Skip to main content

The Power of Nanomaterial Approaches in Gas Sensors

  • Chapter
  • First Online:
Solid State Gas Sensors - Industrial Application

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 11))

  • 1958 Accesses

Abstract

The challenge of nanotechnology is to discover new effects on already known materials and to convert exciting new findings into advanced technologies that are useful for industrial applications.

In these years, researchers have achieved the ability to produce quasi-one-dimensional (Q1D) structures in a variety of morphologies such as nanowires, core shell nanowires, nanotubes, nanobelts, hierarchical structures, nanorods, nanorings. In particular, Q1D Metal OXides (MOX) are attracting an increasing interest in gas sensing application: nanosized dimension ensures high specific surface that leads to the enhancement of catalytic activity or surface adsorption. Moreover, single-crystalline structures with well-defined chemical composition and surface terminations are not prone to thermal instabilities suffered from MOX polycrystalline counterpart. All these peculiarities can help to fill the gap between research and industrial application needs, aiming at the development of a reliable, low cost gas sensor.

This chapter presents an up-to-date survey of the research on Q1D metal oxide materials for gas sensing application, addressing the preparation techniques of sensing nano-crystals in connection with their electrical and optical properties. The application as resistive, transistor-based or optical-based gas sensors will be treated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CTM:

Charge transfer model

CW:

Continuous wave

DMMP:

Dimethyl methylphosphonate

MOX:

Metal oxides

NW:

Nanowire

PL:

Photoluminescence

Q1D:

Quasi-one-dimensional

RGTO:

Rheotaxial growth and thermal oxidation

SCR:

Space charge region

SLS:

Solution–liquid–solid

SNT:

Single nanowire transistor

TFT:

Thin-film transistors

TRPL:

Time resolved photoluminescence

VLS:

Vapor–liquid–solid

VS:

Vapor–solid

References

  1. Hoeck G, Bruneckreef B, Fischer P, Van Wijnen J (2001) Epidemiology 12:355–357

    Google Scholar 

  2. Ponzoni A, Baratto C, Bianchi S, Comini E, Ferroni M, Pardo M, Vezzoli M, Vomiero A, Faglia G, Sberveglieri G (2008) IEEE Sens J 8:735

    CAS  Google Scholar 

  3. Yamazoe N (1991) Sens Actuators B 5–12

    Google Scholar 

  4. Guidi V, Carotta MC, Ferroni M, Martinelli G, Paglialonga L, Comini E, Sberveglieri G (1999) Sens Actuators B 57:197–200

    CAS  Google Scholar 

  5. Cui Y, Lieber CM (2006) Science 291:851

    Google Scholar 

  6. Cui Y, Duan X, Huang Y, Cui Y, Wang J, Lieber CM (2001) Nature 409:66, 291, 851

    Google Scholar 

  7. Huang Y, Duan X, Cui Y, Lieber CM (2002) Nano Lett 2:101

    CAS  Google Scholar 

  8. Lieber CM (2003) MRS Bull 28:486–491

    CAS  Google Scholar 

  9. Samuelson L (2003) Mater Today 6:22

    CAS  Google Scholar 

  10. Stellacci F (2006) Adv Funct Mater 16:15

    CAS  Google Scholar 

  11. Comini E, Faglia G, Sberveglieri G, Pan Z, Wang Z (2002) Appl Phys Lett 81:1869–1871

    CAS  Google Scholar 

  12. Haghiri-Gosnet AM, Vieu C, Simon G, Mejıas M, Carcenac F, Launois H et al (1999) J Phys 4:92–133

    Google Scholar 

  13. Marrian CRK, Tennant DM et al (2003) Nanofabrication. J Vac Sci Technol A21:S207–S215

    Google Scholar 

  14. Candeloro P, Comini E, Baratto C, Faglia G, Sberveglieri G, Kumar R, Carpentiero A, Di Fabrizio E (2005) J Vac Sci Technol B 23:2784–2788

    CAS  Google Scholar 

  15. Candeloro P, Carpentiero A, Cabrini S, Di Fabrizio E, Comini E, Baratto C, Faglia G, Sberveglieri G, Gerardino A (2005) Micro Eng 178:78–79

    Google Scholar 

  16. Wagner RS, Ellis WC (1964) Appl Phys Lett 4:89–90

    CAS  Google Scholar 

  17. Kolasinski KW (2008) Growth and etching of semiconductors. In: Hasselbrink E, Lundqvist I (eds) Handbook of surface science, vol. 3. Elsevier, Amsterdam

    Google Scholar 

  18. Kolasinski KW (2006) Catalytic growth of nanowires: vapor–liquid–solid, vapor–solid–solid, solution–liquid–solid and solid–liquid–solid growth. Curr Opin Solid State Mater Sci 10:182–191

