role of oxygen in hydrogen sensing by a platnium-gate silicon carbide gas sensor: an ultrahigh vacuum study. J Appl Phys 105:0645111-1–064511-7Google Scholar
  18. 18.
    Kahng YH, Tobin RG, Loloee R, Ghosh R (2007) Sulfur surface chemistry on the platinum gate of a silicon carbide based hydrogen sensor. J Appl Phys 102:064505-1–064505-9Google Scholar
  19. 19.
    Eisele I, Doll T, Burgmair (2001) Low power gas detection with FET sensors. Sens Actuators B 78:19–25CrossRefGoogle Scholar
  20. 20.
    Ostrick B, Fleischer M, Meixner H (2003) The influence of interfaces and interlayers on the gas sensitivity in work function type sensors. Sens Actuators B 95:271–274CrossRefGoogle Scholar
  21. 21.
    Moos R, Sahner K, Fleischer M, Guth U, Barsan N, Weimar U (2009) Solid state gas sensor research in Germany – a status report. Sensors 9:4323–4365CrossRefGoogle Scholar
  22. 22.
    Andersson M, Ljung P, Mattsson M, Löfdahl M, Lloyd Spetz A (2004) Investigations on the possibilities of a MISiCFET sensor system for OBD and combustion control utilizing different catalytic gate materials. Top Catal 30(31):365–368CrossRefGoogle Scholar
  23. 23.
    Lloyd Spetz A, Skoglundh M, Ojamäe L (2008) FET gas sensing mechanism, experimental and theoretical studies. In: Comini E, Faglia G, Sberveglieri G (eds) Solid state gas sensing, chap 4. Springer, Norwell, MA, USA, pp 153–179, ISBN: 978-0-387-09664-3Google Scholar
  24. 24.
    Salomonsson A, Petoral RM Jr, Uvdal K, Aulin C, Käll P-O, Ojamäe L, Strand M, Sanati M, Lloyd Spetz A (2006) Nanocrystalline ruthenium oxide and ruthenium in sensing applications – an experimental and theoretical study. J Nanoparticle Res 8:899–910. doi: 10.1007/s11051-005-9058-1 CrossRefGoogle Scholar
  25. 25.
    Wallin M, Byberg M, Grönbeck H, Skoglundh M, Eriksson M, Lloyd Spetz A (2007) Vibrational analysis of H2 and NH3 adsorption on Pt/SiO2 and Ir/SiO2 model sensors. In Proceedings of IEEE Sensors 2007, Atlanta, USA, 28–31 Oct 2007, pp 1315–1317Google Scholar
  26. 26.
    Wallin M, Grönbeck H, Lloyd Spetz A, Eriksson M, Skoglundh M (2005) Vibrational analysis of H2 and D2 adsorption on Pt/SiO2. J Phys Chem B 109:9581–9588CrossRefGoogle Scholar
  27. 27.
    Nakagomi S, Tobias P, Baranzahi A, Lundström I, Mårtensson P, Lloyd Spetz A (1997) Influence of carbon monoxide, water, and oxygen on high temperature catlaytic metal–oxide–silicon carbide structures. Sens Actuators B 45(3):183–191CrossRefGoogle Scholar
  28. 28.
    Andersson M, Lloyd Spetz A (2010) Tailoring of SiC based field effect gas sensors for improved selectivity to non-hydrogen containing species. In: Proceedings of IMCS13, Perth, Australia, 12–14 July 2010, p 369Google Scholar
  29. 29.
    Andersson M, Wingbrant H, Lloyd Spetz A (2005) Study of the CO response of SiC based field effect gas sensors. In: Proceedings of IEEE Sensors 2005, Irivine, USA, 31 Oct–2 Nov 2005, pp 105–108Google Scholar
  30. 30.
    Becker E, Skoglundh M, Andersson M, Lloyd Spetz A (2007) In situ DRIFT study of hydrogen and CO adsorption on Pt/SiO2 model sensors. In: Proceedings of IEEE Sensors 2007, Atlanta, USA, 28–31 Oct 2007, pp 1028–1031Google Scholar
  31. 31.
