Systems Biology: necessary developments and trends

  • Lilia AlberghinaEmail author
  • Stefan Hohmann
  • Hans V. Westerhoff
Part of the Topics in Current Genetics book series (TCG, volume 13)


At the end of this definition of Systems Biology through exampling, we discuss ambitions, goals, and challenges relating to this new discipline. We estimate the impact that Systems Biology may have on health management, both in terms of drug discovery and in terms of enabling healthier lifestyles. In this context, we indicate what aspects of Systems Biology need to be stimulated most. We also touch on its effects on competitiveness of high-sophistication industries. Finally, we suggest special requirements that Systems Biology imposes on the organization and funding of Life Sciences research in the 21st century.


System Biology System Biology Approach Metabolic Control Analysis Elementary Flux Mode Cade Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. Aderem A (2005) Systems Biology: Its practice and challenges. Cell 121:511-513CrossRefPubMedGoogle Scholar
  2. 2. Alberghina L, Chiaradonna F, Vanoni M (2004) Systems biology and the molecular circuits of cancer. Chembiochem 5:1322-1333CrossRefPubMedGoogle Scholar
  3. 3. Brazhnik P, de la Fuente A, Mendes P (2002) Gene networks: how to put the function in genomics. Trends Biotechnol 20:467-472 CrossRefPubMedGoogle Scholar
  4. 4. Bruggeman FJ, Boogerd FC, Westerhoff HV (2005) The multifarious short-term regulation of ammonium assimilation of Escherichia coli: dissection using an in silico replica. FEBS J 272:1965-1985CrossRefPubMedGoogle Scholar
  5. 5. Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJ, Cusick ME, Roth FP, Vidal M (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430:88-93CrossRefPubMedGoogle Scholar
  6. 6. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47-C52CrossRefPubMedGoogle Scholar
  7. 7. Kahn D, Westerhoff HV (1991) Control theory of regulatory cascades. J Theor Biol 153:255-285PubMedGoogle Scholar
  8. 8. Kholodenko BN, Kiyatkin A, Bruggeman FJ, Sontag E, Westerhoff HV, Hoek JB (2002) Untangling the wires: a strategy to trace functional interactions in signaling and gene networks. Proc Natl Acad Sci USA 99:12841-12846 CrossRefPubMedGoogle Scholar
  9. 9. King RD, Whelan KE, Jones FM, Reiser PG, Bryant CH, Muggleton SH, Kell DB, Oliver SG (2004) Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427:247-252CrossRefPubMedGoogle Scholar
  10. 10. Kirschner MW (2005) The meaning of Systems Biology. Cell 121:503-504CrossRefPubMedGoogle Scholar
  11. 11. Koebmann BJ, Westerhoff HV, Snoep JL, Nilsson D, Jensen PR (2002) The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J Bacteriol 184:3909-3916CrossRefPubMedGoogle Scholar
  12. 12. Noble D (2004) Modeling the heart. Physiology 19:191-197CrossRefPubMedGoogle Scholar
  13. 13. Price ND, Reed JL, Papin JA, Famili I, Palsson BO (2003) Analysis of metabolic capabilities using singular value decomposition of extreme pathway matrices. Biophys J 84:794-804PubMedGoogle Scholar
  14. 14. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297:1551-1555CrossRefPubMedGoogle Scholar
  15. 15. Rosen R (1991) Life itself. Columbia University Press, New YorkGoogle Scholar
  16. 16. Rohwer JM, Schuster S, Westerhoff HV (1996) How to recognize monofunctional units in a metabolic system. J Theor Biol179:213-228CrossRefGoogle Scholar
  17. 17. Schuster S, Fell DA, Dandekar T (2002) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol 18:326-332CrossRefGoogle Scholar
  18. 18. Schuster S, Kahn D, Westerhoff HV (1993) Modular analysis of the control of complex metabolic pathways. Biophys Chem 48:1-17CrossRefPubMedGoogle Scholar
  19. 19. Segal MR, Dahlquist KD, Conklin BR (2003) Regression approaches for microarray data analysis. J Comput Biol 10:961-80 CrossRefPubMedGoogle Scholar
  20. 20. Von Bertalanffy L (1962) General System Theory - A critical review. Gen Syst 7:1-20Google Scholar
  21. 21. Westerhoff HV, Van Dam K (1987) Thermodynamics and control of biological free energy transduction. Elsevier, AmsterdamGoogle Scholar
  22. 22. Westerhoff HV, Palsson BO (2004) The evolution of molecular biology into systems biology. Nat Biotechnol 22:1249-1252CrossRefPubMedGoogle Scholar
  23. 23. Westerhoff HV, Aon MA, Van Dam K, Cortassa S, Kahn D, Van Workum M (1990) Dynamical and hierarchical coupling. Biochim Biophys Acta 1018:42-146Google Scholar
  24. 24. Westerhoff HV, Koster JG, Van Workum M, Rudd KE (1990) On the control of gene expression. In Control of Metabolic Processes (Cornish Bowden A, ed), pp 399-412, Plenum, New YorkGoogle Scholar

Authors and Affiliations

  • Lilia Alberghina
    • 1
    Email author
  • Stefan Hohmann
    • 2
  • Hans V. Westerhoff
    • 3
  1. 1.Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 MilanoItaly
  2. 2.Department of Cell and Molecular Biology/Microbiology, Göteborg University, Box 462, S-405 30 GöteborgSweden
  3. 3.Systems Biology, Manchester Interdisciplinary Biocentre, and Molecular Cell Physiology, BioCentrum Amsterdam, Faculty of Earth and Life Sciences, BioCentrum Amsterdam, Free University, De Boelelaan 1087, NL-1081 HV AmsterdamThe Netherlands

Personalised recommendations