Skip to main content

The Periodic Table as a Guide to the Construction and Properties of Layered Double Hydroxides

  • Chapter
  • First Online:

Part of the book series: Structure and Bonding ((STRUCTURE,volume 182))

Abstract

Layered double hydroxides (LDHs) have received considerable attention in recent years because both the cations incorporated in the layers and the interlayer anions can be varied widely, facilitating the tailored fabrication of a large family of functional LDH materials with specific properties and applications. In this chapter, we focus on understanding how the nature and extent of cation substitution in the layers reflect the position of that cation in the Periodic Table. Our analyses indicate that the electron configurations and coordination properties of the cations in the layers result in periodic variations in the fundamental properties of the resulting LDHs, such as their local coordination geometry, stability, electronegativity, and band structure. These periodic variations directly influence the efficacy of a given LDH in applications such as solid base catalysis and photocatalysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cavani F, Trifirò F, Vaccari A (1991) Catal Today 11:173

    CAS  Google Scholar 

  2. Rives V, Ulibarri MA (1999) Coord Chem Rev 181:61

    CAS  Google Scholar 

  3. Duan X, Evans DG (eds) (2006) Layered double hydroxides, structure and bonding. Springer, Berlin

    Google Scholar 

  4. Newman SP, Greenwell HC, Coveney PV, Jones W (2001) Layered double hydroxides: present and future. Nova Science, New York

    Google Scholar 

  5. Gong M, Li Y, Wang H, Liang Y, Wu JZ, Zhou J, Wang J, Regier T, Wei F, Dai H (2013) J Am Chem Soc 135:8452

    CAS  PubMed  Google Scholar 

  6. Ahmed N, Shibata Y, Taniguchi T, Izumi Y (2011) J Catal 279:123

    CAS  Google Scholar 

  7. Jianga H, Katsumata K-I, Hong J, Yamaguchi A, Nakata K, Terashima C, Matsushita N, Miyauchi M, Fujishima A (2018) Appl Catal B Environ 224:783

