Skip to main content

Copper in mammals: mechanisms of homeostasis and pathophysiology

Part of the Topics in Current Genetics book series (TCG,volume 14)

Abstract

The ability of mammals to tightly regulate systemic copper levels is vital for health as demonstrated by the severity of the genetic copper deficiency and copper toxicity disorders, Menkes disease and Wilson disease, respectively. Analysis of these genetic disorders has led to a substantial increase in the understanding of the role of copper in health and disease. The isolation of the genes involved in these diseases and use of yeast mutants with altered copper and iron homeostasis has revealed a range of molecular mechanisms governing copper homeostasis. These mechanisms include regulation of cellular copper uptake and efflux and involve the use of chaperones for safe intracellular copper distribution. Here we provide an overview of the physiological role of copper and the molecular mechanisms regulating systemic and cellular copper levels in mammals. Furthermore, we discuss the pathophysiological mechanisms and consequences of copper deficiency/overload in relation to disease.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Ackland ML, Anikijenko P, Michalczyk A, Mercer JFB (1999) Expression of Menkes copper-transporting ATPase, MNK, in the lactating human breast: possible role in copper transport into milk. J Histochem Cytochem 47:1553-1561

    PubMed  CAS  Google Scholar 

  • 2. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1995) Molecular Biology of the Cell, 3rd edn. Garland Publishing Inc., New York & London

    Google Scholar 

  • 3. Ambrosini L, Mercer JFB (1999) Defective copper-induced trafficking and localization of the Menkes protein in patients with mild and copper-treated classical Menkes disease. Hum Mol Genet 8:1547-1555

    PubMed  CAS  Google Scholar 

  • 4. Barnes G, Frieden E (1984) Ceruloplasmin receptors of erythrocytes. Biochem Biophys Res Commun 125:157-162

    PubMed  CAS  Google Scholar 

  • 5. Barnham K, Ciccotosto G, Tickler A, Ali F, Smith D, Williamson N, Lam Y-H, Carrington D, Tew D, Kocak G, Volitakis I, Separovic F, Barrow C, Wade J, Masters C, Cherny R, Curtain C, Bush A, Cappai R (2003) Neurotoxic, redox-competent Alzheimer's ß-amyloid is released from lipid membrane by methionine oxidation. J Biol Chem 278:42959-52965

    PubMed  CAS  Google Scholar 

  • 6. Biempica L, Rauch H, Quintana N, Sternlieb I (1988) Morphological and chemical studies on a murine mutation (toxic milk mice) resulting in hepatic copper toxicosis. Lab Invest 59:500-508

    PubMed  CAS  Google Scholar 

  • 7. Brewer GJ (2000) Recognition, diagnosis and management of Wilson's disease. Proc Soc Exp Biol Med 223:39-46

    PubMed  CAS  Google Scholar 

  • 8. Brewer GJ, Yuzbasiyan-Gurkan V, Dick R (1990) Zinc therapy of Wilson's disease VIII: dose response studies. J Trace Elem Exp Med 3:227-234

    Google Scholar 

  • 9. Brown D (2004) Metallic prions. Biochem Soc Symp 71:193-202

    PubMed  CAS  Google Scholar 

  • 10. Brown D, Qin K, Herms J, Madlung A, Manson J, Strome R, Fraser P, Kruck T, von Bohlen A, Schulz-Schaeffer W, Giese A, Westaway D, Kretzschmar H (1997) The cellular prion protein binds copper in vivo. Nature 390:684-687

    PubMed  CAS  Google Scholar 

  • 11. Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DC (1993) The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet 5:327-337

    PubMed  CAS  Google Scholar 

  • 12. Burstein E, Hoberg J, Wilkinson A, Rumble J, Csomos R, Komarck C, Maine G, Wilkinson J, Mayo M, Duckett C (2005) COMMD proteins: A novel family of structural and functional homologs of MURR1. J Biol Chem 280:22222-22232

    PubMed  CAS  Google Scholar 

  • 13. Bush A (2003) The metallobiology of Alzheimer's disease. Trends Neurosci 26:207-214

    PubMed  CAS  Google Scholar 

  • 14. Bush AI (2000) Metals and neuroscience. Curr Opin Cell Biol 4:184-191

    CAS  Google Scholar 

  • 15. Camakaris J, Ackland L, Danks D (1980) Abnormal copper metabolism in cultured fibroblasts from patients with Wilson's disease. J Inherit Metab Dis 3:155-157

    PubMed  CAS  Google Scholar 

  • 16. Camakaris J, Petris MJ, Bailey L, Shen P, Lockhart P, Glover TW, Barcroft CL, Patton J, Mercer JFB (1995) Gene amplification of the Menkes (MNK; ATP7A) P-type ATPase gene of CHO cells is associated with copper resistance and enhanced copper efflux. Hum Mol Genet 4:2117-2123

    PubMed  CAS  Google Scholar 

  • 17. Casareno RLB, Waggoner D, Gitlin JD (1998) The copper chaperone CCS directly intereacts with copper/zinc superoxide dismutase. J Biol Chem 273:23625-23628

    PubMed  CAS  Google Scholar 

  • 18. Cater M, Forbes JR, La Fontaine S, Cox DC, Mercer JFB (2004) Intracellular trafficking of the human Wilson protein: the role of the six N-terminal metal binding sites. Biochem J 380:805-813

