Skip to main content

Watching Photochemistry Happen: Recent Developments in Dynamic Single-Crystal X-Ray Diffraction Studies

  • Chapter
  • First Online:
21st Century Challenges in Chemical Crystallography I

Part of the book series: Structure and Bonding ((STRUCTURE,volume 185))

Abstract

Photoresponsive materials are an important contemporary research area with applications in, for example, energy and catalysis. Mechanistic information on solid-state photochemical reactions has traditionally come from spectroscopy and modelling, with crystallography limited to snapshots of endpoints and long-lived intermediates. Recent advances in X-ray sources and detectors have made it possible to follow solid-state reactions in situ with dynamic single-crystal X-ray diffraction (SCXRD) methods, allowing a full set of atomic positions to be determined over the course of the reaction. These experiments provide valuable structural information that can be used to interpret spectroscopic measurements and to inform materials design and optimisation.

Solid-state linkage isomers, where small-molecule ligands such as NO, NO2, N2 and SO2 show photo-induced changes in binding to a transition metal centre, have played a leading role in the development of dynamic SCXRD methodology, since the movement of whole atoms and the predictable temperature dependence of the excited-state lifetimes make them ideal test systems. The field of “photocrystallography”, pioneered by Coppens in the late 1990s, has developed alongside advances in instrumentation and computing and can now provide the 3D structures of species with lifetimes down to femtoseconds.

In this chapter, we will review the development of photocrystallography experiments against linkage isomer systems, from the early identification of metastable species under continuous illumination, through measuring kinetics at low temperature, to recent experiments studying species with sub-second lifetimes. We will discuss the advances in X-ray sources and instrumentation that have made dynamic SCXRD experiments possible, and we will highlight the role of kinetic modelling and complementary spectroscopy in designing experiments. Finally, we will discuss possible directions for future development and identify some of the outstanding challenges that remain to be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

bipy:

2,2′-Bipyridine

BPh4:

Tetraphenylborate

Bu4dien:

N,N,N′,N′-Tetrabutyldiethylenetriamine

CCD:

Charge-coupled device

CMOS:

Complementary metal-oxide-semiconductor

dcpe :

1,2-Bis(dicyclohexylphosphino)ethane

dppe :

1,2-Bis(diphenylphosphino)ethane

ES:

Excited state

Et4dien:

N,N,N′,N′-Tetraethyldiethylenetriamine

GS :

Ground state

JMAK:

Johnson-Mehl-Avrami-Kolmogorov

LED :

Light-emitting diode

MS1:

Metastable state 1

MS2 :

Metastable state 2

MX:

Macromolecular crystallography

OTf:

Trifluoromethanesulfonate

SCXRD :

Single-crystal X-ray diffraction

SFX:

Serial femtosecond crystallography

SNP :

Sodium nitroprusside

TR :

Time resolved

XFEL:

X-ray free-electron laser

References

  1. Carducci MD, Pressprich MR, Coppens P (1997) Diffraction studies of photoexcited crystals: metastable nitrosyl-linkage isomers of sodium nitroprusside. J Am Chem Soc 119:2669–2678

    CAS  Google Scholar 

  2. S̆rajer V, Teng T-Y, Ursby T, Pradervand C, Ren Z, Adachi S-I et al (1996) Photolysis of the carbon monoxide complex of myoglobin: nanosecond time- resolved crystallography. Science 274:1726–1729

    PubMed  Google Scholar 

  3. Penland RB, Lane TJ, Quagliano JV (1956) Infrared absorption spectra of inorganic coördination complexes. VII. Structural isomerism of nitro- and nitritopentamminecobalt(III) chlorides1a,b. J Am Chem Soc 78:887–889

    CAS  Google Scholar 

  4. Murmann RK, Taube H (1956) The mechanism of the formation and rearrangement of nitritocobalt(III) ammines1. J Am Chem Soc 78:4886–4890

    CAS  Google Scholar 

  5. Fraser RTM (1967) Linkage isomerism. Werner centennial. In: Advances in chemistry, vol 62. American Chemical Society, pp 295–305

