Skip to main content

Recent Developments in the Refinement and Analysis of Crystal Structures

  • Chapter
  • First Online:
21st Century Challenges in Chemical Crystallography I

Part of the book series: Structure and Bonding ((STRUCTURE,volume 185))

Abstract

Crystal structure refinement and analysis is a powerful method for determination of crystal structures and finds widespread application in determination of structures of crystals of small molecules and frameworks at atomic resolution. The independent atom model is used to describe atomic scattering for routine use, while more accurate aspherical scattering factors are increasingly available. The structure factor is presented as the Fourier transform of convolutions of scattering and probability densities in the crystal structure to clarify how aspherical scattering factors and alternative displacement probabilities can be introduced into refinement methods. Non-linear least squares fitting of the crystal structure parameters in the structure factor equations is described using matrix algebra notation which enables simple derivation of the extensions required for discussion of crystallographic restraints and leverage analysis. Finally, combined analysis of multiple single-crystal experiments is discussed highlighting the potential of refinement tools to extract useful information from joint X-ray and neutron data and from mixed ground-state and excited-state X-ray data from pump-probe experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

⊗:

Convolution operator

ADP:

Anisotropic displacement parameter

DFT:

Density functional theory

Fc2:

Calculated structure factor squared

FFT:

FAST Fourier transform

Fo2:

Observed structure factor squared

FT:

Fourier transform

IAM:

Independent atom model

r.m.s.:

Root mean square

SCF:

Self-consistent field

TAAM:

Transferable aspherical atom model

TLS:

Translation-libration-screw

u(x):

Estimated uncertainty of a model parameter, x

λ:

Wavelength

σ2(Fo2):

Estimated variance of the observed structure factor

References

  1. Brown PJ, Fox AG, Maslen EN, Keefe MA, Willis BTM (2006) Intensity of diffracted intensities. In: International tables for crystallography. International Union of Crystallography, pp 554–595

    Google Scholar 

  2. Sanjuan-Szklarz WF, Hoser AA, Gutmann M, Madsen AØ, Woźniak K (2016) Yes, one can obtain better quality structures from routine X-ray data collection. IUCrJ 3:61–70

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem 71:3–8

    Google Scholar 

  4. Wilson AJC (1976) Statistical bias in least-squares refinement. Acta Crystallogr Sect A 32:994–996

    Google Scholar 

  5. Dominiak PM, Volkov A, Li X, Messerschmidt M, Coppens P (2007) A theoretical databank of transferable aspherical atoms and its application to electrostatic interaction energy calculations of macromolecules. J Chem Theory Comput 3:232–247

    CAS  PubMed  Google Scholar 

  6. Fugel M et al (2017) Probing the accuracy and precision of hirshfeld atom refinement with HARt interfaced with Olex2. IUCrJ 5:32–44

    Google Scholar 

  7. Schröder L, Watkin DJ, Cousson A, Cooper RI, Paulus W (2004) CRYSTALS enhancements: refinement of atoms continuously disordered along a line, on a ring or on the surface of a sphere. J Appl Crystallogr. https://doi.org/10.1107/s0021889804009847

  8. King MV, Lipscomb WN (1950) The X-ray scattering from a hindered rotator. Acta Crystallogr 3:155–158

    CAS  Google Scholar 

  9. Reilly AM, Morrison CA, Rankin DWH, McLean KR (2011) Using molecular-dynamics simulations to understand and improve the treatment of anharmonic vibrations. II. Developing and assessing new Debye-Waller factors. Acta Crystallogr Sect A Found Crystallogr 67:346–356

    CAS  Google Scholar 

  10. Betteridge PW, Carruthers JR, Cooper RI, Prout K, Watkin DJ (2003) CRYSTALS version 12: software for guided crystal structure analysis. J Appl Crystallogr. https://doi.org/10.1107/s0021889803021800

  11. Binns J et al (2017) Phase transition sequences in tetramethylammonium tetrachlorometallates by X-ray diffraction and spectroscopic measurements. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 73:844–855

    CAS  Google Scholar 

  12. Bailey PJ et al (2010) A new synthesis of charge-neutral tris-pyrazolyl and -methimazolyl borate ligands. Chem Eur J 16:2819–2829