    PubMed  CAS  PubMed Central  Google Scholar 

  • 19. Cecchi C, Biasotto M, Tosi M, Avner P (1997) The mottled mouse as a model for human Menkes disease: identification of mutations in the Atp7a gene. Hum Mol Genet 6:425-433

    PubMed  CAS  Google Scholar 

  • 20. Chelly J, Tumer Z, Tonnesen T, Petterson A, Ishikawa-Brush Y, Tommerup N, Horn N, Monaco AP (1993) Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nat Genet 3:14-19

    PubMed  CAS  Google Scholar 

  • 21. Christodoulou J, Danks DM, Sarkar B, Baerlocher KE, Casey R, Horn N, Tumer Z, Clarke JT (1998) Early treatment of Menkes disease with parenteral copper-histidine: long-term follow-up of four treated patients. Am J Med Genet 76:154-164

    PubMed  CAS  Google Scholar 

  • 22. Cox DW (1995) Genes of the copper pathway. Am J Hum Genet 56:828-834

    PubMed  CAS  PubMed Central  Google Scholar 

  • 23. Cox DW (1997) Molecular approaches to inherited liver disease. Focus on Wilson disease. J Gastroenterol Hepatol:S251-S255

    Google Scholar 

  • 24. Culotta VC, Gitlin JD (2000) Disorders of copper transport. In: Scriver CR, Beaudet AL, Sly WM, Valle D (eds) The metabolic and molecular basis of inherited disease, 8th edition edn. McGraw-Hill, New York, pp 3105-3126

    Google Scholar 

  • 25. Dancis A, Yuan DS, Haile D, Askwith C, Eide D, Moehle C, Kaplan J, Klausner RD (1994) Molecular characterisation of a copper transport protein in S. cerevisiae: An unexpected role for copper in iron transport. Cell 76:393-402

    PubMed  CAS  Google Scholar 

  • 26. Danks DM (1995) Disorders of copper transport. In: Scriver CR, Beaudet AL, Sly WM, Valle D (eds) The metabolic and molecular basis of inherited disease, 7th edn. McGraw-Hill, New York, pp 2211-2235

    Google Scholar 

  • 27. Danks DM, Cambell PE, Walker J, Smith J, Stevens BJ, Gillespie JM, Blomfield J, Turner B (1972a) Menkes' kinky-hair syndrome. Lancet 1:1100-1102

    PubMed  CAS  Google Scholar 

  • 28. Danks DM, Campbell PE, Stevens BJ, Mayne V, Cartwright E (1972b) Menkes' kinky hair syndrome. Pediatrics 50:188-201

    PubMed  CAS  Google Scholar 

  • 29. Das S, Levinson B, Vulpe C, Whitney S, Gitschier J, Packman S (1995) Similar splicing mutations of the Menkes/mottled copper-tranporting ATPase gene in occipital horn syndrome and the blotchy mouse. Am J Hum Genet 56:570-579

    PubMed  CAS  PubMed Central  Google Scholar 

  • 30. Das S, Levinson B, Whitney S, Vulpe C, Packman S, Gitschier J (1994) Diverse mutations in patients with Menkes disease often lead to exon skipping. Am J Hum Genet 55:883-889

    PubMed  CAS  PubMed Central  Google Scholar 

  • 31. Dierick HA, Adam AN, Escara-Wilke JF, Glover TW (1997) Immunocytochemical localization of the Menkes copper transporter (ATP7 A) to the trans compartment of the Golgi complex. Hum Mol Genet 6:409-416

    PubMed  CAS  Google Scholar 

  • 32. Eisses JF, Kaplan JH (2002) Molecular characerization of hCTR1, the human copper uptake protein. J Biol Chem 277:29162-29171

    PubMed  CAS  Google Scholar 

  • 33. Evans GW (1973) Copper homeostasis in the mammalian system. Physiol Rev 53:535-569

    PubMed  CAS  Google Scholar 

  • 34. Field L, Luk E, Culotta V (2002) Copper chaperones: personal escorts for metal ions. J Bioenerg Biomembr 34:373-379

    PubMed  CAS  Google Scholar 

  • 35. Forbes JR, Cox DW (1998) Functional characterization of missense mutations in ATP7B: Wilson disease mutation or normal variant? Am J Hum Genet 63:1663-1674

    PubMed  CAS  PubMed Central  Google Scholar 

  • 36. Forbes JR, Cox DW (2000) Copper-dependent trafficking of Wilson disease mutant ATP7B proteins. Hum Mol Genet 9:1927-1935

    PubMed  CAS  Google Scholar 

  • 37. Forbes JR, Hsi G, Cox DW (1999) Role of the copper-binding domain in the copper transport function of ATP7B, the P-type ATPase defective in Wilson disease. J Biol Chem 274:12408-12413

    PubMed  CAS  Google Scholar 

  • 38. Ghosh JB, Chakrabarty S, Singh AK, Gupta D (2004) Wilson's disease-Unusual features. Indian. J Pediatr 71:937-938

    CAS  Google Scholar 

  • 39. Gitschier J, Moffat B, Reilly D, Wood WI, Fairbrother WJ (1998) Solution structure of the fourth metal-binding domain from the Menkes copper-transporting ATPase. Nat Struct Biol 5:47-53

