Skip to main content

Photophysicochemical Processes Directed Within Nano-Containers

  • Chapter
  • First Online:
Dyes and Photoactive Molecules in Microporous Systems

Part of the book series: Structure and Bonding ((STRUCTURE,volume 183))

Abstract

Directing excited-state behavior of photoactive molecules without covalent modification has been more frequently achieved through inclusion within cavitands than by any other supramolecular approach. Such efforts have led to interesting photophysicochemical phenomena and their applications. This includes employing strategies such as use of chromo-/luminophore-cavitand interactions to perturb the electronic states to affect quantum efficiencies of radiative processes or structural pre-orientation of reactants to achieve chemoselectivity. The influence of nano-containers such as macrocyclic cavitands, nanocages, and capsules on the photoactive molecules has been observed in solution phase as well as the solid state, which has been studied through spectroscopy, product selectivity analysis, and computational chemistry. This chapter will highlight prominent works in the past two decades that studied the nano-container-photoactive guest systems whose significance extends well beyond the domain of supramolecular photochemistry. The crucial nature of such works in gaining new insight into electronic, bonding, and dynamics nature of chemical interactions or their role in realizing new applications is discussed herein. The contents are organized on the basis of named photochemical reactions or photophysical activity affected through nano-container mediation contrasted with that of the free chromophore or luminophore. Three cavitands (families) cyclodextrins, cucurbiturils, and octa acids are primarily focused due to their literature predominance leading to a comprehensive understanding of their effects, with relatively less frequent instances of calixarenes and crown-ethers. Differences in physicochemical influences affected by the various cavitand families as well as that within the oligomers of a given family will be discussed wherever possible, and diversity in such effects is analyzed on the basis of “supramolecular cause-and-effect” relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

α-CD:

α-cyclodextrin

β-CD:

β-cyclodextrin

γ-CD:

γ-cyclodextrin

λfl:

Fluorescence wavelength

τF:

Fluorescence lifetime

Φ:

Quantum yield

ΦF:

Fluorescence quantum yield

ACN:

Acenaphthylene

ADT:

Adamantathione

ANT:

Anthracene

aPS:

Activatable photosensitizers

BP:

Biphenyl bipyridinium guest

CA:

Cinnamic acid

CB:

Cucurbituril

CB7:

Cucurbit[7]uril

CB8:

Cucurbit[8]uril

CD:

Cyclodextrin

CE:

Crystal engineering

CHT:

Camphorthione

Coum-n:

Coumarins

D-A:

Donor-acceptor

DBA:

Dibenzal acetone

DMABN:

N,N-Dimethylaminobenzonitrile

DNC:

Dinaphthyl crown ether

E*:

Excimer

FNT:

Fenchthione

HH:

Head-to-head

HOMO:

Highest occupied molecular orbital

HT:

Head-to-tail

IC:

Internal conversion

ISC:

Intersystem crossing

ITC:

Intramolecular charge transfer

L:

Linker

LE:

Local excited state

LUMO:

Lowest unoccupied molecular orbital

M*:

Excited-state monomer

MM:

Molecular mechanics

MO:

Molecular orbital

NBS:

N-benzyl succinimide

NpE:

Naphthyl benzoates

NPM:

N-phenylmaleimide

OA:

Octa acid

OAm:

Octa amine

P*:

Excited-state product

PAH:

Polyaromatic hydrocarbon

PCA:

Photocycloaddition

Pd-NC:

Palladium nanocage

PDT:

Photodynamic therapy

Py:

Pyrene

R*:

Excited-state reactant

RH:

Rebek’s host

RTP:

Room temperature phosphoroscence

SOG:

Singlet oxygen generator

SQ:

Squaraines

STB:

4,4′-dimethyl stilbene

ST-n:

Stilbazole guests

TB-B:

Biotinylated toluidine blue

TF:

Thioflavin

TICT:

Twisted intramolecular charge transfer

TP+:

2,4,6-triphenylpyrylium

TPOR:

Tetranaphthyl-substituted porphyrin

VSEPR:

