Skip to main content

Efficient Downstream Processing of Renewable Alcohols Using Zeolite Adsorbents

  • Chapter
  • First Online:
New Developments in Adsorption/Separation of Small Molecules by Zeolites

Part of the book series: Structure and Bonding ((STRUCTURE,volume 184))

Abstract

Increasing energy prices, global warming, and concerns for environmental pollution has been pushing the chemical industry to look for alternatives for traditional, fossil-based chemical feedstocks. Important platform molecules are alcohols, which can be produced from renewable feedstocks via fermentation. The implementation of these fermentation processes to produce chemicals leads to important challenges regarding the downstream purification. Adsorption-based purification technologies are alternatives for traditional energy-intensive distillation processes. The well-defined pore structure of zeolites makes them ideal candidates for the removal of alcohols from these complex fermentation mixtures, which contain cells and cell debris, acids, sugars, lipids, and proteins. The following chapter covers important aspects in the adsorption mechanism of alcohols and water in (mainly) hydrophobic zeolite pores, such as cluster formation and hydrogen bonding. These effects inevitably also play a role when looking at the diffusion of alcohols inside the zeolite pores. Finally, this chapter will cover some examples of studies where hydrophobic zeolites have been used to recover bio-alcohols, such as biobutanol and bioethanol, from model solutions or fermentation broths via fixed-bed separations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sheldon RA (2014) Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem 16:950–963. https://doi.org/10.1039/c3gc41935e

    Article  CAS  Google Scholar 

  2. Climent MJ, Corma A, Iborra S (2014) Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem 16:516–547. https://doi.org/10.1039/C3GC41492B

    Article  CAS  Google Scholar 

  3. Schutyser W, Renders T, Van Den Bosch S et al (2018) Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev. https://doi.org/10.1039/c7cs00566k

  4. Koutinas AA, Vlysidis A, Pleissner D et al (2014) Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chem Soc Rev 43:2587–2627. https://doi.org/10.1039/c3cs60293a

    Article  CAS  PubMed  Google Scholar 

  5. Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38:522–550. https://doi.org/10.1016/j.pecs.2012.02.002

    Article  CAS  Google Scholar 

  6. Kushwaha D, Srivastava N, Mishra I et al (2019) Recent trends in biobutanol production. Rev Chem Eng 35:475–504. https://doi.org/10.1515/revce-2017-0041

    Article  CAS  Google Scholar 

  7. Ibrahim MF, Kim SW, Abd-Aziz S (2018) Advanced bioprocessing strategies for biobutanol production from biomass. Renew Sust Energ Rev 91:1192–1204. https://doi.org/10.1016/j.rser.2018.04.060

    Article  CAS  Google Scholar 

  8. Kujawska A, Kujawski J, Bryjak M, Kujawski W (2015) ABE fermentation products recovery methods – a review. Renew Sust Energ Rev 48:648–661. https://doi.org/10.1016/j.rser.2015.04.028

    Article  CAS  Google Scholar 

  9. Chen C, Liao JC (2016) Frontiers in microbial 1-butanol and isobutanol production. FEMS Microbiol Lett 363:1–13. https://doi.org/10.1093/femsle/fnw020

    Article  CAS  Google Scholar 

  10. Branduardi P, de Ferra F, Longo V, Porro D (2013) Microbial n-butanol production from clostridia to non-clostridial hosts. Eng Life Sci 14:16–26. https://doi.org/10.1002/elsc.201200146

    Article  CAS  Google Scholar 

  11. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89. https://doi.org/10.1038/nature06450

    Article  CAS  PubMed  Google Scholar 

  12. Mohd Azhar SH, Abdulla R, Jambo SA et al (2017) Yeasts in sustainable bioethanol production: a review. Biochem Biophys Rep 10:52–61. https://doi.org/10.1016/j.bbrep.2017.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ahn JH, Jang YS, Lee SY (2016) Production of succinic acid by metabolically engineered microorganisms. Curr Opin Biotechnol 42:54–66. https://doi.org/10.1016/j.copbio.2016.02.034

    Article  CAS  PubMed  Google Scholar 

  14. De Roos J, De Vuyst L (2018) Acetic acid bacteria in fermented foods and beverages. Curr Opin Biotechnol 49:115–119. https://doi.org/10.1016/j.copbio.2017.08.007

    Article  CAS  PubMed  Google Scholar 

  15. Juturu V, Wu JC (2016) Microbial production of lactic acid: the latest development. Crit Rev Biotechnol 36:967–977. https://doi.org/10.3109/07388551.2015.1066305

    Article  CAS  PubMed  Google Scholar 

  16. Cañete-Rodríguez AM, Santos-Dueñas IM, Jiménez-Hornero JE et al (2016) Gluconic acid: properties, production methods and applications—an excellent opportunity for agro-industrial by-products and waste bio-valorization. Process Biochem 51:1891–1903. https://doi.org/10.1016/j.procbio.2016.08.028

    Article  CAS  Google Scholar 

  17. Whited GM, Feher FJ, Benko DA et al (2010) Development of a gas-phase bioprocess for isoprene-monomer production using metabolic pathway engineering. Ind Biotechnol 6:152–163. https://doi.org/10.1089/ind.2010.6.152

    Article  CAS  Google Scholar 

  18. Van Leeuwen BNM, Van Der Wulp AM, Duijnstee I et al (2012) Fermentative production of isobutene. Appl Microbiol Biotechnol 93:1377–1387. https://doi.org/10.1007/s00253-011-3853-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Garg SK, Jain A (1995) Fermentative production of 2,3-butanediol: a review. Bioresour Technol 51:103–109. https://doi.org/10.1016/0960-8524(94)00136-O

    Article  CAS  Google Scholar 

  20. Biebl H, Menzel K, Zeng AP, Deckwer WD (1999) Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol 52:289–297

    Article  CAS  Google Scholar 

  21. Maiorella B, Wilke CR, Blanch HW (1981) Alcohol production and recovery. pp 43–92

    Google Scholar 

  22. Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484–524

    Article  CAS  Google Scholar 

  23. Soccol CR, de Vandenberghe LPS, Medeiros ABP et al (2010) Bioethanol from lignocelluloses: status and perspectives in Brazil. Bioresour Technol 101:4820–4825. https://doi.org/10.1016/j.biortech.2009.11.067

    Article  CAS  PubMed  Google Scholar 

  24. Amorim HV, Lopes ML, de Castro Oliveira JV et al (2011) Scientific challenges of bioethanol production in Brazil. Appl Microbiol Biotechnol 91:1267–1275. https://doi.org/10.1007/s00253-011-3437-6

    Article  CAS  PubMed  Google Scholar 

  25. Takahara I, Saito M, Inaba M, Murata K (2005) Dehydration of ethanol into ethylene over solid acid catalysts. Catal Lett 105:249–252. https://doi.org/10.1007/s10562-005-8698-1

    Article  CAS  Google Scholar 

  26. Mao RLV, Nguyen TM, McLaughlin GP (1989) The bioethanol-to-ethylene (B.E.T.E.) process. Appl Catal 48:265–277. https://doi.org/10.1016/S0166-9834(00)82798-0