    PubMed  CAS  Google Scholar 

  • 40. Goode CA, Dinh CT, Linder MC (1989) Mechanism of copper transport and delivery in mammals: review and recent findings. Adv Exp Med Biol 258:131-144

    PubMed  CAS  Google Scholar 

  • 41. Greenough M, Pase L, Voskobionik I, Petris M, Wilson Obrien A, Camakaris J (2004) Signals regulating trafficking of the Menkes (MNK; ATP7A) copper translocating P-type ATPase in polarized MDCK cells. Am J Physiol Cell Physiol 287:1463-1471

    Google Scholar 

  • 42. Grimes A, Hearn C, Lockhart P, Newgreen D, Mercer FBJ (1997) Molecular basis of the brindled mouse mutant (Mo(br)): a murine model of Menkes disease. Hum Mol Genet 6:1037-1042

    PubMed  CAS  Google Scholar 

  • 43. Gross JBJ, Myers BM, Kost LJ, Kuntz SM, LaRusso NF (1989) Biliary copper excretion by hepatocyte lysosomes in the rat. J Clin Invest 83:30-39

    PubMed  CAS  PubMed Central  Google Scholar 

  • 44. Gunshin H, Mackenzie B, Erger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482-488

    PubMed  CAS  Google Scholar 

  • 45. Hamza I, Faisst A, Prohaska J, Chen J, Gruss P, Gitlin JD (2001) The metallochaperone Atox1 plays a critical role in perinatal copper homeostasis. Proc Natl Aacd Sci USA 98:6848-6852

    CAS  Google Scholar 

  • 46. Hardman B, Manuelpillai U, Wallace ME, Vaan de Waasenberg S, Cater M, Mercer FBJ, Ackland ML (2004) Expression and localization of the Menkes and Wilson copper transporting ATPases in human placenta. Placenta 24:512-517

    Google Scholar 

  • 47. Harris DIM, Sass-Kortsak A (1967) The influence of amino acids on copper uptake by rat liver slices. J Clin Invest 46:659-667

    PubMed  CAS  PubMed Central  Google Scholar 

  • 48. Harris ED (2000) Cellular copper transport and metabolism. Annu Rev Nutr 20:291-310

    PubMed  CAS  Google Scholar 

  • 49. Harris ZL, Durley AP, Man TK, Gitlin JD (1999) Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc Natl Acad Sci USA 96:10812-10817

    PubMed  CAS  PubMed Central  Google Scholar 

  • 50. Harris ZL, Takahashi Y, Miyajima H, Serizawa M, MacGillivray RT, Giltin JD (1995) Aceruloplasminemia: molecular characterization of this disorder of iron metabolism. Proc Natl Acad Sci USA 92:2539-2543

    PubMed  CAS  PubMed Central  Google Scholar 

  • 51. Hass R, Gutierrez-Rivero B, Knoche J, Boker K, Manns MP, Schmidt HH (1999) Mutation analysis in patients with Wilson diease: identification of 4 novel mutations. Hum Mutat 14:88

    Google Scholar 

  • 52. Hasselbach W, Mankinose M (1961) [The calcium pump of the ”relaxing granules” of muscle and its dependence of ATP-splitting]. Biochem Z 333:518-528

    PubMed  CAS  Google Scholar 

  • 53. Hattori A, Sawaki M, Enomoto K, Tsuzuki N, Isomura H, Kojima T, Kamibayashi Y, Sugawara N, Sugiyama T, Mori M (1995) The high hepatocarcinogen susceptibility of LEC rats is genetically independent of abnormal copper accumulation in the liver. Carcinogenesis 16:491-494

    PubMed  CAS  Google Scholar 

  • 54. Horn N, Heydorn K, Damsgaard E, Tygstrup I, Vestermark S (1978) Is Menkes syndrome a copper storage disorder? Clin Genet 14:186-187

    PubMed  CAS  Google Scholar 

  • 55. Hung IH, Casareno RLB, Labesse G, Mathews FS, Gitlin JD (1998) HAH1 is a copper-binding protein with distinct amino acid residues mediating copper homeostasis and antioxidant defense. J Biol Chem 272:1749-1754

    Google Scholar 

  • 56. Hung IH, Suzuki M, Yamaguchi Y, Yuan DS, Klausner RD, Gitlin JD (1997) Biochemical characterization of the Wilson disease protein and functional expression in the yeast Saccharomyces cerevisiae. J Biol Chem 272:21461-21466

    PubMed  CAS  Google Scholar 

  • 57. Hunt DM (1974) Primary defect in copper transport underlies mottled mutants in the mouse. Nature (Lond) 249:852-854

    Google Scholar 

  • 58. Jobling M, Huang X, Stewart L, Barnham K, Curtain C, Volitakis I, Perugini M, White A, Cherny R, Masters C, Barrow C, Collins S, Bush A, Cappai R (2001) Copper and zinc binding modulates the aggregation and neurotoxic properties of the prion peptide PrP106-126. Biochemistry 40:80738084

    Google Scholar 

  • 59. Kaler SG (1994) Menkes disease. Adv Pediatr 41:262-303

    Google Scholar 

  • 60. Kaler SG (1996) Menkes disease mutations and response to early copper histidine treatment. Nat Genet 13:21-22