Valence shell electron pair repulsion

References

  1. Bach T (2015) More chemistry with light! More light in chemistry! Angew Chem Int Ed 54:11294–11295

    CAS  Google Scholar 

  2. Roth HD (2001) Twentieth century developments in photochemistry. Brief historical sketches. Pure Appl Chem 73:395–403

    CAS  Google Scholar 

  3. Chan BP (2010) Biomedical applications of photochemistry. Tissue Eng Part B Rev 16:509–522

    CAS  PubMed  Google Scholar 

  4. Pape M (1975) Industrial applications of photochemistry. Pure Appl Chem 41:535–558

    CAS  Google Scholar 

  5. Steed JW, Atwood JL (eds) (2009) Supramolecular chemistry.2nd edn. Wiley, Chichester

    Google Scholar 

  6. Balzani V (1990) Supramolecular photochemistry. Pure Appl Chem 62:1099–1102

    CAS  Google Scholar 

  7. Turro NJ (1996) Supramolecular photochemistry. A paradigm for the 1990s? J Photochem Photobiol A Chem 100:53–56

    CAS  Google Scholar 

  8. Ramamurthy V, Schanze KS (2003) Photochemistry of organic molecules in isotropic and anisotropic media. In: Molecular and supramolecular photochemistry, vol 9. Marcel Dekker, New York

    Google Scholar 

  9. Atwood JL, Gokel GW, Barbour LJ, MacGillivray LR (eds) (2017) Comprehensive supramolecular chemistry II. Volume 7: Supramolecular engineering: designing the solid state. Elsevier, Amsterdam

    Google Scholar 

  10. Dalgarno SJ (ed) (2017) Comprehensive supramolecular chemistry II. Volume 6: Supramolecular engineering: discrete molecular assemblies. Elsevier, Amsterdam

    Google Scholar 

  11. Gokel GW, Barbour LJ (eds) (2017) Comprehensive supramolecular chemistry II. volume 1: general principles of supramolecular chemistry and molecular recognition. Elsevier, Amsterdam

    Google Scholar 

  12. Credi A (2012) Supramolecular photochemistry controlling photochemical processes. Edited by V. Ramamurthy and Yoshihisa Inoue. Angew Chem Int Ed 51:6311–6312

    CAS  Google Scholar 

  13. Tanaka K, Toda F (2002) Organic photoreaction in the solid state. In: Toda F (ed) Organic solid-state reactions. Springer, Dordrecht

    Google Scholar 

  14. Mena-Hernando S, Perez EM (2019) Mechanically interlocked materials. Rotaxanes and catenanes beyond the small molecule. Chem Soc Rev 48:5016–5032

    CAS  PubMed  Google Scholar 

  15. Xu Y, von Delius M (2019) The supramolecular chemistry of strained carbon nanohoops. Angew Chem Int Ed 59(2):559–573

    Google Scholar 

  16. Cram DJ, Cram JM (eds) (1997) Container molecules and their guests. Royal Society of Chemistry, London

    Google Scholar 

  17. Bortolus P, Grabner G, Koehler G, Monti S (1993) Photochemistry of cyclodextrin host-guest complexes. Coord Chem Rev 125:261–268

    CAS  Google Scholar 

  18. Balzani V, Credi A (1996) Supramolecular photochemistry: recent advances. NATO ASI Ser C 485:163–177

    CAS  Google Scholar 

  19. Voegtle F, Weber E (eds) (1985) Host guest complex chemistry: synthesis, structures, applications. Springer, Berlin

    Google Scholar 

  20. Laeri F, Schueth F, Simon U, Wark M (eds) (2003) Host-guest-systems based on nanoporous crystals. Wiley, Amsterdam

    Google Scholar 

  21. Bortolus P, Monti S (1996) Photochemistry in cyclodextrin cavities. Adv Photochem 21:1–133

    CAS  Google Scholar 

  22. Ueno A, Ikeda H (2001) Supramolecular photochemistry of cyclodextrin-related materials. Mol Supramol Photochem 8:461–503

    CAS  Google Scholar 

  23. Ayitou A, Pemberton BC, Kumarasamy E, Vallavoju N, Sivaguru J (2011) Fun with photons: selective light induced reactions in solution and in water soluble nanocontainers. Chimia 65:202–209