    Becker E, Andersson M, Eriksson M, Lloyd Spetz A, Skoglundh M (2011) Study of the sensing mechanism towards carbon monoxide of platinum-based field effect sensors. IEEE Sens J 11(7):1527–1534CrossRefGoogle Scholar
  32. 32.
    Andersson M, Lloyd Spetz A (2009) Tailoring of field effect gas sensors for sensing of nonhydrogen containing substances from mechanistic studies on model systems. In: Proceedings of IEEE Sensors 2009, Christchurch, New Zealand, 26–28 Oct 2009, pp 2031–2036Google Scholar
  33. 33.
    Nakagomi S, Sato K, Suzuki S, Kokubun Y (2009) Influence of ambient, gate metal and oxide thickness on interface state density and time constant in MOSiC capacitor. Mater Sci Forum 600–603:735–738CrossRefGoogle Scholar
  34. 34.
    Weidemann O, Hermann M, Steinhoff G, Wingbrant H, Lloyd Spetz A, Stutzmann M, Eickhoff M (2003) Influence of surface oxides on hydrogen-sensitive Pd:GaN Schottky diodes. Appl Phys Lett 83(4):773–775CrossRefGoogle Scholar
  35. 35.
    Zangooie S, Arwin H, Lundström I, Lloyd Spetz A (2000) Ozone treatment of SiC for improved performance of gas sensitive Schottky diodes. Mater Sci Forum 338–342:1085–1088CrossRefGoogle Scholar
  36. 36.
    Neudeck PG, Spry DJ, Truneck AJ, Evans LJ, Chen L-Y, Hunter GW, Androjna D (2009) Hydrogen gas sensors fabricated on atomically flat 4H-SiC webbed cantilevers. Mater Sci Forum 600–603:1199–1202CrossRefGoogle Scholar
  37. 37.
    Comini E, Cusma A, Kaciulis S, Kandasamy S, Padeletti G, Pandolfi L, Sberveglieri G, Trinchi A, Wlodarski W (2006) XPS investigation of CoOx-based MRISiC structures for hydrocarbon gas sensing. Surf Interface Anal 38:736–739CrossRefGoogle Scholar
  38. 38.
    Nakagomi S, Lloyd Spetz A (2006) Gas sensor device based on catalytic Metal – Metal Oxide – SiC structure. In: Grimes CA, Dickey EC (eds) Encyclopedia of sensors, vol 4. American Scientific, Stevenson Ranch, CA, USA, pp 155–170Google Scholar
  39. 39.
    Trinchi A, Kandasamy S, Wlodarski W (2008) High temperature field effect hydrogen and hydrocarbon gas sensors based on SiC MOS devices. Sens Actuators B 133:705–716CrossRefGoogle Scholar
  40. 40.
    Zhu W, chen XF, Tan OK, Deng J (2002) Hydrogen-sensitive amorphous ferroelectric thin film capacitive devices. Integr Ferroelectron 44:25–75CrossRefGoogle Scholar
  41. 41.
    Di Natale C, Buchholt K, Martinelli E, Paolesse R, Pomarico G, D'Amico A, Lundström I, Lloyd Spetz A (2009) Investigation of quartz microbalance and chemfet transduction of molecular recognition events in a metalloporphyrin film. Sens Actuators B 135:560–567CrossRefGoogle Scholar
  42. 42.
    Ghosh RN, Tobias P (2005) SiC field effect devices operating at high temperatures. J Electron Mater 34:345–350CrossRefGoogle Scholar
  43. 43.
    Racault C, Langlais F, Naslain R (1994) Solid state synthesis and characterization of the ternary phase Ti3SiC2. J Mater Sci 29:3384–3392CrossRefGoogle Scholar
  44. 44.
    Wingbrant H, Svenningstorp H, Kubinski DJ, Visser JH, Andersson M, Unéus L, Löfdahl M, Lloyd Spetz A (2006) MISiC-FET NH3 sensors for SCR control in exhaust and flue gases. In: Grimes CA, Dickey EC (eds) Encyclopedia of sensors, vol 6. American Scientific, Stevenson Ranch, CA, USA, pp 205–218Google Scholar
  45. 45.
    Wingbrant H, Svenningstorp H, Salomonsson P, Kubinski D, Visser JH, Löfdahl M, Lloyd Spetz A (2005) Using a MISiC-FET sensor for detecting NH3 in SCR systems. IEEE Sens J 5(5):1099–1105CrossRefGoogle Scholar
  46. 46.