    PubMed  CAS  Google Scholar 

  • 61. Kataoka M, Tavassoli M (1985) Identification of ceruloplasmin receptors on the surface of human blood monocytes, granulocytes, and lymphocytes. Exp Hematol 13:806-810

    PubMed  CAS  Google Scholar 

  • 62. Kim EK, Yoo OJ, Song KY, Yoo HW, Choi SY, Cho SW, Hahn SH (1998) Identification of three novel mutations and a high frequency of the Arg778Leu mutation in Korean patients with Wilson disease. Hum Mutat 11:275-278

    PubMed  CAS  Google Scholar 

  • 63. Klomp A, Van de Sluis B, Klomp L, Wijmenga C (2003) The ubiquitously expressed MURR1 protein is absent in canine copper toxicosis. J Hepatol 39:703-709

    PubMed  CAS  Google Scholar 

  • 64. Klomp AEM, Juijn JA, Van Der Gun LTM, Van Den Berg IET, Berger R, Klomp LW (2003) The N-terminus of the human copper transporter (hCTR!) is located extracellularly, and interacts with itself. Biochem J 370:881-889

    PubMed  CAS  PubMed Central  Google Scholar 

  • 65. Klomp AEM, Tops BBJ, Van Den Berg IET, Berger R, Klomp LWJ (2002) Biochemical characterization and subcellular localization of human copper transporter 1 (hCTR1). Biochem J 364:497-505

    PubMed  CAS  PubMed Central  Google Scholar 

  • 66. Knight S, Labbe S, Kwon LF, Kosman DJ, Theile DJ (1996) A widespread transposable element masks expression of a yeast copper transport gene. Genes Dev 10:1917-1929

    PubMed  CAS  Google Scholar 

  • 67. Knopfel M, Smith C, Solioz M (2005) ATP-driven copper transport across the intestinal brush border membrane. Biochem Biophys Res Commun 330:645-652

    PubMed  Google Scholar 

  • 68. Kodama H (1993) Recent developments in Menkes disease. J Inherit Metab Dis 16:791-799

    PubMed  CAS  Google Scholar 

  • 69. Kuo Y-M, Zhou B, Cosco D, Gitschier J (2001) The copper transporter CTR1 provides as essential function in mammalian embryonic development. Proc Natl Aacd Sci USA 98:6836-6841

    CAS  Google Scholar 

  • 70. La Fontaine S, Firth SD, Lockhart PJ, Brooks H, Camakaris J, Mercer JFB (1999) Intracellular localization and loss of copper responsiveness of Mnk, the murine homologue of the Menkes protein, in cells from blotchy (Moblo) and brindled (Mobr) mouse mutants. Hum Mol Genet 8:1069-1075

    Google Scholar 

  • 71. Larin D, Mekios C, Das K, Ross B, An-Suei Y, Gilliam TC (1999) Characterization of the interaction between the Wilson and Menkes disease proteins and the cytoplasmic copper chaperone, HAH1P*. J Biol Chem 274:28497-28504

    PubMed  CAS  Google Scholar 

  • 72. Lee J, Pena MMO, Nose Y, Thiele DJ (2002) Biochemical characterisation of the human copper transporter Ctr1. J Biol Chem 277:4380-4387

    PubMed  CAS  Google Scholar 

  • 73. Lee J, Prohaska J, Thiele D (2001) Essential role for mammalian copper transporter Ctr1 in copper homeostasis and embryonic development. Proc Natl Acad Sci USA 98:6842-6847

    PubMed  CAS  PubMed Central  Google Scholar 

  • 74. Lee S, Lancey R, Montaser A, Madani N, Linder M (1993) Ceruloplasmin and copper transport during the latter part of gestation in the rat. Proc Soc Exp Biol Med 203:428-439

    PubMed  CAS  Google Scholar 

  • 75. Levinson B, Vulpe C, Elder B, Martin C, Verley F, Packman S, Gitschier J (1994) The mottled gene is the mouse homologue of the Menkes disease gene. Nat Genet 6:369-373

    PubMed  CAS  Google Scholar 

  • 76. Li Y, Togashi Y, Sato S, Emoto T, Kang J-H, Takeichi N, Kobayashi H, Kojima Y, Une Y, Uchino J (1991) Spontaneous hepatic copper accumulation in long-evans cinnamon rats with hereditary hepatitis: a model of Wilson's disease. J Clin Invest 87:1858-1861

    PubMed  CAS  PubMed Central  Google Scholar 

  • 77. Linder M, Wooten L, Cerveza P, Cotton S, Shulze R, Lomeli N (1998) Copper transport. Am J Clin Nutr 67 (5 suppl):965S-971S

    PubMed  CAS  Google Scholar 

  • 78. Linder MC, Lomeli NA, Donley S, Mehrbod F, Cerveza P, Cotton S, Wooten L (1999) Copper transport in mammals. Kluwer Acedemic/Plenum Publishers, New York

    Google Scholar 

  • 79. Lonnerdal B (1996) Bioavailability of copper. Am J Clin Nutr 63:821S-828S

    PubMed  CAS  Google Scholar 

  • 80. Lyon MF (1962) Sex chromatin and gene action in the mammalian X-Chromosome. Am J Hum Genet 14:135-148