    Google Scholar 

  8. Choy J-H, Junga J-S, Oh J-M, Park M, Jeong J, Kang Y-K, Han O-J (2004) Biomaterials 25:3059

    CAS  PubMed  Google Scholar 

  9. Oh J-M, Kwak S-Y, Choy J-H (2006) J Phys Chem Solids 67:1028

    CAS  Google Scholar 

  10. Gunjakar JL, Kim IY, Lee JM, Jo YK, Hwang S-J (2014) J Phys Chem C 118:3847

    CAS  Google Scholar 

  11. Wang H, Zhou T, Li P, Cao Z, Xi W, Zhao Y, Ding Y (2018) ACS Sustain Chem Eng 6:380

    CAS  Google Scholar 

  12. Qian Y, An T, Sarnello E, Liu Z, Li T, Zhao D (2019) ACS Appl Energy Mater 2:1784

    CAS  Google Scholar 

  13. Lee JH, Rhee S, Jung D-Y (2007) J Am Chem Soc 129:3522

    CAS  PubMed  Google Scholar 

  14. Cao Y, Zheng D, Li X, Lin J, Wang C, Dong S, Lin C (2018) ACS Appl Mater Interfaces 10:15150

    CAS  PubMed  Google Scholar 

  15. Li L, Gu Z, Gu W, Liu J, Xu ZP (2016) J Colloid Interface Sci 470:47

    CAS  PubMed  Google Scholar 

  16. Sun J, Lei Y, Dai Z, Liu X, Huang T, Wu J, Xu ZP, Sun X (2017) ACS Appl Mater Interfaces 9:7990

    CAS  PubMed  Google Scholar 

  17. Feitknecht W (1942) Helv Chim Acta 25:131

    CAS  Google Scholar 

  18. Feitknecht W (1942) Helv Chim Acta 25:555

    CAS  Google Scholar 

  19. Allmann R (1968) Acta Crystallogr B 24:972

    CAS  Google Scholar 

  20. Allmann R, Jepsen HP (1969) Neues Jahrb Mineral Monatshefte 12:544

    Google Scholar 

  21. Taylor HFW (1969) Mineral Mag 37:338

    CAS  Google Scholar 

  22. Ingram L, Taylor HFW (1967) Mineral Mag 36:465

    CAS  Google Scholar 

  23. Kalinicheva AG, Kumarb PP, Kirkpatrick RJ (2010) Philos Mag 90:17

    Google Scholar 

  24. Ma L, Islam SM, Liu H, Zhao J, Sun G, Li H, Ma S, Kanatzidis MG (2017) Chem Mater 29:3274

    CAS  Google Scholar 

  25. Zhang H, Xu ZP, Lu GQ, Smith SC (2010) J Phys Chem C 114:12618

    CAS  Google Scholar 

  26. Ma F, Islam SM, Xiao C, Zhao J, Liu H, Yuan M, Sun G, Li H, Ma S, Kanatzidis MG (2017) J Am Chem Soc 139:12745

    CAS  PubMed  Google Scholar 

  27. Oestreicher V, Jobbágy M, Regazzoni AE (2014) Langmuir 30:8408

    CAS  PubMed  Google Scholar 

  28. Darmograi G, Prelot B, Geneste A, Martin-Gassin G, Salles F, Zajac J (2015) J Phys Chem C 119:23388

    CAS  Google Scholar 

  29. Hou X, Kalinichev AG, Kirkpatrick RJ (2002) Chem Mater 14:2078

    CAS  Google Scholar 

  30. Fogg AM, Freij AJ, Parkinson GM (2002) Chem Mater 14:232

    CAS  Google Scholar 

  31. Saber O (2006) J Colloid Interface Sci 297:182

    CAS  PubMed  Google Scholar 

  32. Velu S, Ramani A, Ramaswamy V, Chanda BM, Sivasanker S (1998) Stud Surf Sci Catal 118:941

    CAS  Google Scholar 

  33. Tichit D, Das N, Coq B, Durand R (2002) Chem Mater 14:1530

    CAS  Google Scholar 

  34. Velu S, Suzuki K, Kapoor MP, Tomura S, Ohashi F, Osaki T (2000) Chem Mater 12:719

    CAS  Google Scholar 

  35. Intissar M, Jumas J-C, Besse J-P, Leroux F (2003) Chem Mater 15:4625

    CAS  Google Scholar 

  36. Velu S, Suzuki K, Okazaki M, Osaki T, Tomura S, Ohashi F (1999) Chem Mater 11:2163

    CAS  Google Scholar 

  37. Poonoosamy J, Brandt F, Stekiel M, Kegler P, Klinkenberg M, Winkler B, Vinograd V, Bosbach D, Deissmann G (2018) Appl Clay Sci 151:54