    CAS  Google Scholar 

  19. Masuda H, Abe A, Nakao M, Yokoo A, Tamamura T, Nishio K (2003) Adv Mater 15:161–164

    CAS  Google Scholar 

  20. Xu CK, Xu GD, Liu YK, Wang GH (2002) Solid State Commun 122:175–179

    CAS  Google Scholar 

  21. Xu CK, Zhao XL, Liu S, Wang GH (2003) Solid State Commun 125:301–304

    CAS  Google Scholar 

  22. Xu CK, Xu GD, Wang GH (2003) J Mater Sci 38:779–782

    Google Scholar 

  23. Gao T, Li QH, Wang TH (2005) Chem Mater 17:887–892

    CAS  Google Scholar 

  24. Miao JJ, Wang H, Li YR, Zhu JM, Zhu JJ (2005) J Cryst Growth 281:525–529

    CAS  Google Scholar 

  25. Kumar RV, Koltypin Y, Xu XN, Yeshurun Y, Gedanken A, Felner I (2001) J Appl Phys 89:6324–6328

    CAS  Google Scholar 

  26. Liu B, Zeng HC (2003) Am Chem Soc 125:4430–4431

    CAS  Google Scholar 

  27. Wang JM, Gao L (2003) J Mater Chem 13:2551–2554

    CAS  Google Scholar 

  28. Guo M, Diao P, Cai SM (2005) J Solid State Chem 178:1864–1873

    CAS  Google Scholar 

  29. Sun Y, Ndifor-Angwafor NG, Riley DJ, Ashfold MNR (2006) Chem Phys Lett 431:352–357

    CAS  Google Scholar 

  30. Cao MH, Wang YH, Guo CX, Qi YJ, Hu CW, Wang EB (2004) J Nanosci Nanotechnol 4:824–828

    CAS  PubMed  Google Scholar 

  31. Zhou KB, Wang X, Sun XM, Peng Q, Li YD (2005) J Catal 229:206–212

    CAS  Google Scholar 

  32. Yuan ZY, Su BL (2004) Colloids Surf A Physicochem Eng Aspects 241:173–183

    CAS  Google Scholar 

  33. Formalas A (1934) US patent 1 975 504

    Google Scholar 

  34. Dai H, Gong J, Kim H, Lee D (2002) Nanotechnology 13:674–677

    CAS  Google Scholar 

  35. Shao C, Kim HY, Gong J, Park SJ (2003) Mater Lett 57:1579–1584

    CAS  Google Scholar 

  36. Viswanathamurthi P, Bhattarai N, Kim HY, Lee DR (2003) Scripta Mater 49:577–581

    CAS  Google Scholar 

  37. Guan H, Shao C, Chen B, Gong J, Yang X (2003) Inorg Chem Commun 6:1409–1411

    CAS  Google Scholar 

  38. Yang X, Shao C, Guan H, Li X, Gong J (2004) Inorg Chem Commun 7:176–178

    CAS  Google Scholar 

  39. Guan H, Shao C, Wen S, Chen B, Gong J, Yang X (2003) Mater Chem Phys 6:1302–1303

    CAS  Google Scholar 

  40. Ding B, Kim H, Kim C, Khil M, Park S (2003) Nanotechnology 14:532–537

    CAS  Google Scholar 

  41. Viswanathamurthi P, Bhattarai N, Kim HY, Lee DR, Kim SR, Morris MA (2003) Chem Phys Lett 374:79–84

    CAS  Google Scholar 

  42. Dharmaraj N, Park HC, Lee BM, Viswanathamurthi P, Kim HY, Lee DR (2004) Inorg Chem Commun 7:431–433

    CAS  Google Scholar 

  43. Tsuda N, Nasu K, Fujimori A, Siratori K (2000) Electronic conduction in oxides, 2nd edn. Springer, Berlin

    Google Scholar 

  44. Samson S, Fonstad CG (1973) Defect structure and electronic donor. Levels in Stannic Oxide crystal. J Appl Phys 44:4618–4621