    CAS  PubMed  Google Scholar 

  24. Chernikova EY, Fedorov YV, Fedorova OA (2012) Cucurbituril as a new “host” of organic molecules in inclusion complexes. Russ Chem Bull 61:1363–1390

    CAS  Google Scholar 

  25. Mori T, Inoue Y (2012) Photochemistry in alternative media. In: Griesbeck, Oelgemoller, Ghetti (eds) CRC handbook of organic photochemistry and photobiology, 3rd edn. CRC Press, Boca Raton, FL, pp 249–275

    Google Scholar 

  26. Coyle EE, Oelgemoller M (2008) Micro-photochemistry: photochemistry in microstructured reactors. The new photochemistry of the future? Photochem Photobiol Sci 7:1313–1322

    CAS  PubMed  Google Scholar 

  27. Ramamurthy V, Sivaguru J (2011) Controlling photoreactions through noncovalent interactions within zeolite nanocages, pp 389–442

    Google Scholar 

  28. Ramamurthy V (1990) Photochemistry in zeolite cavities. In: Atwood JL (ed) Inclusion phenomena and molecular recognition. Springer, Boston, MA

    Google Scholar 

  29. Jing X, He C, Zhao L, Duan C (2019) Photochemical properties of host-guest supramolecular systems with structurally confined metal-organic capsules. Acc Chem Res 52:100–109

    CAS  PubMed  Google Scholar 

  30. Qu D-H, Wang Q-C, Zhang Q-W, Ma X, Tian H (2015) Photoresponsive host-guest functional systems. Chem Rev 115:7543–7588

    CAS  PubMed  Google Scholar 

  31. Ramamurthy V, Sivaguru J (2016) Supramolecular photochemistry as a potential synthetic tool: photocycloaddition. Chem Rev 116:9914–9993

    CAS  PubMed  Google Scholar 

  32. Chretien MN (2007) Supramolecular photochemistry in zeolites: from catalysts to sunscreens. Pure Appl Chem 79:1–20

    CAS  Google Scholar 

  33. Lakowicz JR (1983) Principles of fluorescence spectroscopy. Plenum, New York

    Google Scholar 

  34. Mako T, Marks P, Cook N, Levine M (2012) Fluorescent detection of polycyclic aromatic hydrocarbons in ternary cyclodextrin complexes. Supramol Chem 24:743–747

    CAS  Google Scholar 

  35. Serio N, Miller K, Levine M (2013) Efficient detection of polycyclic aromatic hydrocarbons and polychlorinated biphenyls via three-component energy transfer. Chem Commun 49:4821–4823

    CAS  Google Scholar 

  36. Heinz T, Rudkevich DM, Rebek Jr J (1998) Pairwise selection of guests in a cylindrical molecular capsule of nanometer dimensions. Nature 394:764–766

    CAS  Google Scholar 

  37. Heinz T, Rudkevich DM, Rebek Jr J (1999) Molecular recognition within a self-assembled cylindrical host. Angew Chem Int Ed 38:1136–1139

    CAS  Google Scholar 

  38. Debler EW, Kaufmann GF, Meijler MM, Heine A, Mee JM, Pljevaljcic G, Di Bilio AJ, Schultz PG, Millar DP, Janda KD, Wilson IA, Gray HB, Lerner RA (2008) Deeply inverted electron-hole recombination in a luminescent antibody-stilbene complex. Science 319:1232–1235

    CAS  PubMed  Google Scholar 

  39. Armitage BA, Berget PB (2008) An enlightening structure-function relationship. Science 319:1195–1196

    CAS  PubMed  Google Scholar 

  40. Matsushita M, Meijler MM, Wirsching P, Lerner RA, Janda KD (2005) A blue fluorescent antibody-cofactor sensor for mercury. Org Lett 7:4943–4946

    CAS  PubMed  Google Scholar 

  41. Ams MR, Ajami D, Craig SL, Yang JS, Rebek J (2009) Control of stilbene conformation and fluorescence in self-assembled capsules. Beilstein J Org Chem 5:79

    PubMed  PubMed Central  Google Scholar 

  42. Itoh T (2012) Fluorescence and phosphorescence from higher excited states of organic molecules. Chem Rev 112:4541–4568