    Kim CK, Lee JH, Choi SM, Noh IH, Kim HR, Cho NI, Hong C, Jang GE (2001) Pd- and Pt-SiC Schottky diodes for detection of H2 and CH4 at high temperature. Sens Actuators B 77:455–462CrossRefGoogle Scholar
  47. 47.
    Ali M, Cimalla V, Lebedev V, Stauden Th, Wang Ch, Ecke G, Tilak V, Sandvik P, Ambacher O (2007) Reactively sputtered InxVyOz films for detection of NOx, D2 and O2. Sens Actuators B 123:779–783CrossRefGoogle Scholar
  48. 48.
    Karthigeyan A, Gupta RP, Burgmair M, Zimmer M, Sulima T, Venkataraj S, Sharma SK, Eisele I (2004) Iridium oxide as low temperature NO2-sensitive material for work function-based gas sensors. IEEE Sens J 4(2):189–194CrossRefGoogle Scholar
  49. 49.
    Ostrick B, Pohle R, Fleischer M, Meixner H (2000) TiN in work function type sensors: a stable ammonia sensitive material for room temperature operation with low humidity cross sensitivity. Sens Actuators B 68:234–239CrossRefGoogle Scholar
  50. 50.
    Loloee R, Chorpening B, Beer S, Ghosh RN (2008) Hydrogen monitoring for power plant applications using SiC sensors. Sens Actuators B 129:200–210CrossRefGoogle Scholar
  51. 51.
    Meixner H, Gerblinger J, Lampe U, Fleischer M (1995) Thin-film gas sensors based on semiconducting metal oxides. Sens Actuators B 23:119–125CrossRefGoogle Scholar
  52. 52.
    Baranzahi A, Tobias P, Lloyd Spetz A, Lundström I, Mårtensson P, Glavmo M, Göras A, Nytomt J, Salomonsson P, Larsson H (1997) Fast responding air/fuel sensor for individual cylinder control. SAE Technical Paper Series 972940, Combustion and Emisson Formation in SI Engines, SP-1300: 231–240Google Scholar
  53. 53.
    Larsson O, Göras A, Nytomt J, Carlsson C, Lloyd Spetz A, Artursson T, Holmberg M, Lundström I, Ekedahl L-G, Tobias P (2002) Estimation of air fuel ratio of individual cylinders in SI engines by means of MISiC sensor signals in a linear regression model. In: Proceedings of SAE2002, Detroit, USA, 4–7 Mar 2002 (2002-01-0847, also in SAE 2002 Transactions J Engines)Google Scholar
  54. 54.
    Tobias P, Lloyd Spetz A, Mårtensson P, Baranzahi A, Göras A, Lundström I (1999) Moving gas outlets for the evaluation of fast gas sensors. Sens Actuators B 58(1–3):389–393CrossRefGoogle Scholar
  55. 55.
    Wingbrant H, Svenningstorp H, Salomonsson P, Tengström P, Visser J, Ekedahl L-G, Lundström I, Lloyd Spetz A (2003) The speed of response of MISiCFET devices. Sens Actuators B 93(1–3):286–294CrossRefGoogle Scholar
  56. 56.
    Ghosh RN, Tobias P, Hu H, Koochesfahani M (2005) Fast solid state gas sensor characterization with millisecond resolution. In: 4th IEEE conference on sensors, Irvine, CA, 31 Oct–3 Nov 2005Google Scholar
  57. 57.
    Gerblinger J, Lampe U, Meixner H (1995) Sensitivity mechanism of metal oxides to oxygen detected by means of kinetic studies at high temperatures. Sens Actuators B 25:639–642CrossRefGoogle Scholar
  58. 58.
    Visser J, Soltis RE (2001) Automotive exhaust gas sensing systems. IEEE Trans Instrum Meas 50(6):1543–1550CrossRefGoogle Scholar
  59. 59.
    Wingbrant H, Svenningstorp H, Salomonsson P, Tengström P, Moldin D, Ekedahl L-G, Lundström I, Lloyd Spetz A (2003) Using a MISiCFET device as a cold start sensor. Sens Actuators B 93(1–3):295–303CrossRefGoogle Scholar
  60. 60.