    CAS  Google Scholar 

  45. Morrison SR (1978) The chemical physics of surfaces. Plenum, New York

    Google Scholar 

  46. Madou MJ, Morrison SR (1989) Chemical sensing with solid state devices. Academic, San Diego

    Google Scholar 

  47. Kronik L, Shapira Y (1999) Surf Sci Rep 37:1–206

    CAS  Google Scholar 

  48. Barsan N, Weimar U (2001) J Electroceram 7:143

    CAS  Google Scholar 

  49. Barsan N, Weimar U (2003) J Phys Condens Matter 15:R813–R839

    CAS  Google Scholar 

  50. Hahn SH, Barsan N, Weimar U, Ejakov SG, Visser JH, Soltis RE (2003) Thin Solid Films 436:17–24

    CAS  Google Scholar 

  51. D’Amico A, Di Natale C (2001) IEEE Sens J 1:183–190

    Google Scholar 

  52. Yu C, Hao Q, Saha S, Shi L, Kong X, Wang ZL (2005) Appl Phys Lett 86:063101

    Google Scholar 

  53. Hernández-Ramírez F, Tarancón A, Romano-Rodríguez A, Casals O, Arbiol J, Morante JR (2007) Sens Actuators B 121:3–17

    Google Scholar 

  54. Hernández-Ramírez F, Prades D, Tarancón A, Barth S, Casals O, Jimenez-Diaz R, Pellicer E, Rodriguez J, Morante JR, Juli MA, Mathur S, Romano-Rodriguez A (2008) Adv Funct Mater 18:1

    Google Scholar 

  55. Kuang Q, Lao C-S, Li Z, Liu Y-Z, Xie Z-X, Zheng L-S, Wang ZL (2008) J Phys Chem 112:11539–11544

    CAS  Google Scholar 

  56. Kolmakov A (2006) Proc SPIE 6370:63700X1-8

    Google Scholar 

  57. Liao L, Lu HB, Li JC, Liu C, Fu DJ, Liu YL (2007) Appl Phys Lett 91:173110-1-3

    Google Scholar 

  58. Riu K, Zhang D, Zhou C (2008) Appl Phys Lett 92:093111

    Google Scholar 

  59. Sberveglieri G, Baratto C, Comini E, Faglia G, Ferroni M, Ponzoni A, Vomiero A (2007) Sens Actuators B 121:208

    CAS  Google Scholar 

  60. Ying Z, Wan Q, Song ZT, Feng SL (2004) Nanotechnology 15:1682–1684

    CAS  Google Scholar 

  61. Bie L-J, Yan X-N, Yin J, Duan Y-Q, Yuan Z-H (2007) Sens Actuators B 126:604–608

    CAS  Google Scholar 

  62. Wan Q, Li QH, Chen YJ, Wang TH, He XL, Lin CL (2004) Appl Phys Lett 84:3654–3656

    CAS  Google Scholar 

  63. Xu J, Chen Y, Li Y, Shen J (2005) J Mater Sci 40:2919–2921

    CAS  Google Scholar 

  64. Wang C, Chu X, Wu M (2006) Sens Actuators B 113:320–323

    CAS  Google Scholar 

  65. Wang HT, Kang BS, Ren F, Tien LC, Sadik PV, Norton DP, Pearton SJ, Lin J (2005) Appl Phys Lett 86:243503

    Google Scholar 

  66. Tien LC, Sadik PW, Norton DP, Voss LF, Pearton SJ, Wang HT, Kang BS, Ren F, Jun J, Lin J (2005) Appl Phys Lett 87:222106