    Google Scholar 

  6. Chattopadhyay T, Ghosh M, Majee A, Nethaji M, Das D (2005) Linkage isomerism in 4-(2-aminoethyl)morpholine (L) complexes of nickel (II) nitrite: X-ray single crystal structure of trans-[NiL2(NO2)2]. Polyhedron 24:1677–1681

    CAS  Google Scholar 

  7. Adell B (1944) Über die Geschwindigkeit der Umwandlung von Nitrito- in Nitropentamminkobalt(III)-chlorid. Zeitschrift für Anorganische Chem 252:272–280

    CAS  Google Scholar 

  8. Cohen MD, Schmidt GMJ (1964) 383. Topochemistry. Part I. a survey. J Chem Soc:1996–2000

    Google Scholar 

  9. Cohen MD, Schmidt GMJ, Sonntag FI (1964) 384. Topochemistry. Part II. The photochemistry of trans-cinnamic acids. J Chem Soc (Resumed):2000–2013

    Google Scholar 

  10. Ohashi Y (2013) Dynamic motion and various reaction paths of cobaloxime complexes in crystalline-state photoreaction. Crystallogr Rev 19:2–146

    CAS  Google Scholar 

  11. Ohashi Y, Sasada Y (1977) X-ray analysis of co-C bond cleavage in the crystalline state. Nature 267:142–144

    CAS  PubMed  Google Scholar 

  12. Warren M, Brayshaw S, Johnson A, Schiffers S, Raithby P, Easun T et al (2009) Reversible 100% linkage isomerization in a single crystal to single crystal transformation: photocrystallographic identification of the metastable [Ni(dppe)(η1-ONO)Cl] isomer. Angew Chem 121:5821–5824

    Google Scholar 

  13. Warren MR, Easun TL, Brayshaw SK, Deeth RJ, George MW, Johnson AL et al (2014) Solid-state interconversions: unique 100% reversible transformations between the ground and metastable states in single-crystals of a series of nickel(II) nitro complexes. Chem Eur J 20:5468–5477

    CAS  PubMed  Google Scholar 

  14. Hatcher LE, Warren MR, Allan DR, Brayshaw SK, Johnson AL, Fuertes S et al (2011) Metastable linkage isomerism in [Ni(Et4dien)(NO2)2]: a combined thermal and photocrystallographic structural investigation of a nitro/nitrito interconversion. Angew Chem Int Ed 50:8371–8374

    CAS  Google Scholar 

  15. Hatcher LE (2016) Raising the (metastable) bar: 100% photo-switching in [Pd(Bu4dien)(η1-NO2)]+ approaches ambient temperature. CrystEngComm 18:4180–4187

    CAS  Google Scholar 

  16. Hatcher LE, Raithby PR (2017) The impact of hydrogen bonding on 100% photo-switching in solid-state nitro-nitrito linkage isomers. CrystEngComm 19:6297–6304

    CAS  Google Scholar 

  17. Hatcher LE, Bigos EJ, Bryant MJ, MacCready EM, Robinson TP, Saunders LK et al (2014) Thermal and photochemical control of nitro-nitrito linkage isomerism in single-crystals of [Ni(medpt)(NO2)(η2-ONO)]. CrystEngComm 16:8263–8271

    CAS  Google Scholar 

  18. Sylvester SO, Cole JM (2013) Quantifying crystallographically independent optical switching dynamics in Ru-SO2 photoisomers via lock-and-key crystalline environment. J Phys Chem Lett 4:3221–3226

    CAS  Google Scholar 

  19. Cormary B, Ladeira S, Jacob K, Lacroix PG, Woike T, Schaniel D et al (2012) Structural influence on the photochromic response of a series of ruthenium mononitrosyl complexes. Inorg Chem 51:7492–7501

    CAS  PubMed  Google Scholar 

  20. Warren MR, Brayshaw SK, Hatcher LE, Johnson AL, Schiffers S, Warren AJ et al (2012) Photoactivated linkage isomerism in single crystals of nickel, palladium and platinum di-nitro complexes – a photocrystallographic investigation. Dalton Trans 41:13173–13179