    PubMed  CAS  PubMed Central  Google Scholar 

  • 81. Mann J, Camakaris J, Danks D (1980) Copper metabolism in mottled mouse mutants. Defective placental transfer of 64Cu to foetal brindled (Mobr) mice. Biochem J 186:629-631

    PubMed  CAS  PubMed Central  Google Scholar 

  • 82. Mann JR, Camakaris J, Danks DM, Walliczek EG (1979) Copper metabolism in mottled mouse mutants: copper therapy of brindled (Mobr) mice. Biochem J 180:605-612

    PubMed  CAS  PubMed Central  Google Scholar 

  • 83. Massimino T, Griffoni M, Salvato C, Tomasi V, Spisni E (2005) Extracellular copper ions regulate prion protein (PrPC) expression and metabolism in neuronal cells. FEBS Lett 579:741-744

    PubMed  Google Scholar 

  • 84. Maxfield AB, Heaton DN, Winge DR (2004) Cox17 is functional when tethered to the mitochondrial inner membrane. J Biol Chem 279:5072-5080

    PubMed  CAS  Google Scholar 

  • 85. Menkes JH, Alter M, Steigleder GK, Weakley DR, Sung JH (1962) A sex-linked recessive disorder with retardation of growth, peculiar hair, and focal cerebral and cerebellar degeneration. Pediatrics:764-779

    Google Scholar 

  • 86. Mercer FBJ (2001) The molecular basis of copper-transport diseases. Trends Mol Med 7:64-69

    PubMed  CAS  Google Scholar 

  • 87. Mercer JFB (1998) Menkes syndrome and animal models. Am J Clin Nutr 5:1027S-1028S

    Google Scholar 

  • 88. Mercer JFB, Ambrosini L, Horton S, Gazeas S, Grimes A (1999) Animal models of Menkes disease. Adv Exp Biol Med 448:97-108

    CAS  Google Scholar 

  • 89. Mercer JFB, Barnes N, Steverson J, Strausak D, Llanos R (2003) Copper-induced trafficking of the Cu-ATPases: A key mechanism for copper homeostasis. Biometals 16:175-184

    PubMed  CAS  Google Scholar 

  • 90. Mercer JFB, Camakaris J (1997) Menkes and Wilson's diseases: Genetic disorders of copper transport. Metal Ions Gen Reg:250-276

    Google Scholar 

  • 91. Mercer JFB, Grimes A, Ambrosini L, Lockhart P, Paynter JA, Dierick H, Glover TW (1994) Mutations in the murine homologue of the Menkes gene in dappled and blotchy mice. Nat Genet 6:374-378

    PubMed  CAS  Google Scholar 

  • 92. Mercer JFB, Livingston J, Hall BK, Paynter JA, Begy C, Chandrasekharappa S, Lockhart P, Grimes A, Bhave M, Siemenack D, Glover TW (1993) Isolation of a partial candidate gene for Menkes disease by postional cloning. Nat Genet 3:20-25

    PubMed  CAS  Google Scholar 

  • 93. Meyer LA, Durley AP, Prohaska JR, Harris ZL (2001) Copper transport and metabolism are normal in aceruloplasminemic mice. J Biol Chem 276:36857-36861

    PubMed  CAS  Google Scholar 

  • 94. Moller LB, Petersen C, Lund C, Horn N (2000) Characterization of the hCTR1 gene: genomic organization, functional expression, and identification of a highly homologous processed gene. Gene 257:13-22

    PubMed  CAS  Google Scholar 

  • 95. Muller T, Feichtinger H, Berger H, Muller W (1996) Endemic Tyrolean infantile cirrhosis: an ecogenetic disorder. Lancet 347:877-880

    PubMed  CAS  Google Scholar 

  • 96. Odermatt A, Suter H, Krapf R, Solioz M (1993) Primary structure of two P-type ATPases involved in copper homeostasis in E. hirae. J Biol Chem 268:12775-12779

    PubMed  CAS  Google Scholar 

  • 97. Orena SJ, Goode CA, Linder MC (1986) Binding and uptake of copper from ceruloplasmin. Biochem Biophys Res Commun 139:822-829

    PubMed  CAS  Google Scholar 

  • 98. Owen CAJ (1965) Metabolism of radiocopper (Cu64) in the rat. Am J Physiol 209:900-904

    PubMed  CAS  Google Scholar 

  • 99. Palmgren MG, Axelsen KB (1998) Evolution of P-type ATPases. Biochim Biophys Acta 1365:37-45

    PubMed  CAS  Google Scholar 

  • 100. Payne AS, Gitlin JD (1998) Functional expression of the Menkes disease protein reveals common biochemical mechanisms among the copper-transporting P-type ATPases. J Biol Chem 273:3765-3770

    PubMed  CAS  Google Scholar 

  • 101. Pena MMO, Lee J, Thiele DJ (1999) A delicate balance: Homeostatic control of copper uptake and distribution. J Nutr 129:1251-1260

    PubMed  CAS  Google Scholar 

  • 102. Petris MJ, Mercer JFB, Culvenor JG, Lockhart P, Gleeson PA, Camakaris J (1996) Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J 15:6084-6095