    Article  Google Scholar 

  27. Mascal M (2012) Chemicals from biobutanol: technologies and markets. Biofuels Bioprod Biorefin 6:483–493. https://doi.org/10.1002/bbb.1328

    Article  CAS  Google Scholar 

  28. Chiao JS, Sun ZH (2007) History of the acetone-butanol-ethanol fermentation industry in China: development of continuous production technology. J Mol Microbiol Biotechnol 13:12–14. https://doi.org/10.1159/000103592

    Article  CAS  PubMed  Google Scholar 

  29. Peters MW, Taylor JD, Jenni MM et al (2011) Integrated process to selectively convert renewable isobutanol to p-xylene. US Patent 2011/0087000 A1

    Google Scholar 

  30. Baeyens J, Kang Q, Appels L et al (2015) Challenges and opportunities in improving the production of bio-ethanol. Prog Energy Combust Sci 47:60–88. https://doi.org/10.1016/j.pecs.2014.10.003

    Article  Google Scholar 

  31. Abdehagh N, Sharif A, Tezel H et al (2014) Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption. Eng Life Sci 27:215–222. https://doi.org/10.1007/s00449-005-0402-8

    Article  CAS  Google Scholar 

  32. Matsumura M, Kataoka H, Sueki M, Araki K (1988) Energy saving effect of pervaporation using oleyl alcohol liquid membrane in butanol purification. Bioprocess Eng 3:93–100. https://doi.org/10.1007/BF00369334

    Article  CAS  Google Scholar 

  33. Oudshoorn A, Van Der Wielen LAM, Straathof AJJ (2009) Assessment of options for selective 1-butanol recovery from aqueous solution. Ind Eng Chem Res 48:7325–7336. https://doi.org/10.1021/ie900537w

    Article  CAS  Google Scholar 

  34. Adhami L, Griggs B, Himebrook P, Taconi K (2009) Liquid–liquid extraction of butanol from dilute aqueous solutions using soybean-derived biodiesel. J Am Oil Chem Soc 86:1123–1128. https://doi.org/10.1007/s11746-009-1447-7

    Article  CAS  Google Scholar 

  35. Solana M, Qureshi N, Bertucco A, Eller F (2016) Recovery of butanol by counter-current carbon dioxide fractionation with its potential application to butanol fermentation. Materials (Basel) 9:530. https://doi.org/10.3390/ma9070530

    Article  CAS  Google Scholar 

  36. Kurkijärvi AJ, Lehtonen J (2014) Dual extraction process for the utilization of an acetone-butanol-ethanol mixture in gasoline. Ind Eng Chem Res 53:12379–12386. https://doi.org/10.1021/ie500131x

    Article  CAS  Google Scholar 

  37. Abdehagh N (2016) Improvements in biobutanol production : separation and recovery by adsorption. PhD thesis, University of Ottawa. https://doi.org/10.20381/ruor-5344

  38. Ezeji TC, Qureshi N, Blaschek HP (2004) Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl Microbiol Biotechnol 63:653–658. https://doi.org/10.1007/s00253-003-1400-x

    Article  CAS  PubMed  Google Scholar 

  39. Cai D, Chen H, Chen C et al (2016) Gas stripping-pervaporation hybrid process for energy-saving product recovery from acetone-butanol-ethanol (ABE) fermentation broth. Chem Eng J 287:1–10. https://doi.org/10.1016/j.cej.2015.11.024

    Article  CAS  Google Scholar 

  40. Groot WJ, van der Lans RGJM, Luyben KCAM (1989) Batch and continuous butanol fermentations with free cells: integration with product recovery by gas-stripping. Appl Microbiol Biotechnol 32:305–308. https://doi.org/10.1007/BF00184979

    Article  CAS  Google Scholar 

  41. Van Hecke W, Vandezande P, Dubreuil M et al (2016) Biobutanol production from C5/C6 carbohydrates integrated with pervaporation: experimental results and conceptual plant design. J Ind Microbiol Biotechnol 43:25–36. https://doi.org/10.1007/s10295-015-1717-3

    Article  CAS  PubMed  Google Scholar 

  42. Van Hecke W, De Wever H (2017) High-flux POMS organophilic pervaporation for ABE recovery applied in fed-batch and continuous set-ups. J Membr Sci 540:321–332. https://doi.org/10.1016/j.memsci.2017.06.058

    Article  CAS  Google Scholar 

  43. Van Hecke W, Hofmann T, De Wever H (2013) Pervaporative recovery of ABE during continuous cultivation: enhancement of performance. Bioresour Technol 129:421–429. https://doi.org/10.1016/j.biortech.2012.11.072

    Article  CAS  PubMed  Google Scholar 

  44. Van Hecke W, Vandezande P, Claes S et al (2012) Integrated bioprocess for long-term continuous cultivation of clostridium acetobutylicum coupled to pervaporation with PDMS composite membranes. Bioresour Technol 111:368–377. https://doi.org/10.1016/j.biortech.2012.02.043

    Article  CAS  PubMed  Google Scholar 

  45. Thongsukmak A, Sirkar KK (2007) Pervaporation membranes highly selective for solvents present in fermentation broths. J Membr Sci 302:45–58. https://doi.org/10.1016/j.memsci.2007.06.013

    Article  CAS  Google Scholar 

  46. Negishi H, Sakaki K, Ikegami T (2010) Silicalite pervaporation membrane exhibiting a separation factor of over 400 for butanol. Chem Lett 39:1312–1314. https://doi.org/10.1246/cl.2010.1312

    Article  CAS  Google Scholar 

  47. Abdehagh N, Tezel FH, Thibault J (2013) Adsorbent screening for biobutanol separation by adsorption: kinetics, isotherms and competitive effect of other compounds. Adsorption 19:1263–1272. https://doi.org/10.1007/s10450-013-9566-8

    Article  CAS  Google Scholar 

  48. Faisal A, Zhou M, Hedlund J, Grahn M (2016) Recovery of butanol from model ABE fermentation broths using MFI adsorbent: a comparison between traditional beads and a structured adsorbent in the form of a film. Adsorption 22:205–214. https://doi.org/10.1007/s10450-016-9759-z

    Article  CAS  Google Scholar 

  49. Lin X, Wu J, Fan J et al (2012) Adsorption of butanol from aqueous solution onto a new type of macroporous adsorption resin: studies of adsorption isotherms and kinetics simulation. J Chem Technol Biotechnol 87:924–931. https://doi.org/10.1002/jctb.3701

    Article  CAS  Google Scholar 

  50. Lin X, Wu J, Jin X et al (2012) Selective separation of biobutanol from acetone-butanol-ethanol fermentation broth by means of sorption methodology based on a novel macroporous resin. Biotechnol Prog 28:962–972. https://doi.org/10.1002/btpr.1553

    Article  CAS  PubMed  Google Scholar 

  51. Lin X, Xiong L, Qi G et al (2015) Using butanol fermentation wastewater for biobutanol production after removal of inhibitory compounds by micro/mesoporous hyper-cross-linked polymeric adsorbent. ACS Sustain Chem Eng 3:702–709. https://doi.org/10.1021/acssuschemeng.5b00010

    Article  CAS  Google Scholar 

  52. Oudshoorn A, van der Wielen LAM, Straathof AJJ (2009) Adsorption equilibria of bio-based butanol solutions using zeolite. Biochem Eng J 48:99–103. https://doi.org/10.1016/j.bej.2009.08.014