    Google Scholar 

  67. Xianfeng C, Caihong W, Dongli J, Chenmou Z (2004) Chem Phys Lett 399:461–464

    Google Scholar 

  68. Vomiero A, Bianchi S, Comini E, Faglia G, Ferroni M, Sberveglieri G (2007) Cryst Growth Des 7:2500–2504

    CAS  Google Scholar 

  69. Kaur M, Jain N, Sharma K, Bhattacharya S, Roy M, Yagi AK, Gupta SK, Yakhmi JV (2008) Sens Actuators B 133:456–461

    CAS  Google Scholar 

  70. Polleux J, Gurlo A, Barsan N, Weimar U, Antonietti M, Niederberger M (2006) Angew Chem 45:261–265

    CAS  Google Scholar 

  71. Liu J, Wang X, Peng Q, Li Y (2005) Adv Mater 17:764–767

    CAS  Google Scholar 

  72. Raible I, Burghard M, Schlecht U, Yasuda A, Vossmeyer T (2005) Sens Actuators B 106:730–735

    CAS  Google Scholar 

  73. Bogner M, Fuchs A, Scharnagl K, Winter R, Doll T, Eisele I (1998) Appl Phys Lett 17:2524–2526

    Google Scholar 

  74. Dimitrakopoulos CD, Malenfant PRL (2002) Adv Mater 14:99–117

    CAS  Google Scholar 

  75. Mitzi DB, Kosbar LL, Murray CE, Copel M, Afzali A (2004) Nature 428:299–303

    CAS  PubMed  Google Scholar 

  76. Li C, Zhang DH, Liu XL, Han S, Tang T, Han J, Zhou CW (2003) Appl Phys Lett 82:1613–1615

    CAS  Google Scholar 

  77. Zhang DH, Liu ZQ, Li C, Tang T, Liu XL, Han S, Lei B, Zhou CW (2004) Nano Lett 4:1919–1924

    CAS  Google Scholar 

  78. Zhang DJ, Li C, Liu XL, Han S, Tang T, Zhou CW (2003) Appl Phys Lett 83:1845–1847

    CAS  Google Scholar 

  79. Fan ZY, Lu JG (2005) Appl Phys Lett 86:123510

    Google Scholar 

  80. Fan ZY, Wang DW, Chang PC, Tseng WY, Lu JG (2004) Appl Phys Lett 85:5923–5925

    CAS  Google Scholar 

  81. Maeng J, Jo G, Kwon SS, Song S, Seo J, Kang SJ, Kim DY, Lee T (2008) Appl Phys Lett 92:233120

    Google Scholar 

  82. Zhang Y, Kolmakov A, Chretien S, Metiu H, Moskovits M (2004) Nano Lett 4:403–407

    CAS  Google Scholar 

  83. Zhang Y, Kolmakov A, Lilach Y, Moskovits M (2005) J Phys Chem B 109:1923–1929

    CAS  PubMed  Google Scholar 

  84. Faglia G, Baratto C, Sberveglieri G, Zha M, Zappettini A (2005) Appl Phys Lett 86:011923

    Google Scholar 

  85. Hu J, Bando Y, Liu Q, Goldberg D (2003) Adv Funct Mater 13:493–496

    CAS  Google Scholar 

  86. He JH, Wu TH, Hsin CL, Li KM, Chen LJ, Chueh YL, Chou LJ, Wang ZL (2006) Small 2:116–120

    Google Scholar 

  87. Luo S, Chu PK, Liu W, Zhang M, Lin C (2006) Appl Phys Lett 88:183112

    Google Scholar 

  88. Luo SH, Fan JY, Liu WL, Zhang M, Song ZT, Liu CL, Wu XL, Chu PK (2006) Nanotechnology 17:1695–1699

    CAS  PubMed  Google Scholar 

  89. Calestani D, Zha M, Zappettini A, Lazzarini L, Salviati G, Zanotti L, Sberveglieri G (2005) Mater Sci Eng C 25:625–630

    Google Scholar 

  90. Zhou JX, Zhang MS, Hong JM, Yin Z (2006) Solid State Commun 138:242–246

    CAS  Google Scholar 

  91. Lettieri S, Bismuto A, Maddalena P, Baratto C, Comini E, Faglia G, Sberveglieri G, Zanotti L (2006) J Non-Cryst Solids 352:1457–1460

    CAS  Google Scholar 

  92. Lettieri S, Setaro A, Baratto C, Comini E, Faglia G, Sberveglieri G, Maddalena P (2008) New J Phys 10:043013

    Google Scholar 

  93. Tak Y, Yong K, Park C (2005) J Electrochem Soc 152:794

    Google Scholar 

  94. Huang MH, Wu Y, Feick H, Tran N, Weber E, Yang P (2001) Adv Mater 13:113–116

    CAS  Google Scholar 

  95. Sun Y, Fuge GM, Fox NA, Riley DJ, Ashfold MNR (2005) Adv Mater 17:2477–2481

    CAS  Google Scholar 

  96. Vanhausden K, Warren W, Seager CH, Tallant DR, Voigt JA, Gnade BE (1996) J Appl Phys 79:7983

    Google Scholar 

  97. Hu JW, Bando Y (2003) Appl Phys Lett 82:1401

    CAS  Google Scholar 

  98. Lin B, Fu Z, Jia Y (2001) Appl Phys Lett 79:943

    CAS  Google Scholar 

  99. Studenikin SA, Cocivera M (2002) J Appl Phys 91:5060

    CAS  Google Scholar 

  100. Yao BD, Chan YF, Wang N (2002) Appl Phys Lett 81:757

    CAS  Google Scholar 

  101. Comini E, Baratto C, Faglia G, Ferroni M, Sberveglieri G (2007) J Phys D 240:7255–7259

    Google Scholar 

Download references

Acknowledgments

The authors want to thank first of all the members of the SENSOR lab group in Brescia. This work was partially supported, within the EU FP6, by the ERANET project “NanoSci-ERA: NanoScience in the European Research Area” and by European Community’s 7th Framework Programme, under the grant agreement n° 247768, and from the Russian Federation Government, under the State Contract 02.527.11.0008, within the collaborative Europe-Russia S3 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilla Baratto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baratto, C., Comini, E., Faglia, G., Sberveglieri, G. (2011). The Power of Nanomaterial Approaches in Gas Sensors. In: Fleischer, M., Lehmann, M. (eds) Solid State Gas Sensors - Industrial Application. Springer Series on Chemical Sensors and Biosensors, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/5346_2011_3

Download citation

Publish with us

Policies and ethics