    CAS  Google Scholar 

  38. Chowdhury PR, Bhattacharyya KG (2015) Dalton Trans 44:6809

    PubMed Central  Google Scholar 

  39. Fogg AM, Dunn JS, O’Hare D (1998) Chem Mater 10:356

    CAS  Google Scholar 

  40. Wang J, Lei Z, Qin H, Zhang L, Li F (2011) Ind Eng Chem Res 50:7120

    CAS  Google Scholar 

  41. He J, Li B, Evans DG, Duan X (2004) Colloids Surf A 251:191

    CAS  Google Scholar 

  42. Radha S, Navrotsky A (2014) J Phys Chem C 118:29836

    CAS  Google Scholar 

  43. Everaert M, Warrinnier R, Baken S, Gustafsson J-P, Vos DD, Smolders E (2016) ACS Sustain Chem Eng 4:4280

    CAS  Google Scholar 

  44. Millange F, Walton RI, Lei L, O’Hare D (2000) Chem Mater 12:1990

    CAS  Google Scholar 

  45. Rousselot I, Taviot-Gueho C, Leroux F, Leone P, Palvadeau P, Bessen J-P (2002) J Solid State Chem 167:137

    CAS  Google Scholar 

  46. Zhang P, Qian G, Shi H, Ruan X, Yang J, Frost RL (2012) J Colloid Interface Sci 365:110

    CAS  PubMed  Google Scholar 

  47. Zou Y, Wang X, Wu F, Yu S, Hu Y, Song W, Liu Y, Wang H, Hayat T, Wang X (2017) ACS Sustain Chem Eng 5:1173

    CAS  Google Scholar 

  48. Srankó D, Pallagi A, Kuzmann E, Canton SE, Walczak M, Sápi A, Kukovecz Á, Kónya Z, Sipos P, Pálinkó I (2010) Appl Clay Sci 48:214

    Google Scholar 

  49. Timár Z, Varga G, Muráth S, Kónya Z , Kukovecz Á, Havasi V, Oszkó A, Pálinkó I, Sipos P (2017) Catal Today 284:195

    Google Scholar 

  50. Werner S, Lau V, Hug S, Duppel V, Schaumann H, Lotsch B, Duppel V, Clausen-Schaumann K, Lotsch BV (2013) Langmuir 29:9199