    CAS  PubMed  Google Scholar 

  21. Atkins P, Atkins PW, Shriver DF (2006) Shriver & Atkins inorganic chemistry. W.H. Freeman

    Google Scholar 

  22. Schaniel D, Woike T (2009) Necessary conditions for the photogeneration of nitrosyl linkage isomers. Phys Chem Chem Phys 11:4391–4395

    CAS  PubMed  Google Scholar 

  23. Hauser U, Oestreich V, Rohrweck HD (1977) On optical dispersion in transparent molecular systems. Zeitschrift für Phys A Hadrons Nucl 280:17–25

    CAS  Google Scholar 

  24. Woike T, Krasser W, Zöllner H, Kirchner W, Haussühl S (1993) Population dynamics of the two light induced metastable states in Na2[Fe(CN)5NO]·2H2O single crystals. Zeitschrift für Phys D Atoms Mol Clust 25:351–356

    CAS  Google Scholar 

  25. Schaniel D, Nicoul M, Woike T (2010) Ultrafast reversible ligand isomerisation in Na2[Fe(CN)5NO]·2H2O single crystals. Phys Chem Chem Phys 12:9029–9033

    CAS  PubMed  Google Scholar 

  26. Coppens P, Novozhilova I, Kovalevsky A (2002) Photoinduced linkage isomers of transition-metal nitrosyl compounds and related complexes. Chem Rev 102:861–884

    CAS  PubMed  Google Scholar 

  27. Schaniel D, Bendeif EE, Woike T, Böttcher HC, Pillet S (2018) Wavelength-selective photoisomerisation of nitric oxide and nitrite in a rhodium complex. CrystEngComm 20:7100–7108

    CAS  Google Scholar 

  28. Fomitchev DV, Furlani TR, Coppens P (1998) Combined X-ray diffraction and density functional study of [Ni(NO)(η5-Cp*)] in the ground and light-induced metastable states. Inorg Chem 37:1519–1526

    CAS  Google Scholar 

  29. Fomitchev DV, Coppens P (1996) X-ray diffraction analysis of geometry changes upon excitation: the ground-state and metastable-state structures of K2[Ru(NO2)4(OH)(NO)]. Inorg Chem 35:7021–7026

    CAS  PubMed  Google Scholar 

  30. Fomitchev DV, Coppens P, Li T, Bagley KA, Chen L, Richter-Addo GB (1999) Photo-induced metastable linkage isomers of ruthenium nitrosyl porphyrins. Chem Commun:2013–2014

    Google Scholar 

  31. Schaniel D, Cormary B, Malfant I, Valade L, Woike T, Delley B et al (2007) Photogeneration of two metastable NO linkage isomers with high populations of up to 76% in trans-[RuCl(py)4(NO)][PF6]2·½H2O. Phys Chem Chem Phys 9:3717–3724

    CAS  PubMed  Google Scholar 

  32. Cormary B, Malfant I, Valade L, Buron-Le Cointe M, Toupet L, Todorova T et al (2009) [Ru(py)4Cl(NO)](PF6)2·0.5H0O: a model system for structural determination and ab initio calculations of photo-induced linkage NO isomers. Erratum. Acta Crystallogr B 65:787–787

    CAS  Google Scholar 

  33. Kovalevsky AY, King G, Bagley KA, Coppens P (2005) Photoinduced oxygen transfer and double-linkage isomerism in a cis-(NO)(NO2) transition-metal complex by photocrystallography, FT-IR spectroscopy and DFT calculations. Chem Eur J 11:7254–7264

    CAS  PubMed  Google Scholar 

  34. Amabilino S, Tasse M, Lacroix PG, Mallet-Ladeira S, Pimienta V, Akl J et al (2017) Photorelease of nitric oxide (NO) on ruthenium nitrosyl complexes with phenyl substituted terpyridines. New J Chem 41:7371–7383