    CAS  PubMed  Google Scholar 

  43. Mohan Raj A, Sharma G, Prabhakar R, Ramamurthy V (2019) Room-temperature phosphorescence from encapsulated pyrene induced by xenon. J Phys Chem A 123:9123–9131

    CAS  PubMed  Google Scholar 

  44. Kalyanasundaram K, Thomas JK (1977) Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc 99:2039–2044

    CAS  Google Scholar 

  45. Dong DC, Winnik MA (1984) The Py scale of solvent polarities. Can J Chem 62:2560–2565

    CAS  Google Scholar 

  46. Koziar JC, Cowan DO (1978) Photochemical heavy-atom effects. Acc Chem Res 11:334–341

    CAS  Google Scholar 

  47. Easley CJ, Mettry M, Moses EM, Hooley RJ, Bardeen CJ (2018) Boosting the heavy atom effect by cavitand encapsulation: room temperature phosphorescence of pyrene in the presence of oxygen. J Phys Chem A 122:6578–6584

    CAS  PubMed  Google Scholar 

  48. Montes-Navajas P, Teruel L, Corma A, Garcia H (2008) Specific binding effects for cucurbit[8]uril in 2,4,6-triphenylpyrylium-cucurbit[8]uril host-guest complexes: observation of room-temperature phosphorescence and their application in electroluminescence. Chem Eur J 14:1762–1768

    CAS  PubMed  Google Scholar 

  49. Steer RP, Ramamurthy V (1988) Photophysics and intramolecular photochemistry of thiones in solution. Acc Chem Res 21:380–386

    CAS  Google Scholar 

  50. Rao VP (1992) The photoreactivity of thiocarbonyl compounds. Sulfur Rep 12:359–403

    CAS  Google Scholar 

  51. Maciejewski A, Steer RP (1993) The photophysics, physical photochemistry, and related spectroscopy of thiocarbonyls. Chem Rev 93:67–98

    CAS  Google Scholar 

  52. Rajee R, Ramamurthy V (1979) Energy wastage in organic photochemistry: self-quenching in thiones. J Photochem 11:135–138

    CAS  Google Scholar 

  53. Maciejewski A (1988) The role of T1 self-quenching in photochemical decay of aromatic thiones. J Photochem Photobiol A Chem 43:303–312

    CAS  Google Scholar 

  54. Ramesh V, Ramamurthy V (1982) Inhibition of self-quenching in thioketones by micellar compartmentalization. J Photochem 20:47–52

    CAS  Google Scholar 

  55. Ramesh V, Ramnath N, Ramamurthy V (1982) Efficiency of singlet oxygen production by thiocarbonyls. J Photochem 18:293–299

    CAS  Google Scholar 

  56. Jayaraj N, Maddipatla MV, Prabhakar R, Jockusch S, Turro NJ, Ramamurthy V (2010) Closed nanocontainer enables thioketones to phosphoresce at room temperature in aqueous solution. J Phys Chem B 114:14320–14328

    CAS  PubMed  Google Scholar 

  57. Jagadesan P, Samanta SR, Choudhury R, Ramamurthy V (2017) Container chemistry: manipulating excited state behavior of organic guests within cavitands that form capsules in water. J Phys Org Chem 30:e3728

    Google Scholar 

  58. De Mayo P (1976) Photochemical synthesis. 62. Thione photochemistry, and the chemistry of the S2 state. Acc Chem Res 9:52–59

    Google Scholar 

  59. Grabowski ZR, Dobkowski J (1983) Twisted intramolecular charge transfer (TICT) excited states: energy and molecular structure. Pure Appl Chem 55:245–252

    CAS  Google Scholar 

  60. Grabowski ZR, Rotkiewicz K, Rettig W (2003) Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem Rev 103:3899–4031

    PubMed  Google Scholar 

  61. Kundu S, Chattopadhyay N (1995) Dual luminescence of dimethylaminobenzaldehyde in aqueous β-cyclodextrin: non-polar and TICT emissions. J Photochem Photobiol A Chem 88:105–108

    CAS  Google Scholar 

  62. Zhang YM, Zhang XJ, Xu X, Fu XN, Hou HB, Liu Y (2016) Rigid organization of fluorescence-active ligands by artificial macrocyclic receptor to achieve the thioflavin t-amyloid fibril level association. J Phys Chem B 120:3932–3940