    CAS  PubMed  Google Scholar 

  51. Magagula B, Nhlapo N, Focke WW (2009) Polym Degrad Stabil 94:947

    CAS  Google Scholar 

  52. Liu J, Li F, Evans DG, Duan X (2003) Chem Commun 4:542

    Google Scholar 

  53. Elzinga EJ (2012) Environ Sci Technol 46:4894

    CAS  PubMed  Google Scholar 

  54. Sampanthar JT, Zeng HC (2001) Chem Mater 13:4722

    CAS  Google Scholar 

  55. Dong X, Wang L, Wang D, Li C, Jin J (2012) Langmuir 28:293

    CAS  PubMed  Google Scholar 

  56. Antonyraj CA, Koilraj P, Kannan S (2010) Chem Commun 46:1902

    CAS  Google Scholar 

  57. Zhao Y, Jia X, Chen G, Shang L, Waterhouse GIN, Wu L-Z, Tung C-H, O’Hare D, Zhang T (2016) J Am Chem Soc 138:6517

    CAS  PubMed  Google Scholar 

  58. Arco MD, Malet P, Trujillano R, Rives V (1999) Chem Mater 11:624

    Google Scholar 

  59. Kovanda F, Grygar T, Dornicák V (2003) Solid State Sci 5:1019

    CAS  Google Scholar 

  60. Labajos FM, Sastre MD, Trujillano R, Rives V (1999) J Mater Chem 9:1033

    CAS  Google Scholar 

  61. Defontaine G, Michot LJ, Bihannic I, Ghanbaja J, Briois V (2003) Langmuir 19:10588

    CAS  Google Scholar 

  62. Lwin Y, Yarmo MA, Yaakob Z, Mohamad AB, Ramli W, Daud W (2001) Mater Res Bull 36:193

    CAS  Google Scholar 

  63. Chen Y, Zhang S, Han X, Zhang X, Yi M, Yang S, Yu D, Liu W (2018) Energy Fuel 32:2407

    CAS  Google Scholar 

  64. Chang Z, Evans DG, Duan X, Vial C, Ghanbaja J, Prevot V, Roy MD, Forano C (2005) J Solid State Chem 178:2766

    CAS  Google Scholar 

  65. Gao Z, Sasaki K, Qiu X (2018) Langmuir 34:5386

    CAS  PubMed  Google Scholar 

  66. Cho D-K, Jeon C-W, Park I-K (2018) J Alloys Compd 737:725

    CAS  Google Scholar 

  67. Saliba D, Ezzeddine A, Emwas A-H, Khashab NM, Al-Ghoul M (2016) Cryst Growth Des 16:4327

    CAS  Google Scholar 

  68. Adachi-Pagano M, Forano C, Besse J-P (2003) J Mater Chem 13:1988

    CAS  Google Scholar 

  69. López-Salinas E, García-Sánchez M, Montoya JA, Acosta DR, Abasolo JA, Schifter I (1997) Langmuir 13:4748

    Google Scholar 

  70. Unal U (2007) J Sol State Chem 180:2525

    Google Scholar 

  71. Yang J-H, Pei Y-R, Kim S-J, Choi G, Vinu A, Choy J-H (2018) Ind Eng Chem Res 57:16264

    CAS  Google Scholar 

  72. Frost RL, Palmer SJ, Grand L-M (2010) J Therm Anal Calorim 101:859

    Google Scholar 

  73. Yang Y, Rao D, Chen Y, Dong S, Wang B, Zhang X, Wei M (2018) ACS Catal 8:11749

    CAS  Google Scholar 

  74. Labajos FM, Sánchez-Montero MJ, Holgado MJ, Rives V (2001) Thermochim Acta 370:99

    CAS  Google Scholar 

  75. Rives V, Labajos FM, Ulibarri MA, Malet P (1993) Inorg Chem 32:5000

    CAS  Google Scholar 

  76. Bahranowski K, Dula R, Kooli F, Serwicka EM (1999) Colloid Surf A 158:129

    CAS  Google Scholar 

  77. Iguchi S, Hasegawa Y, Teramura K, Hosokawa S, Tanaka T (2016) J CO2 Util 15:6

    CAS  Google Scholar 

  78. Tyagi A, Joshi MC, Shah A, Thakur VK, Gupta RK (2019) ACS Omega 4:3257

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Guo Y, Zhang H, Zhao L, Li G, Chen J, Xu L (2005) J Solid State Chem 178:1830