    CAS  Google Scholar 

  35. Giglmeier H, Kerscher T, Klufers P, Schaniel D, Woike T (2009) Nitric-oxide photorelease and photoinduced linkage isomerism on solid [Ru(NO)(terpy)(L)]BPh4 (L = glycolate dianion). Dalton Trans 2009:9113–9116

    Google Scholar 

  36. Dieckmann V, Imlau M, Taffa DH, Walder L, Lepski R, Schaniel D et al (2010) Phototriggered NO and CN release from [Fe(CN)5NO]2- molecules electrostatically attached to TiO2 surfaces. Phys Chem Chem Phys 12:3283–3288

    CAS  PubMed  Google Scholar 

  37. Johnson DA, Dew VC (1979) Photochemical linkage isomerization in coordinated sulfur dioxide. Inorg Chem 18:3273–3274

    CAS  Google Scholar 

  38. Kovalevsky AY, Bagley KA, Cole JM, Coppens P (2002) Light-induced metastable linkage isomers of ruthenium sulfur dioxide complexes. Inorg Chem 42:140–147

    Google Scholar 

  39. Kovalevsky AY, Bagley KA, Coppens P (2002) The first photocrystallographic evidence for light-induced metastable linkage isomers of ruthenium sulfur dioxide complexes. J Am Chem Soc 124:9241–9248

    CAS  PubMed  Google Scholar 

  40. Bowes KF, Cole JM, Husheer SLG, Raithby PR, Savarese TL, Sparkes HA et al (2006) Photocrystallographic structure determination of a new geometric isomer of [Ru(NH3)4(H2O)(η1-OSO)] [MeC6H4SO3]2. Chem Commun:2448–2450

    Google Scholar 

  41. Phillips AE, Cole JM, d’Almeida T, Low KS (2010) Effects of the reaction cavity on metastable optical excitation in ruthenium-sulfur dioxide complexes. Phys Rev B 82:155118

    Google Scholar 

  42. Phillips AE, Cole JM, d’Almeida T, Low KS (2012) Ru–OSO coordination photogenerated at 100 K in tetraammineaqua(sulfur dioxide)ruthenium(II) (±)-camphorsulfonate. Inorg Chem 51:1204–1206

    CAS  PubMed  Google Scholar 

  43. Sylvester SO, Cole JM, Waddell PG (2012) Photoconversion bonding mechanism in ruthenium sulfur dioxide linkage photoisomers revealed by in situ diffraction. J Am Chem Soc 134:11860–11863

    CAS  PubMed  Google Scholar 

  44. Cole JM, Velazquez-Garcia JJ, Gosztola DJ, Wang SG, Chen Y-S (2018) η2-SO2 linkage photoisomer of an osmium coordination complex. Inorg Chem 57:2673–2677

    CAS  PubMed  Google Scholar 

  45. Allen AD, Senoff CV (1965) Nitrogenopentammineruthenium(II) complexes. Chem Commun (Lond):621–622

    Google Scholar 

  46. Tanaka H, Nishibayashi Y, Yoshizawa K (2016) Interplay between theory and experiment for ammonia synthesis catalyzed by transition metal complexes. Acc Chem Res 49:987–995

    CAS  PubMed  Google Scholar 

  47. Nishibayashi Y (2018) Development of catalytic nitrogen fixation using transition metal-dinitrogen complexes under mild reaction conditions. Dalton Trans 47:11290–11297

    CAS  PubMed  Google Scholar 

  48. Yang Y, Liu J, Wei Z, Wang S, Ma J (2019) Transition metal-dinitrogen complex embedded graphene for nitrogen reduction reaction. ChemCatChem 11:2821–2827

    Google Scholar 

  49. Fomitchev DV, Bagley KA, Coppens P (2000) The first crystallographic evidence for side-on coordination of N2 to a single metal center in a photoinduced metastable state. J Am Chem Soc 122:532–533

    CAS  Google Scholar 

  50. Goulkov M, Schaniel D, Woike T (2010) Pulse recording of thermal and linkage isomer gratings in nitrosyl compounds. J Opt Soc Am B 27:927–932