    Sandvik P, Ali M, Tilak V, Matocha K, Stauden T, Tucker J, Deluca J, Ambacher O (2006) SiC-based MOSFETS for harsh environment emissions sensors. Mater Sci Forum 527–529:1457–1460CrossRefGoogle Scholar
  61. 61.
    Hunter GW, Xu JC, Dungan LK, Ward BJ, Rowe S, Williams J, Makel DB, Liu CC, Chang CW (2008) Smart sensor systems for aerospace applications: from sensor development to application testing. ECS Trans 16(11):333–344CrossRefGoogle Scholar
  62. 62.
    Andersson M, Everbrand L, Lloyd Spetz A, Nyström T, Nilsson M, Gauffin C, Svensson H (2007) A MISiCFET based gas sensor system for combustion control in small-scale wood fired boilers. In: Proceedings of IEEE Sensors 2007, Atlanta, USA, 28–31 Oct 2007, pp 962–965Google Scholar
  63. 63.
    Andersson M, Wingbrant H, Petersson H, Unéus L, Svenningstorp H, Löfdahl M, Holmberg M, Lloyd Spetz A (2006) Gas sensor arrays for combustion control. In: Grimes CA, Dickey EC (eds) Encyclopedia of sensors, vol 4. American Scientific, Stevenson Ranch, CA, USA, pp 139–154Google Scholar
  64. 64.
    Unéus L, Artursson T, Mattsson M, Ljung P, Wigren R, Mårtensson P, Holmberg M, Lundström I, Lloyd Spetz A (2005) Evaluation of on-line flue gas measurements by MISiCFET and metal-oxide sensors in boilers. IEEE Sens J 5(1):75–81CrossRefGoogle Scholar
  65. 65.
    Virshup A, Porter LM, Lukco D, Buchholt K, Hultman L, Lloyd Spetz A (2009) Investigation of thermal stability and degradation mechanism in Ni-based ohmic contacts to n-type SiC for high-temperature gas sensors. J Electron Mater 38(4):569–573CrossRefGoogle Scholar
  66. 66.
    Okojie RS, Lukco D, Chen YL, Spry DJ (2002) Reliability assessment of Ti/TaSi2/Pt ohmic contacts on SiC after 1000 h at 600°C. J Appl Phys 91(10):6553–6559CrossRefGoogle Scholar
  67. 67.
    Buchholt K, Ghandi R, Domeij M, Zetterling C-M, Lu J, Eklund P, Hultman L, Lloyd Spetz A (2011) Ohmic contact properties of magnetron sputtered Ti3SiC2 on n- and p-type 4 H-silicon carbide. Appl Phys Lett 98(4):042108. doi: 10.1063/1.3549198 CrossRefGoogle Scholar
  68. 68.
    Eklund P, Beckers M, Jansson U, Högberg H, Hultman L (2010) The Mn+1AXn phases: materials science and thin film processing. Thin Solid Film 518:1851–1878CrossRefGoogle Scholar
  69. 69.
    Pecz B, Toth L, di Forte-Poisson MA, Vacas J (2003) Ti3SiC2 formed in annealed Al/Ti contacts to p-type SiC. Appl Surf Sci 206:8–11CrossRefGoogle Scholar
  70. 70.
    Sun Z, Zhou Y, Li M (2001) High temperature oxidation behavior of Ti3SiC2 based material in air. Acta Mater 49:4347–4353CrossRefGoogle Scholar
  71. 71.
    Wenzel R, Goesmann F, Schmid-Fetzer R (1998) Diffusion barriers in gold-metallized titanium-based contact structures on SiC. J Mat Sci Mat in Electr 9(2):109–113Google Scholar
  72. 72.
    Sandvik P, Babes-Dornea E, Trudel AR, Georgescu M, Tilak V, Renaud D (2006) GaN-based Schottky diodes for hydrogen sensing in transformer oil. Phys Stat Sol C 6:2283–2286CrossRefGoogle Scholar
  73. 73.
    Belov I, Wingbrant H, Lloyd Spetz A, Sundgren H, Thunér B, Svenningstorp H, Leisner P (2006) CFD analysis of packaging and mounting solutions for SiC-based gas sensors in automotive applications. Sens Lett 4:29–37CrossRefGoogle Scholar
  74. 74.