    CAS  PubMed  Google Scholar 

  13. Barrett ES, Irwin JL, Edwards AJ, Sherburn MS (2004) Superbowl container molecules. J Am Chem Soc 126:1

    Google Scholar 

  14. Anderson E, Bai Z, Bischof J, Blackford S, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling S, McKenney A, Sorensen D (1999) LAPACK users’ guide. Society for Industrial and Applied Mathematics, Philadelphia

    Google Scholar 

  15. Wang Q, Zhang X, Zhang Y, Yi Q (2013) AUGEM: automatically generate high performance dense linear algebra kernels on x86 CPUs. In: International conference for high performance computing, networking, storage and analysis, SC, IEEE Computer Society. https://doi.org/10.1145/2503210.2503219

  16. Wang E et al (2014) Intel math kernel library. In: High-performance computing on the Intel® Xeon PhiTM. Springer, Berlin, pp 167–188

    Google Scholar 

  17. Parois P, Cooper RI, Thompson AL (2015) Crystal structures of increasingly large molecules: meeting the challenges with CRYSTALS software. Chem Cent J. https://doi.org/10.1186/s13065-015-0105-4

  18. Spek AL (2015) Platon squeeze: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr Sect C Struct Chem 71:9–18

    CAS  Google Scholar 

  19. Frigo M, Johnson SG (2005) The design and implementation of FFTW3. In: Proceedings of the IEEE, pp 216–231

    Google Scholar 

  20. Coster D, Knol KS, Prins JA (1930) Unterschiede in der Intensität der Röntgenstrahlen-reflexion an den beiden 111-Flächen der Zinkblende. Z Phys 63:345–369

    CAS  Google Scholar 

  21. Hamilton WC (1965) Significance tests on the crystallographic R factor. Acta Crystallogr 18:502–510

    CAS  Google Scholar 

  22. Rogers D (1981) On the application of Hamilton’s ratio test to the assignment of absolute configuration and an alternative test. Acta Crystallogr Sect A 37:734–741

    Google Scholar 

  23. Flack HD (1983) On enantiomorph-polarity estimation. Acta Crystallogr Sect A 39:876–881

    Google Scholar 

  24. Flack HD, Bernardinelli G (2000) Reporting and evaluating absolute-structure and absolute-configuration determinations. J Appl Crystallogr 33:1143–1148

    CAS  Google Scholar 

  25. Cooper RI, Watkin DJ, Flack HD (2016) Absolute structure determination using CRYSTALS. Acta Crystallogr Sect C Struct Chem 72:261–267

    Google Scholar 

  26. Parsons S, Flack HD, Wagner T (2013) Use of intensity quotients and differences in absolute structure refinement. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 69:249–259

    CAS  Google Scholar 

  27. Cooper RI, Flack HD, Watkin DJ (2017) HUG and SQUEEZE: using CRYSTALS to incorporate resonant scattering in the SQUEEZE structure-factor contributions to determine absolute structure. Acta Crystallogr Sect C Struct Chem 73:845–853

    CAS  Google Scholar 

  28. Brázda P, Palatinus L, Babor M (2019) Electron diffraction determines molecular absolute configuration in a pharmaceutical nanocrystal. Science (80-.) 364:667–669

    Google Scholar 

  29. Waser J (1963) Least-squares refinement with subsidiary conditions. Acta Crystallogr 16:1091–1094

    CAS  Google Scholar 

  30. Hirshfeld FL (1976) Can X-ray data distinguish bonding effects from vibrational smearing? Acta Crystallogr Sect A 32:239–244

    Google Scholar 

  31. Thorn A, Dittrich B, Sheldrick GM (2012) Enhanced rigid-bond restraints. Acta Crystallogr Sect A Found Crystallogr 68:448–451

    CAS  Google Scholar 

  32. Parois P, Arnold J, Cooper R (2018) An enhanced set of displacement parameter restraints in CRYSTALS. J Appl Crystallogr 51:1059–1068

    CAS  Google Scholar 

  33. Schomaker V, Trueblood KN (1968) On the rigid-body motion of molecules in crystals. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 24:63–76

    CAS  Google Scholar 

  34. Madsen AØ (2006) SHADE web server for estimation of hydrogen anisotropic displacement parameters. J Appl Crystallogr 39:757–758

    CAS  Google Scholar 

  35. Marsh RE, Bernal I (1995) More space-group changes. Acta Crystallogr Sect B Struct Sci 51:300–307

    Google Scholar 

  36. Marsh RE (2005) Space group P1: an update. Acta Crystallogr Sect B Struct Sci 61:359

    Google Scholar 

  37. Harlow RL (1996) Troublesome crystal structures. Prevention, detection, and resolution. J Res Natl Inst Stand Technol 101:327