    CAS  Google Scholar 

  51. Sylvester SO, Cole JM (2013) Solar-powered nanomechanical transduction from crystalline molecular rotors. Adv Mater 25:3324–3328

    CAS  PubMed  Google Scholar 

  52. Cole JM, Yeung KYM, Pace G, Sylvester SO, Mersch D, Friend RH (2015) In situ synthesis, crystallisation, and thin-film processing of single crystals of trans-[Ru(SO2)(NH3)4(H2O)][p-TolSO3]2 bearing SO2 linkage photo-isomers: towards optical device applications. CrystEngComm 17:5026–5031

    CAS  Google Scholar 

  53. Brayshaw SK, Knight JW, Raithby PR, Savarese TL, Schiffers S, Teat SJ et al (2010) Photocrystallography – design and methodology for the use of a light-emitting diode device. J Appl Crystallogr 43:337–340

    CAS  Google Scholar 

  54. Kaminski R, Jarzembska KN, Kutyla SE, Kaminski M (2016) A portable light-delivery device for in situ photocrystallographic experiments in the home laboratory. J Appl Crystallogr 49:1383–1387

    CAS  Google Scholar 

  55. Avrami M (1941) Kinetics of phase change. III. Granulation, phase change, and microstructure. J Chem Phys 9:177–184

    CAS  Google Scholar 

  56. Avrami M (1940) Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224

    CAS  Google Scholar 

  57. Avrami M (1939) Kinetics of phase change. I. General theory. J Chem Phys 7:1103–1112

    CAS  Google Scholar 

  58. Hatcher LE, Christensen J, Hamilton ML, Trincao J, Allan DR, Warren MR et al (2014) Steady-state and pseudo-steady-state photocrystallographic studies on linkage isomers of [Ni(Et4dien)(η2-O,ON)(η1-NO2)]: identification of a new linkage isomer. Chem Eur J 20:3128–3134

    CAS  PubMed  Google Scholar 

  59. Hatcher LE, Skelton JM, Warren MR, Stubbs C, da Silva EL, Raithby PR (2018) Monitoring photo-induced population dynamics in metastable linkage isomer crystals: a crystallographic kinetic study of [Pd(Bu4dien)NO2]BPh4. Phys Chem Chem Phys 20:5874–5886

    CAS  PubMed  Google Scholar 

  60. Benedict JB, Coppens P (2009) Kinetics of the single-crystal to single-crystal two-photon photodimerization of α-trans-cinnamic acid to α-truxillic acid. J Phys Chem A 113:3116–3120

    CAS  PubMed  Google Scholar 

  61. Bertmer M, Nieuwendaal RC, Barnes AB, Hayes SE (2006) Solid-state photodimerization kinetics of α-trans-cinnamic acid to α-truxillic acid studied via solid-state NMR. J Phys Chem B 110:6270–6273

    CAS  PubMed  Google Scholar 

  62. Abdelmoty I, Buchholz V, Di L, Guo C, Kowitz K, Enkelmann V et al (2005) Polymorphism of cinnamic and α-truxillic acids: new additions to an old story. Cryst Growth Des 5:2210–2217

    CAS  Google Scholar 

  63. Enkelmann V, Wegner G, Novak K, Wagener KB (1993) Single-crystal-to-single-crystal photodimerization of cinnamic acid. J Am Chem Soc 115:10390–10391

    CAS  Google Scholar 

  64. More R, Busse G, Hallmann J, Paulmann C, Scholz M, Techert S (2010) Photodimerization of crystalline 9-anthracenecarboxylic acid: a nontopotactic autocatalytic transformation. J Phys Chem C 114:4142–4148

    CAS  Google Scholar 

  65. Skelton JM, Crespo-Otero R, Hatcher LE, Parker SC, Raithby PR, Walsh A (2015) Energetics, thermal isomerisation and photochemistry of the linkage-isomer system [Ni(Et4dien)(η2-O,ON)(η1-NO2)]. CrystEngComm 17:383–394