    CAS  Google Scholar 

  80. Boclair JW, Braterman PS, Jiang J, Lou S, Yarberry F (1999) Chem Mater 11:303

    CAS  PubMed  Google Scholar 

  81. Nayak S, Pradhan AC, Parida KM (2018) Inorg Chem 57:8646

    CAS  PubMed  Google Scholar 

  82. Roto R, Villemure G (2006) Electrochim Acta 51:2539

    CAS  Google Scholar 

  83. Dang L, Liang H, Zhuo J, Lamb BK, Sheng H, Yang Y, Jin S (2018) Chem Mater 30:4321

    CAS  Google Scholar 

  84. Wang T, Zhang S, Yan X, Lyu M, Wang L, Bell J, Wang H (2017) ACS Appl Mater Interfaces 9:15510

    CAS  PubMed  Google Scholar 

  85. Zou X, Goswami A, Asefa T (2013) J Am Chem Soc 135:17242

    CAS  PubMed  Google Scholar 

  86. Fernandez JM, Barriga C, Ulibarri MA, Labajos FM, Rives V (1997) Chem Mater 9:312

    CAS  Google Scholar 

  87. Mohapatra L, Parida KM, Satpathy M (2012) J Phys Chem C 116:13063

    CAS  Google Scholar 

  88. Mohapatra L, Parida KM (2014) Phys Chem Chem Phys 16:16985

    CAS  PubMed  Google Scholar 

  89. Das N, Samal A (2004) Micropor Mesopor Mater 72:219

    CAS  Google Scholar 

  90. Shu X, Zhang W, He J, Gao F, Zhu Y (2006) Solid State Sci 8:634

    CAS  Google Scholar 

  91. Seftel EM, Popovici E, Mertens M, Van Tendeloo G, Cool P, Vansant EF (2008) Micropor Mesopor Mater 111:12

    CAS  Google Scholar 

  92. Li B, Zhao Y, Zhang S, Gao W, Wei M (2013) ACS Appl Mater Interfaces 5:10233

    CAS  PubMed  Google Scholar 

  93. Zhao J, Chen J, Xu S, Shao M, Yan D, Wei M, Evans DG, Duan X (2013) J Mater Chem A 1:8836

    Google Scholar 

  94. Ferencz Z, Szabados M, Ádok-Sipiczki M, Kukovecz Á, Kónya Z, Sipos P, Pálinkó I (2014) J Mater Sci 49:8478

    CAS  Google Scholar 

  95. Basile F, Fornasari G, Gazzano M, Vaccari A (2001) Appl Clay Sci 18:51

    CAS  Google Scholar 

  96. Basile F, Fornasari G, Gazzano M, Vaccari A (2000) Appl Clay Sci 16:185

    CAS  Google Scholar 

  97. Basile F, Fornasari G, Gazzanob M, Vaccari A (2002) J Mater Chem 12:3296

    CAS  Google Scholar 

  98. Chala SA, Tsai M-C, Su W-N, Ibrahim KB, Duma AD, Yeh M-H, Wen C-Y, Yu C-H, Chan T-S, Dai H, Hwang B-J (2019) ACS Catal 9:117

    CAS  Google Scholar 

  99. Friedrich HB, Govender M, Makhoba X, Ngcobo TD, Onani MO (2003) Chem Commun 23:2922

    Google Scholar 

  100. Fagiolari L, Scafuri A, Costantino F, Vivani R, Nocchetti M, Macchioni A (2016) ChemPlusChem 81:1060

    CAS  PubMed  Google Scholar 

  101. Shannon RD (1976) Acta Crystallogr A32:751

    CAS  Google Scholar 

  102. Sá FP, Cunha BN, Nunes LM (2013) Chem Eng J 215:122

    Google Scholar 

  103. Renaudin G, François M (1999) Acta Crystallogr C 55:835

    Google Scholar 

  104. Vichi FM, Alves OL (1997) J Mater Chem 7:1631

    CAS  Google Scholar 

  105. Buchner MR (2017) Beryllium chemistry. Reference module in chemistry, molecular sciences and chemical engineering. Elsevier, Waltham. https://doi.org/10.1016/B978-0-12-409547-2.11024-8

    Chapter  Google Scholar 

  106. Ropp RC (2013) Encyclopedia of the alkaline earth compounds. Elsevier, Oxford, p 105

    Google Scholar 

  107. Kuske P, Engelen B, Henning J, Lutz HD, Fuess H, Gregson D (1988) Z Krist 183:319

    CAS  Google Scholar 

  108. Claverie M, Garcia J, Prevost T, Brendlé J, Limousy L (2019) Materials 12:1399

    CAS  PubMed Central  Google Scholar 

  109. Makkos E, Kerridge A, Austin J, Kaltsoyannis N (2016) J Chem Phys 145:204708

    PubMed  Google Scholar 

  110. Mills SJ, Christy AG, Génin J-MR, Kameda T, Colombo F (2012) Mineral Mag 76:1289

    CAS  Google Scholar 

  111. Brigatti M, Malferrari D, Laurora A, Elmi C (2011) Structure and mineralogy of layer silicates: recent perspectives and new trends. EMU Notes Mineral 11:1–71. https://doi.org/10.1180/EMU-notes.11.1