    CAS  PubMed  Google Scholar 

  63. Dong H, Wei Y, Zhang W, Wei C, Zhang C, Yao J, Zhao YS (2016) Broadband tunable microlasers based on controlled intramolecular charge-transfer process in organic supramolecular microcrystals. J Am Chem Soc 138:1118–1121

    CAS  PubMed  Google Scholar 

  64. Schoder S, Schroder HV, Cera L, Puttreddy R, Guttler A, Resch-Genger U, Rissanen K, Schalley CA (2019) Strong emission enhancement in pH-responsive 2:2 cucurbit[8]uril complexes. Chemistry 25:3257–3261

    CAS  PubMed  Google Scholar 

  65. Foerster T (1969) Excimers. Angew Chem Int Ed Engl 8:333–343

    CAS  Google Scholar 

  66. Birks JB (1970) Photophysics of aromatic molecules. Wiley monographs in chemical physics. Wiley, London, p 301

    Google Scholar 

  67. Birks JB (1975) Organic molecular photophysics, vol 2. Wiley, New York, p 159

    Google Scholar 

  68. Kaanumalle LS, Gibb CL, Gibb BC, Ramamurthy V (2005) A hydrophobic nanocapsule controls the photophysics of aromatic molecules by suppressing their favored solution pathways. J Am Chem Soc 127:3674–3675

    CAS  PubMed  Google Scholar 

  69. Li SH, Xu X, Zhou Y, Zhao Q, Liu Y (2017) Reversibly tunable white-light emissions of styrylpyridiniums with cucurbiturils in aqueous solution. Org Lett 19:6650–6653

    CAS  PubMed  Google Scholar 

  70. Hawe A, Sutter M, Jiskoot W (2008) Extrinsic fluorescent dyes as tools for protein characterization. Pharm Res 25:1487–1499

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Amdursky N, Erez Y, Huppert D (2012) Molecular rotors: what lies behind the high sensitivity of the thioflavin-T fluorescent marker. Acc Chem Res 45:1548–1557

    CAS  PubMed  Google Scholar 

  72. Mohanty J, Choudhury SD, Upadhyaya HP, Bhasikuttan AC, Pal H (2009) Control of the supramolecular excimer formation of thioflavin T within a cucurbit[8]uril host: a fluorescence on/off mechanism. Chem Eur J 15:5215–5219

    CAS  PubMed  Google Scholar 

  73. Ansari S, Alahyan M, Marston SB, El-Mezgueldi M (2008) Role of caldesmon in the Ca2+ regulation of smooth muscle thin filaments: evidence for a cooperative switching mechanism. J Biol Chem 283:47–56

    CAS  PubMed  Google Scholar 

  74. Bhasikuttan AC, Dutta Choudhury S, Pal H, Mohanty J (2011) Supramolecular assemblies of thioflavin T with cucurbiturils: prospects of cooperative and competitive metal ion binding. Isr J Chem 51:634–645

    CAS  Google Scholar 

  75. Tsukamoto T, Ramasamy E, Shimada T, Takagi S, Ramamurthy V (2016) Supramolecular surface photochemistry: cascade energy transfer between encapsulated dyes aligned on a clay nanosheet surface. Langmuir 32:2920–2927

    CAS  PubMed  Google Scholar 

  76. Nonell S, Flors C (eds) (2016) Singlet oxygen: applications in biosciences and nanosciences, volume 1. Comprehensive series in photochemical and photobiological sciences, vol 13. RSC, Cambridge

    Google Scholar 

  77. Wang XQ, Lei Q, Zhu JY, Wang WJ, Cheng Q, Gao F, Sun YX, Zhang XZ (2016) Cucurbit[8]uril regulated activatable supramolecular photosensitizer for targeted cancer imaging and photodynamic therapy. ACS Appl Mater Interfaces 8:22892–22899

    CAS  PubMed  Google Scholar 

  78. Lindig BA, Rodgers MAJ, Schaap AP (1980) Determination of the lifetime of singlet oxygen in water-d2 using 9,10-anthracenedipropionic acid, a water-soluble probe. J Am Chem Soc 102:5590–5593