    Article  CAS  Google Scholar 

  53. Qureshi N, Hughes S, Maddox IS, Cotta MA (2005) Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption. Bioprocess Biosyst Eng 27:215–222. https://doi.org/10.1007/s00449-005-0402-8

    Article  CAS  PubMed  Google Scholar 

  54. Abdehagh N, Tezel FH, Thibault J (2014) Separation techniques in butanol production: challenges and developments. Biomass Bioenergy 60:222–246. https://doi.org/10.1016/j.biombioe.2013.10.003

    Article  CAS  Google Scholar 

  55. Abdehagh N, Gurnani P, Tezel FH, Thibault J (2015) Adsorptive separation and recovery of biobutanol from ABE model solutions. Adsorption 21:185–194. https://doi.org/10.1007/s10450-015-9661-0

    Article  CAS  Google Scholar 

  56. Cousin Saint Remi J, Remy T, Vanhunskerken V et al (2011) Biobutanol separation with the metal-organic framework ZIF-8. ChemSusChem 4:1074–1077. https://doi.org/10.1002/cssc.201100261

    Article  CAS  Google Scholar 

  57. Cousin Saint Remi J, Baron G, Denayer J (2012) Adsorptive separations for the recovery and purification of biobutanol. Adsorption 18:367–373. https://doi.org/10.1007/s10450-012-9415-1

    Article  CAS  Google Scholar 

  58. Cousin-Saint-Remi J, Finoulst A-L, Jabbour C et al (2019) Selection of binder recipes for the formulation of MOFs into resistant pellets for molecular separations by fixed-bed adsorption. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2019.02.009

  59. Van der Perre S, Gelin P, Claessens B et al (2017) Intensified biobutanol recovery by using zeolites with complementary selectivity. ChemSusChem 10:2968–2977. https://doi.org/10.1002/cssc.201700667

    Article  CAS  PubMed  Google Scholar 

  60. Cousin-Saint-Remi J, Van Der Perre S, Segato T et al (2019) Highly robust MOF polymeric beads with controllable size for molecular separations. ACS Appl Mater Interfaces 11:13694–13703. https://doi.org/10.1021/acsami.9b00521

    Article  CAS  PubMed  Google Scholar 

  61. Faisal A, Zarebska A, Saremi P et al (2014) MFI zeolite as adsorbent for selective recovery of hydrocarbons from ABE fermentation broths. Adsorption 20:465–470. https://doi.org/10.1007/s10450-013-9576-6

    Article  CAS  Google Scholar 

  62. Li SY, Chiang CJ, Tseng IT et al (2016) Bioreactors and in situ product recovery techniques for acetone-butanol-ethanol fermentation. FEMS Microbiol Lett 363:1–7. https://doi.org/10.1093/femsle/fnw107

    Article  CAS  Google Scholar 

  63. Qureshi N, Blaschek H (2001) Evaluation of recent advances in butanol fermentation, upstream, and downstream processing. Bioprocess Biosyst Eng 24:219–226. https://doi.org/10.1007/s004490100257

    Article  CAS  Google Scholar 

  64. Roffler S, Blanch HW, Wilke CR (1987) Extractive fermentation of acetone and butanol: process design and economic evaluation. Biotechnol Prog 3:131–140. https://doi.org/10.1002/btpr.5420030304

    Article  CAS  Google Scholar 

  65. Sánchez-Ramírez E, Quiroz-Ramírez JJ, Segovia-Hernández JG et al (2015) Process alternatives for biobutanol purification: design and optimization. Ind Eng Chem Res 54:351–358. https://doi.org/10.1021/ie503975g

    Article  CAS  Google Scholar 

  66. Patraşcu I, Bîldea CS, Kiss AA (2017) Eco-efficient butanol separation in the ABE fermentation process. Sep Purif Technol 177:49–61. https://doi.org/10.1016/j.seppur.2016.12.008

    Article  CAS  Google Scholar 

  67. Hahn H-D, Dämbkes G, Rupprich N et al (2013) Butanols. Ullmann’s Encycl Ind Chem. https://doi.org/10.1002/14356007.a04_463.pub3

  68. Abdehagh N, Dai B, Thibault J, Handan Tezel F (2017) Biobutanol separation from ABE model solutions and fermentation broths using a combined adsorption-gas stripping process. J Chem Technol Biotechnol 92:245–224. https://doi.org/10.1002/jctb.4977

    Article  CAS  Google Scholar 

  69. Levario TJ, Dai M, Yuan W et al (2012) Rapid adsorption of alcohol biofuels by high surface area mesoporous carbons. Microporous Mesoporous Mater 148:107–114. https://doi.org/10.1016/j.micromeso.2011.08.001

    Article  CAS  Google Scholar 

  70. Abdehagh N, Tezel FH, Thibault J (2016) Multicomponent adsorption modeling: isotherms for ABE model solutions using activated carbon F-400. Adsorption 22:357–370. https://doi.org/10.1007/s10450-016-9784-y

    Article  CAS  Google Scholar 

  71. Xue C, Liu F, Xu M et al (2016) Butanol production in acetone-butanol-ethanol fermentation with in situ product recovery by adsorption. Bioresour Technol 219:158–168. https://doi.org/10.1016/j.biortech.2016.07.111

    Article  CAS  PubMed  Google Scholar 

  72. Groot WJ, Luyben KCAM (1986) In situ product recovery by adsorption in the butanol/isopropanol batch fermentation. Appl Microbiol Biotechnol 25:29–31. https://doi.org/10.1007/bf00252508

    Article  CAS  Google Scholar 

  73. Lee SH, Yun EJ, Kim J et al (2016) Biomass, strain engineering, and fermentation processes for butanol production by solventogenic clostridia. Appl Microbiol Biotechnol 100:8255–8271. https://doi.org/10.1007/s00253-016-7760-9

    Article  CAS  PubMed  Google Scholar 

  74. Lin X, Li R, Wen Q et al (2013) Experimental and modeling studies on the sorption breakthrough behaviors of butanol from aqueous solution in a fixed-bed of KA-I resin. Biotechnol Bioprocess Eng 18:223–233. https://doi.org/10.1007/s12257-012-0549-5

    Article  CAS  Google Scholar 

  75. Liu D, Chen Y, Ding F-Y et al (2014) Biobutanol production in a clostridium acetobutylicum biofilm reactor integrated with simultaneous product recovery by adsorption. Biotechnol Biofuels 7:5. https://doi.org/10.1186/1754-6834-7-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nielsen DR, Prather KJ (2009) In situ product recovery of n-butanol using polymeric resins. Biotechnol Bioeng 102:811–821. https://doi.org/10.1002/bit.22109

    Article  CAS  PubMed  Google Scholar 

  77. Nielsen L, Larsson M, Holst O, Mattiasson B (1988) Adsorbents for extractive bioconversion applied to the acetone-butanol fermentation. Appl Microbiol Biotechnol 28:335–339. https://doi.org/10.1007/BF00268191

    Article  CAS  Google Scholar 

  78. Raganati F, Procentese A, Olivieri G et al (2018) Bio-butanol separation by adsorption on various materials: assessment of isotherms and effects of other ABE-fermentation compounds. Sep Purif Technol 191:328–339. https://doi.org/10.1016/j.seppur.2017.09.059