    Article  Google Scholar 

  112. Mooser E, Pearson WB (1959) Acta Cryst 12:1015

    CAS  Google Scholar 

  113. Johnson DA (1982) Some thermodynamic aspects of inorganic chemistry. Cambridge University Press, Cambridge, p 150

    Google Scholar 

  114. Hansen HCB, Taylor RM (1991) Clay Miner 26:507

    CAS  Google Scholar 

  115. Fernandez JM, Barriga C, Ulibarri MA, Labajos FM, Rives V (1994) J Mater Chem 4:1117

    CAS  Google Scholar 

  116. Li B, Gu Z, Kurniawan N, Chen W, Xu ZP (2017) Adv Mater 29:1700373

    Google Scholar 

  117. Huang G, Zhang KL, Chen S, Li SH, Wang LL, Wang LP, Liu R, Gao J, Yang HH (2017) J Mater Chem B 5:3629

    CAS  Google Scholar 

  118. Simon L, François M, Refait P, Renaudin G, Lelaurain M, Génin JMR (2003) Solid State Sci 5:327

    CAS  Google Scholar 

  119. Taylor HFW (1973) Mineral Mag 39:377

    CAS  Google Scholar 

  120. Morato A, Alonso C, Medina F, Cesteros Y, Salagre P, Sueiras JE, Tichit D, Coq B (2001) Appl Catal B Environ 32:16743

    Google Scholar 

  121. Tichit D, Lorret O, Coq B, Prinetto F, Ghiotti G (2005) Micropor Mesopor Mater 80:213

    CAS  Google Scholar 

  122. Feng Y, Li D, Li C, Wang Z, Evans DG, Duan X (2003) Clay Clay Miner 51:566

    CAS  Google Scholar 

  123. Carja G, Niiyama H (2005) Mater Lett 59:3078

    CAS  Google Scholar 

  124. Jayanthi K, Kamath PV (2013) Dalton Trans 42:13220

    CAS  PubMed  Google Scholar 

  125. Greenwood NN, Earnshaw A (1984) Chemistry of the elements. Pergamon Press, Oxford

    Google Scholar 

  126. Zhao Y, Chen G, Bian T, Zhou C, Geoffrey, Waterhouse IN, Wu LZ, Tung CH, Smith LJ, O’Hare D, Zhang TR (2015) Adv Mater 27:7824

    CAS  PubMed  Google Scholar 

  127. Tavaresa SR, Vaiss VS, Wypych F, Leitão AA (2015) Appl Clay Sci 114:103

    Google Scholar 

  128. Nowacki W, Silverman JN (2010) Z Krist 115:21

    Google Scholar 

  129. Pérez-Ramıírez J, Mul G, Kapteijn F, Moulijn JA (2001) J Mater Chem 11:2529

    Google Scholar 

  130. Aramendía MA, Aviles Y, Benitez J, Borau V, Jiménez C, Marinas JM, Ruiz JR, Urbano FJ (1999) Micropor Mesopor Mater 29:319