    PubMed  CAS  PubMed Central  Google Scholar 

  • 103. Petris MJ, Strausak D, Mercer JFB (2000) The Menkes copper transporter is required for the activation of tyrosinase. Hum Mol Genet 9:2845-2851

    PubMed  CAS  Google Scholar 

  • 104. Petris MJ, Voskoboinik I, Cater M, Smith K, Kim B-E, Llanos RM, Strausak D, Camakaris J, Mercer JFB (2002) Copper-regulated trafficking of the Menkes disease Copper ATPase is associated with formation of a phosphorylated catalytic intermediate. J Biol Chem 277:46736-46742

    PubMed  CAS  Google Scholar 

  • 105. Phinney A, Drisaldi B, Schmidt S, Lugowski S, Coronado V, Liang Y, Horne P, Yang J, Sekoulidis J, Coomaraswamy J, Chishti M, Cox D, Mathews P, Nixon R, Carlson G, George-Hyslop P, Westaway D (2003) In vivo reduction of amyloid-beta by a mutant copper transporter. Proc Natl Acad Sci USA 100:14193-14198

    PubMed  CAS  PubMed Central  Google Scholar 

  • 106. Procopis P, Camakaris J, Danks DM (1981) A mild form of Menkes steely hair syndrome. J Pediatr 98:97-99

    PubMed  CAS  Google Scholar 

  • 107. Rauch H (1983) Toxic milk, a new mutation affecting copper metabolism in the mouse. J Hered 74:141-144

    PubMed  CAS  Google Scholar 

  • 108. Roberts EA, Cox DW (1998) Wilson disease. Baillieres Clin Gastroenterol 12

    Google Scholar 

  • 109. Roelofsen H, Wolters H, Luyn MJAV, Miura N, Kuipers F, Vonk RJ (2000) Copper-induced apical trafficking of ATP7B in polarized hepatoma cells provides a mechanism for biliary copper excretion. Gastroenterology 119:782-793

    PubMed  CAS  Google Scholar 

  • 110. Rogers J, Randall J, Eder P, Huang X, Bush A, Tanzi R, Venti A, Peyton S, Giordano A, Greig N, Sarang S, Gullans S (2002) Alzheimer's disease drug discovery targeted to the APP mRNA 5' untranslated region. J Mol Neurosci 19:77-82

    PubMed  CAS  Google Scholar 

  • 111. Sambongi Y, Wakabayashi T, Yoshimizu T, Omote H, Oka T, Futai M (1997) Caenorhabditis elegans cDNA for a Menkes/Wilson disease gene homologue and its function in a yeast CCC2 gene deletion mutant. J Biochem 121:1169-1175

    PubMed  CAS  Google Scholar 

  • 112. Sass-Kortsak A (1965) Copper metabolism. Adv Clin Chem 8:1-67

    PubMed  CAS  Google Scholar 

  • 113. Scarborough GA (1999) Structure and function of the P-type ATPases. Curr Opin Cell Biol 11:517-522

    PubMed  CAS  Google Scholar 

  • 114. Schaefer M, Hopkins RG, Failla MA, Gitlin JD (1999a) Hepatocyte-specific localization and copper-dependent trafficking of the Wilson's disease protein in the liver. Am J Physiol 276:G639-G646

    PubMed  CAS  Google Scholar 

  • 115. Schaefer M, Roelofsen H, Wolters H, Hofmann WJ, Müller M, Kuipers F, Stremmel W, Vonk RJ (1999b) Localization of the Wilson's disease protein in human liver. Gastroenterology 117:1380-1385

    PubMed  CAS  Google Scholar 

  • 116. Scheinberg IH, Sternlieb I (1984) Wilson's disease. Saunders, Philadelphia

    Google Scholar 

  • 117. Schilisky ML (1996) Wilson disease: genetic basis of copper toxicity and natural history. Semin Liver Dis 16:83-95

    Google Scholar 

  • 118. Schlaug G, Hefter H, Engelbrecht V, Kuwert T, Arnold S, Stockin G, Seitz RJ (1996) Neurological impairment and recovery in Wilson's disease: evidence by PET and MRI. J Neurol Sci 136:129-139

    PubMed  CAS  Google Scholar 

  • 119. Schmitt R, Darwish H, Cheney J, Ettinger M (1983) Copper transport kinetics by isolated rat hepatocytes. Am J Physiol 224:183-192

    Google Scholar 

  • 120. Skou JC (1957) The influence of some cations on an adenosin triphosphatase from peripheral nerves. Biochim Biophys Acta 23:394-401

    PubMed  CAS  Google Scholar 

  • 121. Solioz M (1998) Copper homeostasis by CPX-type ATPases. The new subclass of heavy metal P-type ATPase. Adv Mol Cell Biol 23A:167-203

    CAS  Google Scholar 

  • 122. Solioz M, Vulpe C (1996) CPX-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem Sci 21:237-241

    PubMed  CAS  Google Scholar 

  • 123. Srinivasan C, Posewitz MC, George GN, Winge DR (1998) Characterization of the Copper Chaperone Cox17 of Saccharomyces cerevisiae. Biochemistry 37:7572-7577