    Article  CAS  Google Scholar 

  79. Wu J, Zhuang W, Ying H et al (2015) Acetone-butanol-ethanol competitive sorption simulation from single, binary, and ternary systems in a fixed-bed of KA-I resin. Biotechnol Prog 31:124–134. https://doi.org/10.1002/btpr.2019

    Article  CAS  PubMed  Google Scholar 

  80. Yang X, Tsai GJ, Tsao GT (1994) Enhancement of in situ adsorption on the acetone-butanol fermentation by clostridium acetobutylicum. Sep Technol 4:81–92. https://doi.org/10.1016/0956-9618(94)80009-X

    Article  CAS  Google Scholar 

  81. Ennis BM, Qureshi N, Maddox IS (1987) In-line toxic product removal during solvent production by continuous fermentation using immobilized clostridium acetobutylicum. Enzym Microb Technol 9:672–675. https://doi.org/10.1016/0141-0229(87)90126-8

    Article  CAS  Google Scholar 

  82. Eom MH, Kim W, Lee J et al (2013) Modeling of a biobutanol adsorption process for designing an extractive fermentor. Ind Eng Chem Res 52:603–611. https://doi.org/10.1021/ie301249z

    Article  CAS  Google Scholar 

  83. Gusler GM, Browne TE, Cohen Y (1993) Sorption of organics from aqueous solution onto polymeric resins. Ind Eng Chem Res 32:2727–2735. https://doi.org/10.1021/ie00023a040

    Article  CAS  Google Scholar 

  84. Jiao P, Wu J, Ji Y et al (2015) Desorption of 1-butanol from polymeric resin: experimental studies and mathematical modeling. RSC Adv 5:105464–105474. https://doi.org/10.1039/C5RA21986H

    Article  CAS  Google Scholar 

  85. Jiao P, Wu J, Zhou J et al (2015) Mathematical modeling of the competitive sorption dynamics of acetone-butanol-ethanol on KA-I resin in a fixed-bed column. Adsorption 21:165–176. https://doi.org/10.1007/s10450-015-9659-7

    Article  CAS  Google Scholar 

  86. Bhattacharyya S, Jayachandrababu KC, Chiang Y et al (2017) Butanol separation from humid CO 2 -containing multicomponent vapor mixtures by zeolitic imidazolate frameworks. ACS Sustain Chem Eng 5:9467–9476. https://doi.org/10.1021/acssuschemeng.7b02604

    Article  CAS  Google Scholar 

  87. Martin-Calvo A, Van der Perre S, Claessens B et al (2018) Unravelling the influence of carbon dioxide on the adsorptive recovery of butanol from fermentation broth using ITQ-29 and ZIF-8. Phys Chem Chem Phys 20:9957–9964. https://doi.org/10.1039/C8CP01034J

    Article  CAS  PubMed  Google Scholar 

  88. Raganati F, Procentese A, Olivieri G et al (2018) Separation and purification technology bio-butanol separation by adsorption on various materials: assessment of isotherms and effects of other ABE-fermentation compounds. Sep Purif Technol 191:328–339. https://doi.org/10.1016/j.seppur.2017.09.059

    Article  CAS  Google Scholar 

  89. Cousin-Saint-Remi J, Van der Perre S, Segato T et al (2019) Highly robust MOF polymeric beads with a controllable size for molecular separations. ACS Appl Mater Interfaces 11:13694–13703. https://doi.org/10.1021/acsami.9b00521

    Article  CAS  PubMed  Google Scholar 

  90. Lefevere J, Claessens B, Mullens S et al (2019) 3D-printed zeolitic imidazolate framework structures for adsorptive separations. ACS Appl Nano Mater 2:4991–4999. https://doi.org/10.1021/acsanm.9b00934

    Article  CAS  Google Scholar 

  91. Nalaparaju A, Zhao XS, Jiang JW (2010) Molecular understanding for the adsorption of water and alcohols in hydrophilic and hydrophobic zeolitic metal− organic frameworks. J Phys Chem C 114:11542–11550. https://doi.org/10.1021/jp1033273

    Article  CAS  Google Scholar 

  92. Gee JA, Chung J, Nair S, Sholl DS (2013) Adsorption and diffusion of small alcohols in zeolitic imidazolate frameworks ZIF-8 and ZIF-90. J Phys Chem C 117:3169–3176. https://doi.org/10.1021/jp312489w

    Article  CAS  Google Scholar 

  93. Zhang K, Lively RP, Zhang C et al (2013) Exploring the framework hydrophobicity and flexibility of zif-8: from biofuel recovery to hydrocarbon separations. J Phys Chem Lett 4:3618–3622. https://doi.org/10.1021/jz402019d

    Article  CAS  Google Scholar 

  94. Zhang K, Lively RP, Dose ME et al (2013) Alcohol and water adsorption in zeolitic imidazolate frameworks. Chem Commun 49:3245–3247. https://doi.org/10.1039/c3cc39116g

    Article  CAS  Google Scholar 

  95. Van Der Perre S, Van Assche T, Bozbiyik B et al (2014) Adsorptive characterization of the ZIF-68 metal-organic framework: a complex structure with amphiphilic properties. Langmuir 30:8416–8424. https://doi.org/10.1021/la501594t

    Article  CAS  PubMed  Google Scholar 

  96. Zhang K, Nalaparaju A, Chen Y, Jiang J (2014) Biofuel purification in zeolitic imidazolate frameworks: the significant role of functional groups. Phys Chem Chem Phys 16:9643–9655. https://doi.org/10.1039/c4cp00739e

    Article  CAS  PubMed  Google Scholar 

  97. Gao C, Wu J, Shi Q et al (2017) Adsorption breakthrough behavior of 1-butanol from an ABE model solution with high-silica zeolite: comparison with zeolitic imidazolate frameworks (ZIF-8). Microporous Mesoporous Mater 243:119–129. https://doi.org/10.1016/j.micromeso.2017.02.009

    Article  CAS  Google Scholar 

  98. Castillo JM, Silvestre-Albero J, Rodriguez-Reinoso F et al (2013) Water adsorption in hydrophilic zeolites: experiment and simulation. Phys Chem Chem Phys 15:17374–17382. https://doi.org/10.1039/c3cp52910j

    Article  CAS  PubMed  Google Scholar 

  99. Calero S, Gómez-Álvarez P (2014) Effect of the confinement and presence of cations on hydrogen bonding of water in LTA-type zeolite. J Phys Chem C 118:9056–9065. https://doi.org/10.1021/jp5014847

    Article  CAS  Google Scholar 

  100. Gabruś E, Downarowicz D (2016) Anhydrous ethanol recovery from wet air in TSA systems – equilibrium and column studies. Chem Eng J 288:321–331. https://doi.org/10.1016/j.cej.2015.11.110

    Article  CAS  Google Scholar 

  101. Remy T, Cousin Saint Remi J, Singh R et al (2011) Adsorption and separation of C1 À C8 alcohols on SAPO-34. J Phys Chem C 115:8117–8125. https://doi.org/10.1021/jp111615e