    Google Scholar 

  131. Li F, Jiang X, Evans DG, Duan X (2005) J Porous Mater 12:55

    Google Scholar 

  132. Teramura K, Iguchi S, Mizunno Y, Shishido T, Tanaka T (2012) Angew Chem Int Ed 51:8008

    CAS  Google Scholar 

  133. Geng F, Matsushita Y, Xin H, Tanaka M, Izumi F, Iyi N, Sasaki T (2008) J Am Chem Soc 130:16344

    CAS  PubMed  Google Scholar 

  134. Kannan S, Jasra RV (2000) J Mater Chem 10:2311

    CAS  Google Scholar 

  135. Depège C, Bigey L, Forano C, Roy AD, Besse JP (1996) J Solid State Chem 126:314

    Google Scholar 

  136. Prevot V, Forano C, Besse JP (2000) J Solid State Chem 153:301

    CAS  Google Scholar 

  137. Velu S, Shah N, Jyothi TM, Sivasanker S (1999) Micropor Mesopor Mater 33:61

    CAS  Google Scholar 

  138. Jia G, Hu Y, Qian Q, Yao Y, Zhang S, Li Z, Zou Z (2016) ACS Appl Mater Interfaces 8:14527

    CAS  PubMed  Google Scholar 

  139. Chang X, Zhang X, Chen N, Wang K, Kang L, Liu ZH (2011) Mater Res Bull 46:1843

    CAS  Google Scholar 

  140. Manohara GV, Prassana SV, Kamath PV (2011) Eur J Inorg Chem 16:2624

    Google Scholar 

  141. Ma R, Takada K, Fukuda K, Iyi N, Bando Y, Sasaki T (2008) Angew Chem 120:92

    Google Scholar 

  142. Hou X-J, Li H, He P, Sun Z, Li S (2017) Appl Surf Sci 416:411

    CAS  Google Scholar 

  143. Cai J, Zhao X, Zhang Y, Zhang Q, Pan B (2018) J Colloid Interface Sci 509:353

    CAS  PubMed  Google Scholar 

  144. Sun Y, Guo XY, Hu SF, Xiang X (2019) J Energy Chem 34:80

    Google Scholar 

  145. Chowdhury PR, Bhattacharyya KG (2015) RSC Adv 5:92189

    Google Scholar 

  146. Silva CG, Bouizi Y, Fornes V, Garcia H (2009) J Am Chem Soc 131:13833

    Google Scholar 

  147. Xu S-M, Yan H, Wei M (2017) J Phys Chem C 121:2683

    CAS  Google Scholar 

  148. Saber O (2007) J Mater Sci 42:9905

    CAS  Google Scholar 

  149. Wang D, Chen X, Evans DG, Yang WS (2013) Nanoscale 5:5312

    CAS  PubMed  Google Scholar 

  150. Saber O (2007) J Phys Conf Ser 61:825

    CAS  Google Scholar 

  151. Parida K, Das J (2000) J Mol Catal A Chem 151:185

    CAS  Google Scholar 

  152. Costantino U, Marmottini F, Nocchetti M, Vivani R (1998) Eur J Inorg Chem 10:1439

    Google Scholar 

  153. Béres A, Pálinkó I, Kiricsi I, Mizukami F (2001) Solid State Ionics 141–142:259

    Google Scholar 

  154. Carja G, Nakamura R, Aida T, Niiyama H (2001) Micropor Mesopor Mater 47:275

    CAS  Google Scholar 

  155. Arco MD, Trujillano R, Rives V (1998) J Mater Chem 8:761

    Google Scholar 

  156. Shao MF, Zhang RK, Li ZH, Wei M, Evans DG, Duan X (2015) Chem Commun 51:15880

    CAS  Google Scholar 

  157. Grégoire B, Ruby C, Carteret C (2012) Cryst Growth Des 12:4324

    Google Scholar 

  158. Ziagan F, Rothbauer R (1967) Neues Jahrb Mineral Monatshefte 4:137

    Google Scholar 

  159. Pachayappan L, Nagendran S, Kamath PV (2017) Cryst Growth Des 17:2536

    CAS  Google Scholar 

  160. Marappa S, Kamath PV (2015) Ind Eng Chem Res 54:11075

    CAS  Google Scholar 

  161. Radha AV, Kamath PV, Shivakumara C (2007) J Phys Chem B 111:3411

    CAS  PubMed  Google Scholar 

  162. Jayanthi K, Kamath PV (2016) Cryst Growth Des 16:4450

    CAS  Google Scholar 

  163. Jayanthi K, Kamath PV, Periyasamy G (2017) Eur J Inorg Chem 2017:3675

    CAS  Google Scholar 

  164. Graves C, Thomas MA (1986) Acta Crystallogr B 42:51