    PubMed  CAS  Google Scholar 

  • 124. Strausak D, Fontaine SL, Hill J, Firth SD, Lockhart PJ, Mercer JFB (1999) The role of GMXCXXC metal binding sites in the copper-induced redistribution of the Menkes protein. J Biol Chem 274:11170-11177

    PubMed  CAS  Google Scholar 

  • 125. Sugawara N, Li D, Sugawara C, Miyake H (1993) Decrease in biliary excretion of copper in Long-Evans Cinnamon (LEC) rats causing spontaneous hepatitis due to a gross accumulation of hepatic copper. Res Comm Chem Path Pharmacol 81:45-52

    CAS  Google Scholar 

  • 126. Sugawara N, Sugawara C, Sato M, Katakura M, Takahashi H, Mori M (1991) Copper metabolism in LEC rats aged 30 and 80 days old: induction of Cu-metallothionein and status of zinc and iron. Res Comm Chem Path Pharmacol 72:353-362

    CAS  Google Scholar 

  • 127. Tanzi RE, Petrukhin K, Chernov I, Pellequer JL, Wasco W, Ross B, Romano DM, Parano E, Pavone L, Brzustowicz LM, Devoto M, Peppercorn J, Bush AI, Sternlieb I, Pirastu M, Gusella JF, Evgrafov O, Penchaszadeh GK, Honig B, Edelman IS, Soares MB, Scheinberg IH, Gilliam TC (1993) The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat Genet 5:344-350

    PubMed  CAS  Google Scholar 

  • 128. Tao T, Liu F, Klomp L, Wijmenga C, Gitlin J (2003) The copper toxicosis gene product Murr1 directly interacts with the Wilson disease protein. J Biol Chem 278:41593-41596

    PubMed  CAS  Google Scholar 

  • 129. Terada K, Nakako T, Yang X-L, Iida M, Aiba N, Minamiya Y, Nakai M, Sakaki T, Miura N, Sugiyama T (1998) Restoration of holoceruloplasmin synthesis in LEC rat after infusion of recombinant adenovirus bearing WND cDNA. J Biol Chem 273:1815-1820

    PubMed  CAS  Google Scholar 

  • 130. Theophilos MB, Cox DW, Mercer JFB (1996) The toxic milk mouse is a murine model of Wilson disease. Hum Mol Genet 5:1619-1624

    PubMed  CAS  Google Scholar 

  • 131. Thomas GR, Forbes JR, Roberts EA, Walshe JM, Cox DW (1995) The Wilson disease gene: spectrum of mutations and their consequences. Nat Genet 9:451

    CAS  Google Scholar 

  • 132. Tipton IH, Cook MJ (1963) Trace elements in human tissue. Past II. Adult subjects from the United States. Health Phys 9:103-145

    PubMed  CAS  Google Scholar 

  • 133. Torres AS, Petri V, Rae TD, O'Halloran TV (2001) Copper stabilizes a hetrodimer of the yCCS metallochaperone and interacts with superoxide dismutase. J Biol Chem 276:38410-38416

    PubMed  CAS  Google Scholar 

  • 134. Toyoshima C, Nomura H, Tsuda T (2004) Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues. Nature 432:361-368

    PubMed  CAS  Google Scholar 

  • 135. Tumer Z, Moller LB, Horn N (1999) Mutation spectrum of ATP7A, the gene defective in Menkes disease. Adv Exp Med Biol 448:83-95

    PubMed  CAS  Google Scholar 

  • 136. Turnlund JR, Keyes WR, Peiffer GL, Scott KS (1998) Copper absorption, excretion and retention by young men consuming low dietary copper determined by using the stable isotope 65Cu. Am J Clin Nutr 67:1219-1225

    PubMed  CAS  Google Scholar 

  • 137. Van Campen DR (1971) Absorption of copper from the gastrointestinal tract. In: Skoryna SC, Waldron-Edwards D (eds) Intestinal absorption of metal ions, trace elements and radionuclides. Pergamon, Oxford, pp 211-227

    Google Scholar 

  • 138. Vargas E, Shoho AR, Linder MC (1994) Copper transport in the Nagase analbuminemic rat. Am J Physiol 267:G259-G269

    PubMed  CAS  Google Scholar 

  • 139. Versieck J, Cornelis R (1980) Normal levels of trace elements in human blood plasma or serum. Anal Chim Acta 116:217-254

    CAS  Google Scholar 

  • 140. Voskoboinik I, Brooks H, Smith S, Shen P, Camakaris J (1998) ATP-dependent copper transport by the Menkes protein in membrane vesicles isolated from cultured Chinese hamster ovary cells. FEBS Letters 438:178-182

    Google Scholar 

  • 141. Voskoboinik I, Camakaris J, Mercer JF (2002) Understanding the mechanism and function of copper P-type ATPases. In: Valentine J, Gralla E (eds) Adv. Protein Chemistry. Elsevier Science, pp 123-150

    Google Scholar 

  • 142. Voskoboinik I, Mar J, Strausak D, Camakaris J (2001) The regulation of catalytic activity of the Menkes copper-translocating P-type ATPase. J Biol Chem 276:28620-28627

    PubMed  CAS  Google Scholar 

  • 143. Vulpe C, Levinson B, Whitney S, Packman S, Gitschier J (1993) Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet 3:7-13