    CAS  Google Scholar 

  79. Liu Y, Huang Z, Liu K, Kelgtermans H, Dehaen W, Wang Z, Zhang X (2014) Porphyrin-containing hyperbranched supramolecular polymers: enhancing 1O2-generation efficiency by supramolecular polymerization. Polym Chem 5:53–56

    CAS  Google Scholar 

  80. Leng X, Choi C-F, Luo H-B, Cheng Y-K, Ng DKP (2007) Host-guest interactions of 4-carboxyphenoxy phthalocyanines and β-cyclodextrins in aqueous media. Org Lett 9:2497–2500

    CAS  PubMed  Google Scholar 

  81. Liu K, Liu Y, Yao Y, Yuan H, Wang S, Wang Z, Zhang X (2013) Supramolecular photosensitizers with enhanced antibacterial efficiency. Angew Chem Int Ed Engl 52:8285–8289

    CAS  PubMed  Google Scholar 

  82. McLeod D, Thoegersen MK, Jessen NI, Joergensen KA, Jamieson CS, Xue X-S, Houk KN, Liu F, Hoffmann R (2019) Expanding the frontiers of higher-order cycloadditions. Acc Chem Res 52:3488–3501

    CAS  PubMed  Google Scholar 

  83. Woodward RB, Hoffmann R (1965) Stereochemistry of electrocyclic reactions. J Am Chem Soc 87:395–397

    CAS  Google Scholar 

  84. Woodward RB, Hoffmann R (1969) Conservation of orbital symmetry. Angew Chem Int Ed Engl 8:781–853

    CAS  Google Scholar 

  85. Pattabiraman M, Sivaguru J, Ramamurthy V (2018) Cucurbiturils as reaction containers for photocycloaddition of olefins. Isr J Chem 58:264–275

    CAS  Google Scholar 

  86. Ramamurthy V, Parthasarathy A (2011) Chemistry in restricted spaces: select photodimerizations in cages, cavities, and capsules. Isr J Chem 51:817–829

    CAS  Google Scholar 

  87. Hutchins KM, MacGillivray LR (2016) Crystal engineering [2 + 2] photodimerizations via templates and hydrogen bonds: case of styrylthiophenes. Photochemistry 43:321–329

    CAS  Google Scholar 

  88. Natarajan A, Bhogala BR (2011) Bimolecular photoreactions in the crystalline state. In: Ramamurthy V, Yoshihisa I (eds) Supramolecular photochemistry: controlling photochemical processes. John Wiley & Sons, Inc, Hoboken, NJ, pp 175–228

    Google Scholar 

  89. Green BS, Lahav M, Schmidt GMJ (1975) Reactions in chiral crystals. Principles governing asymmetric synthesis via topochemically controlled solid-state photodimerization. Mol Cryst Liq Cryst 29:187–200

    CAS  Google Scholar 

  90. Pattabiraman M, Kaanumalle LS, Natarajan A, Ramamurthy V (2006) Regioselective photodimerization of cinnamic acids in water: templation with cucurbiturils. Langmuir 22:7605–7609

    CAS  PubMed  Google Scholar 

  91. Pattabiraman M, Natarajan A, Kaanumalle LS, Ramamurthy V (2005) Templating photodimerization of trans-cinnamic acids with cucurbit[8]uril and gamma-cyclodextrin. Org Lett 7:529–532

    CAS  PubMed  Google Scholar 

  92. Nguyen N, Clements AR, Pattabiraman M (2016) Using non-covalent interactions to direct regioselective 2+2 photocycloaddition within a macrocyclic cavitand. New J Chem 40:2433–2443

    CAS  Google Scholar 

  93. Kashyap A, Bokosike TK, Bhuvanesh N, Pattabiraman M (2018) Stereo- and regioselective photocycloaddition of extended alkenes using γ-cyclodextrin. Org Biomol Chem 16:6870–6875

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang HM, Wenz G (2013) Topochemical control of the photodimerization of aromatic compounds by gamma-cyclodextrin thioethers in aqueous solution. Beilstein J Org Chem 9:1858–1866