    CAS  Google Scholar 

  66. Grünbein ML, Stricker M, Nass Kovacs G, Kloos M, Doak RB, Shoeman RL et al (2020) Illumination guidelines for ultrafast pump–probe experiments by serial femtosecond crystallography. Nat Methods 17:681–684

    PubMed  Google Scholar 

  67. Skarzynski T (2013) Collecting data in the home laboratory: evolution of X-ray sources, detectors and working practices. Acta Crystallogr D Biol Crystallogr 69:1283–1288

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Bilderback DH, Elleaume P, Weckert E (2005) Review of third and next generation synchrotron light sources. J Phys B Atomic Mol Phys 38:S773–S797

    CAS  Google Scholar 

  69. Jaeschke EJ, Khan S, Schneider JR, Hastings JB (2016) Synchrotron light sources and free-electron lasers: accelerator physics, instrumentation and science applications. Springer, Berlin

    Google Scholar 

  70. Geloni G, Huang Z, Pellegrini C (2017) Chapter 1 the physics and status of X-ray free-electron lasers. In: X-ray free electron lasers: applications in materials, chemistry and biology. The Royal Society of Chemistry, pp 1–44

    Google Scholar 

  71. Mobilio S, Boscherini F, Meneghini C (2016) Synchrotron radiation: basics, methods and applications. Springer, Berlin

    Google Scholar 

  72. Allé P, Wenger E, Dahaoui S, Schaniel D, Lecomte C (2016) Comparison of CCD, CMOS and hybrid pixel x-ray detectors: detection principle and data quality. Phys Scr 91:063001

    Google Scholar 

  73. He T, Durst R, Becker B, Kaercher J, Wachter G (2011) A large area X-ray imager with online linearization and noise suppression. SPIE

    Google Scholar 

  74. Förster A, Brandstetter S, Schulze-Briese C (2019) Transforming X-ray detection with hybrid photon counting detectors. Philos Trans R Soc A Math Phys Eng Sci 377:20180241

    Google Scholar 

  75. Blaj G, Caragiulo P, Carini G, Carron S, Dragone A, Freytag D et al (2015) X-ray detectors at the Linac coherent light source. J Synchrotron Radiat 22:577–583

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bergamaschi A, Mozzanica A, Schmitt B (2020) XFEL detectors. Nat Rev Phys 2:335–336

    Google Scholar 

  77. Poikela T, Plosila J, Westerlund T, Campbell M, Gaspari MD, Llopart X et al (2014) Timepix3: a 65K channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout. J Instrum 9:C05013–C05013

    Google Scholar 

  78. Chapman HN, Fromme P, Barty A, White TA, Kirian RA, Aquila A et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–77

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Grunbein ML, Nass KG (2019) Sample delivery for serial crystallography at free-electron lasers and synchrotrons. Acta Crystallogr Sect D 75:178–191

    Google Scholar 

  80. Martiel I, Muller-Werkmeister HM, Cohen AE (2019) Strategies for sample delivery for femtosecond crystallography. Acta Crystallogr Sect D 75:160–177

    CAS  Google Scholar 

  81. Mehrabi P, Muller-Werkmeister HM, Leimkohl J-P, Schikora H, Ninkovic J, Krivokuca S et al (2020) The HARE chip for efficient time-resolved serial synchrotron crystallography. J Synchrotron Radiat 27:360–370

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Casaretto N, Schaniel D, Alle P, Wenger E, Parois P, Fournier B et al (2017) In-house time-resolved photocrystallography on the millisecond timescale using a gated X-ray hybrid pixel area detector. Acta Crystallogr B 73:696–707

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Skelton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hatcher, L.E., Warren, M.R., Pallipurath, A.R., Saunders, L.K., Skelton, J.M. (2020). Watching Photochemistry Happen: Recent Developments in Dynamic Single-Crystal X-Ray Diffraction Studies. In: Mingos, D.M.P., Raithby, P.R. (eds) 21st Century Challenges in Chemical Crystallography I. Structure and Bonding, vol 185. Springer, Cham. https://doi.org/10.1007/430_2020_78

Download citation

Publish with us

Policies and ethics