    PubMed  CAS  Google Scholar 

  • 144. Vulpe CD, Packman S (1995) Cellular copper transport. Annu Rev Nutr 15:293-322

    PubMed  CAS  Google Scholar 

  • 145. Walker JM, Tsivkovskii R, Lutsenko S (2002) Metallochaperone Atox1 transfers copper to the NH2-terminal domain of the Wilson's disease protein and regulates its catalytic activity. J Biol Chem 277:27953-27959

    PubMed  CAS  Google Scholar 

  • 146. Watkins S, Madison J, Galliano M, Minchiotti L, Putnam FW (1994) A nucleotide insertion and frameshift cause analbuminemia in an Italian family. Proc Natl Acad Sci USA 91:2275-2279

    PubMed  CAS  PubMed Central  Google Scholar 

  • 147. White A, Huang X, Jobling M, Barrow C, Beyreuther K, Masters C, Bush A, Cappai R (2001) Homocysteine potentiates copper and amyloid beta peptide-mediated toxicity in primary neuronal cultures: possible risk factors in the Alzheimer's-type neurodegenerative pathways. J Neurochem 76:1509-1520

    PubMed  CAS  Google Scholar 

  • 148. White AR, Reyes R, Mercer JFB, Camakaris J, Zheng H, Bush AI, Multhaup G, Beyreuther K, Masters CL, Cappai R (1999) Copper levels are increased in the cerebral cortex and liver of APP and APLP2 knockout mice. Brain Res 842:439-444

    PubMed  CAS  Google Scholar 

  • 149. Wijmenga C, Muller T, Murli IS, Brunt T, Feichtinger H, Schonitzer D, Houwen RH, Muller W, Sandkuijl LA, Pearson PL (1998) Endemic Tyrolean infantile cirrhosis is not an allelic variant of Wilson's disease. Eur J Hum Genet 6:624-628

    PubMed  CAS  Google Scholar 

  • 150. Wilson DC, Phillips MJ, Cox DW, Roberts EA (2000) Severe hepatic Wilson's disease in preschool-aged children. J Pediatr 137:719-722

    PubMed  CAS  Google Scholar 

  • 151. Wilson KSA (1912) Progressive lenticular degeneration. A familial nervous disease associated with cirrhosis of the liver. Brain 34:295-506

    Google Scholar 

  • 152. Winge DR, Mehra RK (1990) Host defences against copper toxicity. In: Richter GW, Solez K, Aisen P, Cohen G (eds) Transition Metal Toxicity. Academic Press, San Diego, pp 47-83

    Google Scholar 

  • 153. Wirth PL, Linder MC (1985) Distribution of copper among components of human serum. JNCL 75:277-284

    CAS  Google Scholar 

  • 154. Wong PC, Waggoner D, Subramaniam JR, Tessarollo L, Bartinakas TB, Culotta VC, Price DL, Rothstein J, Gitlin JD (2000) Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc Natl Aacd Sci USA 97:2886-2891

    CAS  Google Scholar 

  • 155. Wu J, Forbes JR, Chen HS, Cox DW (1994) The LEC rat has a deletion in the copper transporting ATPase homologous to the Wilson disease gene. Nat Genet 7:541-545

    PubMed  CAS  Google Scholar 

  • 156. Yamada T, Agui T, Suzuki Y, Sato M, Matsumoto K (1993) Inhibition of the copper incorporation into ceruloplasmin leads to the deficiency in serum ceruloplasmin activity in Long-Evans Cinnamon mutant rat. J Biol Chem 268:8965-8971

    PubMed  CAS  Google Scholar 

  • 157. Yamaguchi Y, Heiny ME, Gitlin JD (1993) Isolation and characterization of a human liver cDNA as a candidate gene for Wilson disease. Biochem Biophys Res Com 197:271-277

    PubMed  CAS  Google Scholar 

  • 158. Yamaguchi Y, Heiny ME, Shimizu N, Aoki T, Gitlin JD (1994) Expression of the Wilson disease gene is deficient in the Long-Evans Cinnamon rat. Biochem J 301:1-4

    PubMed  CAS  PubMed Central  Google Scholar 

  • 159. Yoshida K, Furihata K, Takeda S, Nakamura A, Yamamoto K, Morita H, Hiyamuta S, Ikeda S, Norikazu S, Yanagisawa N (1995) A mutation in the ceruloplasmin gene is associated with systemic hemosiderosis in humans. Nat Genet 9:267-272

    PubMed  CAS  Google Scholar 

  • 160. Yoshida Y, Furuta S, Niki E (1993) Effects of metal chelating agents on the oxidation of lipids induced by copper and iron. Biochim Biophys Acta 1210:81-88

    PubMed  CAS  Google Scholar 

  • 161. Zhou B, Gitschier J (1997) hCTR1: A human gene for copper uptake identified by complementation in yeast. Proc Natl Aacd Sci USA 94:7481-7486

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Markus J. Tamas Enrico Martinoia

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cater, M.A., Mercer, J.F. (2005). Copper in mammals: mechanisms of homeostasis and pathophysiology. In: Tamas, M.J., Martinoia, E. (eds) Molecular Biology of Metal Homeostasis and Detoxification. Topics in Current Genetics, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4735_101

Download citation

Publish with us

Policies and ethics