    PubMed  PubMed Central  Google Scholar 

  95. Yang C, Mori T, Origane Y, Ko YH, Selvapalam N, Kim K, Inoue Y (2008) Highly stereoselective photocyclodimerization of alpha-cyclodextrin-appended anthracene mediated by gamma-cyclodextrin and cucurbit[8]uril: a dramatic steric effect operating outside the binding site. J Am Chem Soc 130:8574–8575

    CAS  PubMed  Google Scholar 

  96. Yoshizawa M, Takeyama Y, Okano T, Fujita M (2003) Cavity-directed synthesis within a self-assembled coordination cage: highly selective [2 + 2] cross-photodimerization of olefins. J Am Chem Soc 125:3243–3247

    CAS  PubMed  Google Scholar 

  97. Clements AR, Pattabiraman M (2015) γ-Cyclodextrin mediated photo-heterodimerization between cinnamic acids and coumarins. J Photochem Photobiol A Chem 297:1–7

    CAS  Google Scholar 

  98. Anderson JC, Reese CB (1960) Photo-induced fries rearrangement. Proc Chem Soc Lond 6:217

    Google Scholar 

  99. Meyer JW, Hammond GS (1972) Mechanism of photochemical reactions in solution. LXX. Photolysis of aryl esters. J Amer Chem Soc 94:2219–2228

    CAS  Google Scholar 

  100. Gritsan NP, Tsentalovich YP, Yurkovskaya AV, Sagdeev RZ (1996) Laser flash photolysis and CIDNP studies of 1-naphthyl acetate photo-fries rearrangement. J Phys Chem 100:4448–4458

    CAS  Google Scholar 

  101. Banu HS, Pitchumani K, Srinivasan C (1999) Effect of cyclodextrin complexation on photo-Fries rearrangement of naphthyl esters. Tetrahedron 55:9601–9610

    CAS  Google Scholar 

  102. Veglia AV, de Rossi RH (1993) β-Cyclodextrin effects on the photo-Fries rearrangement of aromatic alkyl esters. J Org Chem 58:4941–4944

    CAS  Google Scholar 

  103. Iguchi D, Erra-Balsells R, Bonesi SM (2016) Photo-fries rearrangement of aryl acetamides: regioselectivity induced by the aqueous micellar green environment. Photochem Photobiol Sci 15:105–116

    CAS  PubMed  Google Scholar 

  104. Kaanumalle LS, Nithyanandhan J, Pattabiraman M, Jayaraman N, Ramamurthy V (2004) Water-soluble dendrimers as photochemical reaction media: chemical behavior of singlet and triplet radical pairs inside dendritic reaction cavities. J Am Chem Soc 126:8999–9006

    CAS  PubMed  Google Scholar 

  105. Siano G, Crespi S, Mella M, Bonesi SM (2019) Selectivity in the photo-fries rearrangement of some aryl benzoates in green and sustainable media. Preparative and mechanistic studies. J Org Chem 84:4338–4352

    CAS  PubMed  Google Scholar 

  106. Gu W, Weiss RG (2001) Extracting fundamental photochemical and photophysical information from photorearrangements of aryl phenylacylates and aryl benzyl ethers in media comprised of polyolefinic films. J Photochem Photobiol C 2:117–137

    CAS  Google Scholar 

  107. Koodanjeri S, Pradhan AR, Kaanumalle LS, Ramamurthy V (2003) Cyclodextrin-mediated regioselective photo-Fries reaction of 1-naphthyl phenyl acylates. Tetrahedron Lett 44:3207–3210

    CAS  Google Scholar 

Download references

Acknowledgments

AN thanks GE Additive to support and approve the publication content. MP would like to thank his professional and life partner, Dr. Surabhi Chandra, for her support and patience during the preparation of this chapter. He also expresses his gratitude to Dr. Richard Mocarski (Assistant Vice Chancellor for Research) for his passionate support for research and providing new opportunities for researchers at UNK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Pattabiraman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pattabiraman, M., Natarajan, A. (2020). Photophysicochemical Processes Directed Within Nano-Containers. In: Martínez-Martínez, V., López Arbeloa, F. (eds) Dyes and Photoactive Molecules in Microporous Systems. Structure and Bonding, vol 183. Springer, Cham. https://doi.org/10.1007/430_2020_64

Download citation

Publish with us

Policies and ethics