    Article  CAS  Google Scholar 

  102. Miyamoto M, Iwatsuka H, Oumi Y et al (2019) Effect of core-shell structuring of chabazite zeolite with a siliceous zeolite thin layer on the separation of acetone-butanol-ethanol vapor in humid vapor conditions. Chem Eng J 363:292–299. https://doi.org/10.1016/j.cej.2019.01.106

    Article  CAS  Google Scholar 

  103. Maddox IS (1982) Use of silicalite for the adsorption of n-butanol from fermentation liquors. Biotechnol Lett 4:759–760. https://doi.org/10.1007/BF00134673

    Article  CAS  Google Scholar 

  104. Milestone NB, Bibby DM (1983) Adsorption of alcohols from aqueous solution by ZSM-5. J Chem Technol Biotechnol Chem Technol 34:73–79. https://doi.org/10.1002/jctb.5040340205

    Article  Google Scholar 

  105. Ake TR (1984) Recovery of ethanol from low concentration solution by adsorption with Silicalite. Master thesis, Iowa State University

    Google Scholar 

  106. Haegh GS (1985) Zeolites as adsorbents for alcohols from aqueous solutions. Stud Surf Sci Catal 24:605–609. https://doi.org/10.1016/S0167-2991(08)65332-X

    Article  CAS  Google Scholar 

  107. Franks PA (1986) Adsorption of ethanol water mixtures on high silica zeolites. PhD thesis, Imperial College London

    Google Scholar 

  108. Einicke W-D, Messow U, Schöllner R (1988) Liquid-phase adsorption of n-alcohol/water mixtures on zeolite NaZSM-5. J Colloid Interface Sci 122:280–282. https://doi.org/10.1016/0021-9797(88)90310-4

    Article  CAS  Google Scholar 

  109. Sowerby B, Crittenden BD (1988) Vapour phase separation of alcohol-water mixtures by adsorption onto silicalite. Gas Sep Purif 2:177–183. https://doi.org/10.1016/0950-4214(88)80003-3

    Article  Google Scholar 

  110. Dubinin MM, Rakhmatkariev GU, Isirikyan AA (1989) Heats of adsorption of methanol and ethanol on high-silicon ZSM-5 zeolite. Bull Acad Sci USSR Div Chem Sci 38:2419–2421. https://doi.org/10.1007/BF01168102

    Article  Google Scholar 

  111. Dubinin MM, Rakhmatkariev GU, Isirikyan AA (1989) Differential heats of adsorption and adsorption isotherms of alcohols on silicalite. Bull Acad Sci USSR Div Chem Sci 38:1950–1953. https://doi.org/10.1007/BF00957798

    Article  Google Scholar 

  112. Einicke W, Heuchel M, Szombathely MV et al (1989) Liquid-phase adsorption of binary ethanol–water mixtures on NaZSM-5 zeolites with different silicon/aluminium ratios. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 85:4277–4285. https://doi.org/10.1039/f19898504277

    Article  CAS  Google Scholar 

  113. Einicke W, Messow U, Heuchel M et al (1991) Liquid-phase adsorption of ethanol–water mixtures on NaZSM-5 zeolite with inorganic and organic binders. J Chem Soc Faraday Trans 87:1283–1286. https://doi.org/10.1039/FT9918701283

    Article  CAS  Google Scholar 

  114. Holtzapple MT, Flores KL, Brown RF (1994) Recovery of volatile solutes from dilute aqueous solutions using immobilized silicalite. Sep Technol 4:230–238. https://doi.org/10.1016/0956-9618(94)80026-X

    Article  CAS  Google Scholar 

  115. Farhadpour FA, Bono A (1996) Sorptive separation of ethanol-water mixtures with a bi-dispersed hydrophobic molecular sieve, silicalite: determination of the controlling mass transfer mechanism. Chem Eng Process Process Intensif 35:141–155. https://doi.org/10.1016/0255-2701(95)04138-9

    Article  CAS  Google Scholar 

  116. Farhadpour FA, Bono A (1988) Adsorption from solution of nonelectrolytes by microporous crystalline solids: ethanol-water/silicalite system. J Colloid Interface Sci 124:209–227. https://doi.org/10.1016/0021-9797(88)90341-4

    Article  CAS  Google Scholar 

  117. Oumi Y, Miyajima A, Miyamoto J, Sano T (2002) Binary mixture adsorption of water and ethanol on silicalite. Stud Surf Sci Catal:1595–1602. https://doi.org/10.1016/s0167-2991(02)80329-9

  118. Bowen TC, Vane LM (2006) Ethanol, acetic acid, and water adsorption from binary and ternary liquid mixtures on high-silica zeolites. Langmuir 22:3721–3727. https://doi.org/10.1021/la052538u

    Article  CAS  PubMed  Google Scholar 

  119. Saravanan V, Waijers DA, Ziari M, Noordermeer MA (2010) Recovery of 1-butanol from aqueous solutions using zeolite ZSM-5 with a high Si/Al ratio; suitability of a column process for industrial applications. Biochem Eng J 49:33–39. https://doi.org/10.1016/j.bej.2009.11.008

    Article  CAS  Google Scholar 

  120. Xiong R, Sandler SI, Vlachos DG (2011) Alcohol adsorption onto silicalite from aqueous solution. J Phys Chem C 115:18659–18669. https://doi.org/10.1021/jp205312k

    Article  CAS  Google Scholar 

  121. Oudshoorn A, van der Wielen LAM, Straathof AJJ (2012) Desorption of butanol from zeolite material. Biochem Eng J 67:167–172. https://doi.org/10.1016/j.bej.2012.06.014

    Article  CAS  Google Scholar 

  122. Zhang K, Lively RP, Noel JD et al (2012) Adsorption of water and ethanol in MFI-type zeolites. Langmuir 28:8664–8673. https://doi.org/10.1021/la301122h

    Article  CAS  PubMed  Google Scholar 

  123. Bai P, Tsapatsis M, Siepmann JI (2012) Multicomponent adsorption of alcohols onto silicalite-1 from aqueous solution: isotherms, structural analysis, and assessment of ideal adsorbed solution theory. Langmuir 28:15566–15576. https://doi.org/10.1021/la303247c

    Article  CAS  PubMed  Google Scholar 

  124. Águeda VI, Delgado JA, Uguina MA et al (2013) Column dynamics of an adsorption-drying-desorption process for butanol recovery from aqueous solutions with silicalite pellets. Sep Purif Technol 104:307–321. https://doi.org/10.1016/j.seppur.2012.11.036

    Article  CAS  Google Scholar 

  125. DeJaco RF, Bai P, Tsapatsis M, Siepmann JI (2016) Adsorptive separation of 1-butanol from aqueous solutions using MFI- and FER-type zeolite frameworks: a Monte Carlo study. Langmuir 32:2093–2101. https://doi.org/10.1021/acs.langmuir.5b04483

    Article  CAS  PubMed  Google Scholar 

  126. Faisal A, Zhou M, Hedlund J, Grahn M (2018) Zeolite MFI adsorbent for recovery of butanol from ABE fermentation broths produced from an inexpensive black liquor-derived hydrolyzate. Biomass Conv Bioref 8:679–687. https://doi.org/10.1007/s13399-018-0315-9

