Advertisement

Gas Sensor Investigations in Characterizing Textile Fibres

  • N. Felde
  • D. Kohl
Chapter
Part of the Springer Series on Chemical Sensors and Biosensors book series (SSSENSORS, volume 11)

Abstract

The response of tin oxide and tungsten oxide sensor elements to the volatiles of heated polymer fibres of textile fabrics was investigated. As an example, polyethylene terephthalate (PET) fibres covered with finish were chosen. Both the contributions to the sensor signal from the fibre and the finish are discussed. All compounds originating from the fibres contain at least one aromatic ring, the dominating components are benzoic acid, phenol, and 1-phenyl-1,2-propandion. The finish contributes with several aliphatic aldehydes and ketones of chain lengths from 5 to 19 carbon atoms. Rings with five carbon atoms are also due to the finish. The investigated tin oxide sensor and one of the tungsten oxide sensors respond only to one decomposition compound of the fibres, namely to 1-phenyl-1,2-propandion. The second investigated tungsten oxide sensor does not respond to any PET decomposition product. However, all sensors react with high signals to decomposition compounds of the finish.

Keywords

Gas chromatography Phenyl-propandion Polymer pyrolysis Tin oxide sensor Tungsten oxide sensor 

References

  1. 1.
    Hofmann T, Schieberle P, Krummel C, Freiling A, Bock J, Heinert L, Kohl D (1997) Sensors and Actuators B Chemical, http://www.journals.elsevier.com/sensors-and-actuators-b-chemical/ 41:81–87CrossRefGoogle Scholar
  2. 2.
    Kohl D, Eberheim A, Schieberle P (2005) Thin Solid Films 490:1–6CrossRefGoogle Scholar
  3. 3.
    Felde N (2005) Gassensor-Detektionsmechanismen für Schwelgase von PA-Granulat und PET-Fasern. Doctoral thesis, Giessen, GermanyGoogle Scholar
  4. 4.
    National Institute of Standards and Technology, NIST 98 MS Library Database, http://www.nist.gov/srd/upload/Ver20Man.pdf
  5. 5.
    Aseeva RM, Zaikov GE (1981) Combustion of polymer materials. Hanser Publishers, MünchenGoogle Scholar
  6. 6.
    Ortner J, Hensler G (1995) Beurteilung von Kunststoffbränden. Bayrisches Amt für Umweltschutz, http://www.lfu.bayern.de/luft/doc/kunststoffbraende.pdf
  7. 7.
    Lüderwald I, Urrutia H (1976) Makromol Chem 177:2079–2091CrossRefGoogle Scholar
  8. 8.
    Mc Lafferty FW, Turecek F (1993) Interpretation von Massenspektren. Spektrum Verlag, HeidelbergGoogle Scholar
  9. 9.
    Al-Flahi A, Zou J, Yin X (2004) J Zhejiang univ sci 5(4):428–431CrossRefGoogle Scholar
  10. 10.
    Mortimer CE (1986) Chemie. Georg Thieme Verlag, StuttgartGoogle Scholar
  11. 11.
    Grause G (2003) Chemisches Recycling von Polyethylenterephthalat und Polymethylmethacrylat. Doctoral thesis, HamburgGoogle Scholar
  12. 12.
    Belitz H-D, Grosch W, Schieberle P (2001) Lehrbuch der Lebensmittelchemie. Springer, HeidelbergGoogle Scholar
  13. 13.
    Vieweg R, Müller A (1966) Kunststoff Handbuch Vol 6 (Polyamide). Carl Hanser Verlag, MünchenGoogle Scholar
  14. 14.
    Paul RK, Badhulika S, Mulchandani A (2011) Appl Phys Lett 99(3). doi:  10.1063/1.3614544 (Article number 033103)
  15. 15.
    Kohl D (2001) J Phys D Appl Phys 34:R125–R149CrossRefGoogle Scholar
  16. 16.
    Busca G, Finocchio E, Ramis G, Ricchiardi G (1996) Catal Today 32:133–143CrossRefGoogle Scholar
  17. 17.
    Busca G (1996) Catal Today 27:457–496CrossRefGoogle Scholar
  18. 18.
    Centi G, Perathoner S (1998) Catal Today 41:457–469CrossRefGoogle Scholar
  19. 19.
    Mortimer CE (1986) Chemie – das Basiswissen der Chemie. Georg Thieme Verlag, StuggartGoogle Scholar
  20. 20.
    Lercher JA, Gründling C, Eder-Mirth G (1996) Catal Today 27:353–376CrossRefGoogle Scholar
  21. 21.
    Kohl D (1996) Semiconductor and calorimetric sensor devices and arrays. In: Kress-Rogers E (ed) Handbook of biosensors and electronic nose: medicine, food & the environment. CRC Press, Boca RatonGoogle Scholar
  22. 22.
    Carey FA, Sundberg RJ (1995) Organic chemistry. Wiley-VCH, WeinheimGoogle Scholar
  23. 23.
    Yoo JS (1998) Catal Today 41:409–432CrossRefGoogle Scholar
  24. 24.
    Vollhardt KPC, Schore NE (1988) Organische Chemie. Wiley-VCH, WeinheimGoogle Scholar
  25. 25.
    Eberheim A (2003) Qualifizierung von Halbleiter-Gassensoren für die Detektion spezifischer organischer Rauchgaskomponenten. Doctoral thesis, Giessen, GermanyGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institute of Applied PhysicsUniversity of GiessenGiessenGermany

Personalised recommendations