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Schwalbe CH (2018) Should we remediate small molecule structures? If so, who should do it? Crystallogr Rev 24:217–235

    CAS  Google Scholar 

  39. Spek AL (2020) CheckCIF validation ALERTS: what they mean and how to respond. Acta Crystallogr Sect E Crystallogr Commun 76:1–11

    CAS  Google Scholar 

  40. Harrison WTA, Simpson J, Weil M (2010) Acta Crystallographica section E: structure reports online: editorial. Acta Crystallogr Sect E Struct Rep 66:1–2

    Google Scholar 

  41. Henn J, Meindl K (2015) Statistical tests against systematic errors in data sets based on the equality of residual means and variances from control samples: theory and applications. Acta Crystallogr Sect A Found Adv 71:203–211

    CAS  Google Scholar 

  42. Henn J, Meindl K (2014) About systematic errors in charge-density studies. Acta Crystallogr Sect A Found Adv 70:248–256

    CAS  Google Scholar 

  43. Meindl K, Henn J (2008) Foundations of residual-density analysis. Acta Crystallogr Sect A Found Crystallogr 64:404–418

    CAS  Google Scholar 

  44. Prince E (2004) Mathematical techniques in crystallography and materials science. Springer, Berlin

    Google Scholar 

  45. Prince E, Nicholson WL (1985) In: Wilson AJC (ed) Structure & statistics in crystallography: proceedings of the Symposium on Crystallographic Statistics, held in Hamburg, West Germany in August, 1984 in the course of the Thirteenth International Congress of the International Union of Crystallography, A. J. C. Adenine Press

    Google Scholar 

  46. Wilson CC, Morrison CA (2002) Structural and theoretical investigations of short hydrogen bonds: neutron diffraction and plane-wave DFT calculations of urea-phosphoric acid. Chem Phys Lett 362:85–89

    CAS  Google Scholar 

  47. Reilly AM et al (2016) Report on the sixth blind test of organic crystal structure prediction methods. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater. https://doi.org/10.1107/S2052520616007447

  48. Deringer VL et al (2014) Ab initio ORTEP drawings: a case study of N-based molecular crystals with different chemical nature. CrystEngComm 16:10907–10915

    CAS  Google Scholar 

  49. Van De Streek J, Neumann MA (2010) Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations. Acta Crystallogr Sect B Struct Sci 66:544–558

    Google Scholar 

  50. Kyriacou A et al (2013) Combined X-ray and neutron diffraction Rietveld refinement in iron-substituted nano-hydroxyapatite. J Mater Sci 48:3535–3545

    CAS  Google Scholar 

  51. Liu H et al (2017) Sensitivity and limitations of structures from X-ray and neutron-based diffraction analyses of transition metal oxide lithium-battery electrodes. J Electrochem Soc 164:A1802–A1811

    CAS  Google Scholar 

  52. Il Kim Y, Jeon MK (2004) Combined structural refinement of Bi4Ti3O 12 using X-ray and neutron powder diffraction data. Mater Lett 58:1889–1893

    Google Scholar 

  53. Petrícek V, Dušek M, Palatinus L (2014) Crystallographic computing system JANA2006: general features. Zeitschrift fur Krist 229:345–352

    Google Scholar 

  54. Coelho AA (2018) TOPAS and TOPAS-academic: an optimization program integrating computer algebra and crystallographic objects written in C++: an. J Appl Crystallogr 51:210–218

    CAS  Google Scholar 

  55. Toby BH, Von Dreele RB (2013) GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr 46:544–549

    CAS  Google Scholar 

  56. Grzechnik A, Meven M, Paulmann C, Friese K (2020) Combined X-ray and neutron single-crystal diffraction in diamond anvil cells. J Appl Crystallogr 53:9–14

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard I. Cooper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cooper, R.I. (2020). Recent Developments in the Refinement and Analysis of Crystal Structures. In: Mingos, D.M.P., Raithby, P.R. (eds) 21st Century Challenges in Chemical Crystallography I. Structure and Bonding, vol 185. Springer, Cham. https://doi.org/10.1007/430_2020_76

Download citation

Publish with us

Policies and ethics