    Article  Google Scholar 

  127. Rutkai G, Csányi É, Kristóf T (2008) Prediction of adsorption and separation of water–alcohol mixtures with zeolite NaA. Microporous Mesoporous Mater 114:455–464. https://doi.org/10.1016/j.micromeso.2008.01.044

    Article  CAS  Google Scholar 

  128. Krishna R, Van Baten JM (2010) Hydrogen bonding effects in adsorption of water-alcohol mixtures in zeolites and the consequences for the characteristics of the Maxwell-Stefan diffusivities. Langmuir 26:10854–10867. https://doi.org/10.1021/la100737c

    Article  CAS  PubMed  Google Scholar 

  129. Yamamoto T, Kim YH, Kim BC et al (2012) Adsorption characteristics of zeolites for dehydration of ethanol: evaluation of diffusivity of water in porous structure. Chem Eng J 181–182:443–448. https://doi.org/10.1016/j.cej.2011.11.110

    Article  CAS  Google Scholar 

  130. Simo M, Sivashanmugam S, Brown CJ, Hlavacek V (2009) Adsorption/desorption of water and ethanol on 3A zeolite in near-adiabatic fixed bed. Ind Eng Chem Res 48:9247–9260. https://doi.org/10.1021/ie900446v

    Article  CAS  Google Scholar 

  131. Bedard R, Liu C (2018) Recent advances in zeolitic membranes. Annu Rev Mater Res 48:83–110. https://doi.org/10.1146/annurev-matsci-070317-124605

    Article  CAS  Google Scholar 

  132. Jyothi MS, Reddy KR, Soontarapa K et al (2019) Membranes for dehydration of alcohols via pervaporation. J Environ Manag 242:415–429. https://doi.org/10.1016/j.jenvman.2019.04.043

    Article  CAS  Google Scholar 

  133. Khalid A, Aslam M, Qyyum MA et al (2019) Membrane separation processes for dehydration of bioethanol from fermentation broths: recent developments, challenges, and prospects. Renew Sust Energ Rev 105:427–443. https://doi.org/10.1016/j.rser.2019.02.002

    Article  CAS  Google Scholar 

  134. Couck S, Lefevere J, Mullens S et al (2017) CO 2, CH 4 and N 2 separation with a 3DFD-printed ZSM-5 monolith. Chem Eng J 308:719–726. https://doi.org/10.1016/j.cej.2016.09.046

    Article  CAS  Google Scholar 

  135. Kokotailo GT, Lawton SL, Olson DH, Meier WM (1978) Structure of synthetic zeolite ZSM-5. Nature 272:437–438. https://doi.org/10.1038/272437a0

    Article  CAS  Google Scholar 

  136. Farzaneh A, Zhou M, Potapova E et al (2015) Adsorption of water and butanol in silicalite-1 film studied with in situ attenuated total reflectance-Fourier transform infrared spectroscopy. Langmuir 31:4887–4894. https://doi.org/10.1021/acs.langmuir.5b00489

    Article  CAS  PubMed  Google Scholar 

  137. Flanigen EM, Bennett JM, Grose RW et al (1978) Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature 271:512–516. https://doi.org/10.1038/271512a0

    Article  CAS  Google Scholar 

  138. Milestone NB, Bibby DM (1981) Concentration of alcohols by adsorption on silicalite. J Chem Technol Biotechnol 31:732–736. https://doi.org/10.1002/jctb.503310198

    Article  CAS  Google Scholar 

  139. Olson DH, Kokotailo GT, Lawton SL, Meier WM (1981) Crystal structure and structure-related properties of ZSM-5. J Phys Chem 85:2238–2243. https://doi.org/10.1021/j150615a020

    Article  CAS  Google Scholar 

  140. Baerlocher C, McCusker LB. Database of zeolite structures. http://www.iza-structure.org/databases/

  141. Kooyman PJ, van der Waal P, van Bekkum H (1997) Acid dealumination of ZSM-5. Zeolites 18:50–53. https://doi.org/10.1016/S0144-2449(96)00106-6

    Article  CAS  Google Scholar 

  142. Thamm H (1987) Adsorption site heterogeneity in silicalite: a calorimetric study. Zeolites 7:341–346. https://doi.org/10.1016/0144-2449(87)90037-6

    Article  CAS  Google Scholar 

  143. Farhadpour FA, Bono A (1996) Sorptive separation of ethanol-water mixtures with a bi-dispersed hydrophobic molecular sieve, silicalite: measurement and theoretical analysis of column dynamics. Chem Eng Process Process Intensif 35:157–168. https://doi.org/10.1016/0255-2701(95)04139-7

    Article  CAS  Google Scholar 

  144. Hunger B, Matysik S, Heuchel M, Einicke W (1997) Adsorption of methanol on ZSM-5 zeolites. Langmuir 13:6249–6254. https://doi.org/10.1021/la970615i

    Article  CAS  Google Scholar 

  145. Cekova B, Kocev D, Kolcakovska E, Stojanova D (2006) Zeolites as alcohol adsorbents from aqueous solutions. Acta Period Technol 192:83–87. https://doi.org/10.2298/APT0637083C

    Article  Google Scholar 

  146. Costa RJ, Castro EAS, Politi JRS et al (2019) Methanol, ethanol, propanol, and butanol adsorption on H-ZSM-5 zeolite: an ONIOM study. J Mol Model 25:34. https://doi.org/10.1007/s00894-018-3894-2

    Article  CAS  PubMed  Google Scholar 

  147. Shubin AA, Catlow CRA, Thomas JM, Zamaraev KI (2006) A computational study of the adsorption of the isomers of butanol on silicalite and H-ZSM-5. Proc R Soc A Math Phys Eng Sci 446:411–427. https://doi.org/10.1098/rspa.1994.0112

    Article  Google Scholar 

  148. Boddenberg B, Rakhmatkariev GU, Greth R (2002) Statistical thermodynamics of methanol and ethanol adsorption in zeolite NaZSM5. J Phys Chem B 101:1634–1640. https://doi.org/10.1021/jp963111m

    Article  Google Scholar 

  149. Ramachandran CE, Chempath S, Broadbelt LJ, Snurr RQ (2006) Water adsorption in hydrophobic nanopores: Monte Carlo simulations of water in silicalite. Microporous Mesoporous Mater 90:293–298. https://doi.org/10.1016/j.micromeso.2005.10.021

    Article  CAS  Google Scholar 

  150. Trzpit M, Soulard M, Patarin J et al (2007) The effect of local defects on water adsorption in silicalite-1 zeolite: a joint experimental and molecular simulation study. Langmuir 23:10131–10139. https://doi.org/10.1021/la7011205

    Article  CAS  PubMed  Google Scholar 

  151. Castillo JM, Dubbeldam D, Vlugt TJH et al (2009) Evaluation of various water models for simulation of adsorption in hydrophobic zeolites. Mol Simul 35:1067–1076. https://doi.org/10.1080/08927020902865923

    Article  CAS  Google Scholar 

  152. Özgür Yazaydin A, Thompson RW (2009) Molecular simulation of water adsorption in silicalite: effect of silanol groups and different cations. Microporous Mesoporous Mater 123:169–176. https://doi.org/10.1016/j.micromeso.2009.03.045