    Eriksson J, Roccaforte F, Reshanov S, Leone S, Giannazzo F, LoNigro R, Fiorenza RP, Raineri V (2011) Nanoscale characterization of electrical transport at metal/3 C-SiC interfaces. Nanoscale Res Lett 6:120–124Google Scholar
  75. 75.
    Lebedev AA, Abramov PL, Bogdanova EV, Lebedev SP, Nelson DK, Oganesyan GA, Tregubova AS, Yakimova R (2008) Highly doped p-type 3C-SiC on 6H-SiC substrates. Semicond Sci Technol 23:075004Google Scholar
  76. 76.
    Song J, Lu W (2008) Operation of Pt/AlGaN/GaN-heterojunction Field Effect-Transistor hydrogen sensors with low detection limit and high sensitivity. IEEE Electron Dev Lett 29(11):1193–1195CrossRefGoogle Scholar
  77. 77.
    Baur B, Howgate J, von Ribbeck H-G, Gawlina Y, Bandalo V, Steinhoff G, Stutsmann M, Eickhoff M (2006) Catalytic activity of enzymes immobilized on AlGaN/GaN solution gate field-effect transistors. Appl Phys Lett 89:183901CrossRefGoogle Scholar
  78. 78.
    Baur B, Steinhoff G, Hernando J, Purrucker O, Tanaka M, Nickel B, Stutzmann M, Eickhoff M (2005) Chemical functionalization of GaN and AlN surfaces. Appl Phys Lett 87: 26391-1–26391-3Google Scholar
  79. 79.
    Steinhoff G, Baur B, Wrobel G, Ingebrant S, Offenhäuser A, Dadgar A, Krost A, Stutzmann M, Eickhoff M (2005) Recording of cell action potentials with AlGaN/GaN field-effect transistors. Appl Phys Lett 86:033901 (with G. Steinhoff G, Baur B, Wrobel G, Ingebrandt S, Offenhäusser A, Stutzmann M, Eickhoff M (2006) Erratum:[Recording of Cell Action Potentials with AlGaN/GaN Field Effect Transistors], Appl Phys Lett 89: 019901)Google Scholar
  80. 80.
    Koike K, Takagi D, Kawasaki M, Hashimoto T, Inoue T, Ogata K-I, Sasa S, Inoue M, Yano M (2007) Ion sensitive characteristics of an electrolyte-solution-gate ZnO/ZnMgO heterjunction field-effect transistor as a biosensing transducer. Jpn J Appl Phys 46(36):L865–L867CrossRefGoogle Scholar
  81. 81.
    Yakimova R, Petoral RM Jr, Yazdi GR, Vahlberg C, Lloyd Spetz A, Uvdal K (2007) Surface functionalization and biomedical applications based on SiC. J Phys D Appl Phys 40:6435–6442Google Scholar
  82. 82.
    Rubio-Retama J, Hernando J, Lopez-Ruiz B, Härtl A, Steinmüller D, Stutzmann M, Lopez-Cabarcos E, Garrido JA (2006) Synthetic nanocrystalline diamond as a third-generation biosensor support. Langmuir 22:5837–5842CrossRefGoogle Scholar
  83. 83.
    Helwig A, Müller G, Garrido JA, Eickhoff M (2008) Gas sensing properties of hydrogen-terminated diamond. Sens Actuators B 133:156–165CrossRefGoogle Scholar
  84. 84.
    Roy S, Gao Z (2009) Nanostructure based electrical biosensors. Nano Today 4:318–334CrossRefGoogle Scholar
  85. 85.
    Pearce R, Iakimov T, Andersson M, Hultman L, Lloyd Spetz A, Yakimova R (2011) Epitaxially grown graphene based gas sensors for ultra sensitive NO2 detection. Sens Actuators B 155(2):451–455CrossRefGoogle Scholar
  86. 86.
    Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Röhrl J, Rotenberg E, Schmid AK, Waldman D, Weber HB, Seyller T (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8:203–207CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Physics, Chemistry and BiologyLinköping UniversityLinköpingSweden
  2. 2.SenSiC ABKistaSweden

Personalised recommendations