    Article  CAS  Google Scholar 

  153. Ari MU, Ahunbay MG, Yurtsever M, Erdem-Şenatalar A (2009) Molecular dynamics simulation of water diffusion in MFI-type zeolites. J Phys Chem B 113:8073–8079. https://doi.org/10.1021/jp901986s

    Article  CAS  PubMed  Google Scholar 

  154. Alexopoulos K, Lee M-S, Liu Y et al (2016) Anharmonicity and confinement in zeolites: structure, spectroscopy, and adsorption free energy of ethanol in H-ZSM-5. J Phys Chem C 120:7172–7182. https://doi.org/10.1021/acs.jpcc.6b00923

    Article  CAS  Google Scholar 

  155. Xiong R, Sandler SI, Vlachos DG (2012) Molecular screening of alcohol and polyol adsorption onto MFI-type zeolites. Langmuir 28:4491–4499. https://doi.org/10.1021/la204710j

    Article  CAS  PubMed  Google Scholar 

  156. Gómez-Álvarez P, Noya EG, Lomba E et al (2018) Study of short-chain alcohol and alcohol–water adsorption in MEL and MFI zeolites. Langmuir 34:12739–12750. https://doi.org/10.1021/acs.langmuir.8b02326

    Article  CAS  PubMed  Google Scholar 

  157. Nguyen CM, Reyniers MF, Marin GB (2010) Theoretical study of the adsorption of C1-C4 primary alcohols in H-ZSM-5. Phys Chem Chem Phys 12:9481–9493. https://doi.org/10.1039/c000503g

    Article  CAS  PubMed  Google Scholar 

  158. Nguyen CM, Reyniers M-F, Marin GB (2011) Theoretical study of the adsorption of the butanol isomers in H-ZSM-5. J Phys Chem C 115:8658–8669. https://doi.org/10.1021/jp111698b

    Article  CAS  Google Scholar 

  159. Denayer JF, Souverijns W, Jacobs PA et al (1998) High-temperature low-pressure adsorption of branched C5-C8 alkanes on zeolite beta, ZSM-5, ZSM-22, zeolite Y, and mordenite. J Phys Chem B 102:4588–4597. https://doi.org/10.1021/jp980674k

    Article  CAS  Google Scholar 

  160. Olson DH, Haag WO, Borghard WS (2000) Use of water as a probe of zeolitic properties: interaction of water with HZSM-5. Microporous Mesoporous Mater 35–36:435–446. https://doi.org/10.1016/S1387-1811(99)00240-1

    Article  Google Scholar 

  161. Desbiens N, Boutin A, Demachy I (2005) Water condensation in hydrophobic silicalite-1 zeolite: a molecular simulation study. J Phys Chem B 109:24071–24076. https://doi.org/10.1021/jp054168o

    Article  CAS  PubMed  Google Scholar 

  162. Desbiens N, Demachy I, Fuchs AH et al (2005) Water condensation in hydrophobic nanopores. Angew Chem Int Ed 44:5310–5313. https://doi.org/10.1002/anie.200501250

    Article  CAS  Google Scholar 

  163. Pellenq RJM, Roussel T, Puibasset J (2008) Molecular simulations of water in hydrophobic microporous solids. Adsorption 14:733–742. https://doi.org/10.1007/s10450-008-9135-8

    Article  CAS  Google Scholar 

  164. Puibasset J, Pellenq RJM (2008) Grand canonical Monte Carlo simulation study of water adsorption in silicalite at 300 K. J Phys Chem B 112:6390–6397. https://doi.org/10.1021/jp7097153

    Article  CAS  PubMed  Google Scholar 

  165. Guth JL, Kessler H (1999) Catalysis and zeolites – fundamentals and applications. In: Weitkamp J, Puppe L (eds) Catalysis and zeolites. Springer, Berlin. https://doi.org/10.1007/978-3-662-03764-5

    Chapter  Google Scholar 

  166. Guth JL, Kessler H, Higel JM, et al (1989) Zeolite synthesis in the presence of fluoride ions. In: ACS symposium series. Zeolite synthesis, vol 398. pp 176–195. https://doi.org/10.1021/bk-1989-0398.ch013

  167. Ahunbay MG (2011) Monte Carlo simulation of water adsorption in hydrophobic MFI zeolites with hydrophilic sites. Langmuir 27:4986–4993. https://doi.org/10.1021/la200685c

    Article  CAS  PubMed  Google Scholar 

  168. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption at the liquid–solid interface: thermodynamics and methodology. In: Adsorption by powders and porous solids – principles, methodology and applications. Academic Press, London, pp 117–163

    Chapter  Google Scholar 

  169. Dejaco RF, Bai P, Tsapatsis M, Siepmann JI (2016) Adsorptive separation of 1-butanol from aqueous solutions using MFI-and FER-type zeolite frameworks: a Monte Carlo study. Langmuir 32:2093–2101. https://doi.org/10.1021/acs.langmuir.5b04483

    Article  CAS  PubMed  Google Scholar 

  170. Caro J, Bülow M, Richter-Mendau J et al (1987) Nuclear magnetic resonance self-diffusion studies of methanol-water mixtures in pentasil-type zeolites. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 83:1843–1849. https://doi.org/10.1039/F19878301843

    Article  CAS  Google Scholar 

  171. Nayak VS, Moffat JB (1988) Sorption and diffusion of alcohols in heteropoly oxometalates and ZSM-5 zeolite. J Phys Chem 92:7097–7102. https://doi.org/10.1021/j100336a014

    Article  CAS  Google Scholar 

  172. Choudhary VR, Mamman AS, Nayak VS (1989) Mass transfer of liquid cumene in ZSM-5 zeolites using a novel volumetric apparatus. Ind Eng Chem Res 28:1241–1245. https://doi.org/10.1021/ie00092a019

    Article  CAS  Google Scholar 

  173. Choudhary VR, Singh AP (1986) Sorption capacity and diffusion of pure liquids in ZSM-5 type zeolites. Zeolites 6:206–208. https://doi.org/10.1016/0144-2449(86)90049-7

    Article  CAS  Google Scholar 

  174. Demontis P, Stara G, Suffritti GB (2003) Behavior of water in the hydrophobic zeolite silicalite at different temperatures. A molecular dynamics study. J Phys Chem B 107:4426–4436. https://doi.org/10.1021/jp0300849

    Article  CAS  Google Scholar 

  175. Fleys M, Thompson RW, MacDonald JC (2004) Comparison of the behavior of water in silicalite and dealuminated zeolite y at different temperatures by molecular dynamic simulations. J Phys Chem B 108:12197–12203. https://doi.org/10.1021/jp040229r

    Article  CAS  Google Scholar 

  176. Bussai C, Vasenkov S, Liu H et al (2002) On the diffusion of water in silicalite-1: MD simulations using ab initio fitted potential and PFG NMR measurements. Appl Catal A Gen 232:59–66. https://doi.org/10.1016/S0926-860X(02)00066-2

    Article  CAS  Google Scholar 

  177. Yu M, Falconer JL, Noble RD, Krishna R (2007) Modeling transient permeation of polar organic mixtures through a MFI zeolite membrane using the Maxwell-Stefan equations. J Membr Sci 293:167–173. https://doi.org/10.1016/j.memsci.2007.02.015

    Article  CAS  Google Scholar 

  178. Holtzapple MT, Brown RF (1994) Conceptual design for a process to recover volatile solutes from aqueous solutions using silicalite. Sep Technol 4:213–229. https://doi.org/10.1016/0956-9618(94)80025-1

    Article  CAS  Google Scholar 

  179. Huang HJ, Ramaswamy S, Tschirner UW, Ramarao BV (2008) A review of separation technologies in current and future biorefineries. Sep Purif Technol 62:1–21. https://doi.org/10.1016/j.seppur.2007.12.011

    Article  CAS  Google Scholar 

  180. Jost S, Biswas P, Schüring A et al (2007) Structure and self-diffusion of water molecules in chabazite: a molecular dynamics study. J Phys Chem C 111:14707–14712. https://doi.org/10.1021/jp073857s

    Article  CAS  Google Scholar 

  181. Krishna R, Van Baten JM (2011) Entropy-based separation of linear chain molecules by exploiting differences in the saturation capacities in cage-type zeolites. Sep Purif Technol 76:325–330. https://doi.org/10.1016/j.seppur.2010.10.023

    Article  CAS  Google Scholar 

  182. Daems I, Singh R, Baron G, Denayer J (2007) Length exclusion in the adsorption of chain molecules on chabazite type zeolites. Chem Commun (Camb):1316–1318. https://doi.org/10.1039/b615661d

  183. Cousin-Saint-Remi J, Lauerer A, Chmelik C et al (2016) The role of crystal diversity in understanding mass transfer in nanoporous materials. Nat Mater 15:401–406. https://doi.org/10.1038/nmat4510

    Article  CAS  Google Scholar 

  184. Cousin-Saint-Remi J, Baron GV, Denayer JFM (2013) Nonuniform chain-length-dependent diffusion of short 1-alcohols in SAPO-34 in liquid phase. J Phys Chem C 117:9758–9765. https://doi.org/10.1021/jp312287k

    Article  CAS  Google Scholar 

  185. Cosseron AF, Daou TJ, Tzanis L et al (2013) Adsorption of volatile organic compounds in pure silica CHA, *bEA, MFI and STT-type zeolites. Microporous Mesoporous Mater 173:147–154. https://doi.org/10.1016/j.micromeso.2013.02.009

    Article  CAS  Google Scholar 

  186. Chen D, Rebo HP, Moljord K, Holmen A (1999) Methanol conversion to light olefins over SAPO-34. Sorption, diffusion, and catalytic reactions. Ind Eng Chem Res 38:4241–4249. https://doi.org/10.1021/ie9807046

    Article  CAS  Google Scholar 

  187. Corma A, Rey F, Rius J et al (2004) Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature 431:287–290. https://doi.org/10.1038/nature02909

    Article  CAS  PubMed  Google Scholar 

  188. Reed TB, Breck DW (1956) Crystalline zeolites. II. Crystal structure of synthetic zeolite, type A. J Am Chem Soc 78:5972–5977. https://doi.org/10.1021/ja01604a002

    Article  CAS  Google Scholar 

  189. Morris B (1968) Heats of sorption in the crystalline linde-A zeolite-water vapor system. J Colloid Interface Sci 28:149–155. https://doi.org/10.1016/0021-9797(68)90216-6

    Article  CAS  Google Scholar 

  190. Higgins FM, de Leeuw NH, Parker SC (2002) Modelling the effect of water on cation exchange in zeolite A. J Mater Chem 12:124–131. https://doi.org/10.1039/b104069n

    Article  CAS  Google Scholar 

  191. Gorbach A, Stegmaier M, Eigenberger G (2004) Measurement and modeling of water vapor adsorption on zeolite 4A – equilibria and kinetics. Adsorption 10:29–46. https://doi.org/10.1023/B:ADSO.0000024033.60103.ff

    Article  CAS  Google Scholar 

  192. Lalik E, Mirek R, Rakoczy J, Groszek A (2006) Microcalorimetric study of sorption of water and ethanol in zeolites 3A and 5A. Catal Today 114:242–247. https://doi.org/10.1016/j.cattod.2006.01.006

    Article  CAS  Google Scholar 

  193. Csányi É, Kristóf T, Lendvay G (2009) Potential model development using quantum chemical information for molecular simulation of adsorption equilibria of water−methanol (ethanol) mixtures in zeolite NaA-4. J Phys Chem C 113:12225–12235. https://doi.org/10.1021/jp902520p

    Article  CAS  Google Scholar 

  194. Gramlich V, Meier WM (1971) The crystal structure of hydrated NaA: a detailed refinement of a pseudosymmetric zeolite structure. Zeitschrift fur Krist New Cryst Struct 133:134–149. https://doi.org/10.1524/zkri.1971.133.133.134

    Article  CAS  Google Scholar 

  195. Weigel O, Steinhoff E (1924) IX. Die Aufnahme organischer Flüssigkeitsdämpfe durch Chabasit. Zeitschrift für Krist Cryst Mater 61:125–154. https://doi.org/10.1524/zkri.1924.61.1.125

    Article  Google Scholar 

  196. Skazyvaev VE, Khvoshchev SS, Zhdanov SP (1976) Molecular-sieve properties of synthetic chabazites. Bull Acad Sci USSR Div Chem Sci 25:12–16. https://doi.org/10.1007/BF00925609

    Article  Google Scholar 

  197. Daems I, Singh R, Baron G, Denayer J (2007) Length exclusion in the adsorption of chain molecules on chabazite type zeolites. Chem Commun:1316–1318. https://doi.org/10.1039/b615661d

  198. Jaramillo E, Chandross M (2004) Adsorption of small molecules in LTA zeolites. 1. NH 3, CO 2, and H 2 O in zeolite 4A. J Phys Chem B 108:20155–20159. https://doi.org/10.1021/jp048078f

    Article  CAS  Google Scholar 

  199. Kristóf T, Csányi É, Rutkai G, Merényi L (2006) Prediction of adsorption equilibria of water–methanol mixtures in zeolite NaA by molecular simulation. Mol Simul 32:869–875. https://doi.org/10.1080/08927020600934179

    Article  CAS  Google Scholar 

  200. Xiao Y, He G, Yuan M (2018) Adsorption equilibrium and kinetics of methanol vapor on zeolites NaX, KA, and CaA and activated alumina. Ind Eng Chem Res 57:14254–14260. https://doi.org/10.1021/acs.iecr.8b04076

    Article  CAS  Google Scholar 

  201. Dyer A, Amin S (2001) Self-diffusion of simple alcohols in heteroinic forms of LTA zeolites. Microporous Mesoporous Mater 46:163–176. https://doi.org/10.1016/S1387-1811(01)00280-3

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joeri F. M. Denayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Claessens, B., Cousin-Saint-Remi, J., Denayer, J.F.M. (2020). Efficient Downstream Processing of Renewable Alcohols Using Zeolite Adsorbents. In: Valencia, S., Rey, F. (eds) New Developments in Adsorption/Separation of Small Molecules by Zeolites. Structure and Bonding, vol 184. Springer, Cham. https://doi.org/10.1007/430_2020_68

Download citation

Publish with us

Policies and ethics