    Google Scholar 

  165. Pearson RG (1988) Inorg Chem 27:734

    CAS  Google Scholar 

  166. Zigan F, Rothbauer R (1967) Neues Jahrb Mineral Monatshefte 245:4

    Google Scholar 

  167. Rothbauer R, Zigan F, O’Daniel H (1967) Z Krist 125:317

    CAS  Google Scholar 

  168. Aisawa S, Takahashi S, Ogasawara W, Umetsu Y, Narita E (2001) J Solid State Chem 162:52

    Google Scholar 

  169. Petch HE (1961) Acta Crystallogr 14:950

    CAS  Google Scholar 

  170. Hu CC, Teng H (2010) J Phys Chem C 114:20100

    CAS  Google Scholar 

  171. Álvarez A, Trujillano R, Rives V (2013) Appl Clay Sci 80–81:326

    Google Scholar 

  172. Norlund CA, Ollivier G (1972) Solid State Commun 10:609

    Google Scholar 

  173. Dias A, Cunha L, Vieira AC (2011) Mater Res Bull 46:1346

    CAS  Google Scholar 

  174. Christensen AN, Broch NC, Heidenstamm O, Nilsson A (1967) Acta Chem Scand 21:481

    Google Scholar 

  175. Aramendía MA, Borau V, Jimenez C, Marinas JM, Romero JF, Urbano FJ (1999) J Mater Chem 9:2291

    Google Scholar 

  176. Gorb LG, Aksenenko EV, Adams JW, Larson SW, Weiss CA, Leszczynska D, Leszczynski J (1998) J Mol Struct 425:129

    CAS  Google Scholar 

  177. Lotmar W, Feitknecht WZ (1936) Kristallografiya 93:368

    CAS  Google Scholar 

  178. Baliarsingh N, Parida KM, Pradhan GC (2014) Ind Eng Chem Res 53:3834

    Google Scholar 

  179. Zhao Y, Zhang S, Li B, Yan H, He S, Tian L, Shi W, Ma J, Wei M, Evans DG, Duan X (2011) Chem Eur J 17:13175

    CAS  PubMed  Google Scholar 

  180. Cairns RW, Ott EJ (1933) Am Chem Soc 55:527

    CAS  Google Scholar 

  181. Li M, Cheng JP, Wang J, Liu F, Zhang XB (2016) Electrochim Acta 206:108

    CAS  Google Scholar 

  182. Oswald HR, Reller A, Schmalle HW, Dubler E (1990) Acta Crystallogr C 46:2279

    Google Scholar 

  183. Lu MS, Shan Z, Andrea K, MacDonald B, Beale S, Curry DE, Wang L, Wang SJ, Oakes KD, Bennett C, Wu WH, Zhang X (2016) Langmuir 32:2659

    CAS  PubMed  Google Scholar 

  184. Baneeva MI, Popova SV (1969) Geokhimiya 4:807

    Google Scholar 

  185. Schläfer HL, Gliemann G (1969) Basic principles of ligand field theory. Wiley, London

    Google Scholar 

  186. Yan H, Wei M, Ma J, Li F, Evans DG, Duan X (2009) J Phys Chem A 113:6133

    CAS  PubMed  Google Scholar 

  187. Han Y, Liu ZH, Yang Z, Wang Z, Tang X, Wang T, Fan L, Ooi K (2008) Chem Mater 20:360

    CAS  Google Scholar 

  188. Yu L, Yang J, Guan B, Lu Y, Lou X (2018) Angew Chem Int Ed 57:172

    CAS  Google Scholar 

  189. Kloprogge JT, Frost RL (1999) Appl Catal A Gen 184:61

    CAS  Google Scholar 

  190. Oswald H, Asper R, Lieth R (eds) (1977) Physics and chemistry of materials with layered structures. R.M.A. Reidel, Dordrecht

    Google Scholar 

  191. Vieille L, Rousselot I, Leroux F, Besse JP, Taviot-Guého C (2003) Chem Mater 15:4361

    CAS  Google Scholar 

  192. Pauling L (1932) J Am Chem Soc 54:3570

    CAS  Google Scholar 

  193. Mulliken RS (1934) J Chem Phys 2:782

    CAS  Google Scholar 

  194. Sanderson RT (1988) J Chem Educ 65:112

    CAS  Google Scholar 

  195. Allred AL, Rochow E (1957) J Chem Phys 79:5361

    CAS  Google Scholar 

  196. Allred AL (1961) J Inorg Nucl Chem 17:215

    CAS  Google Scholar 

  197. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801

    CAS  Google Scholar 

  198. Boclair JW, Braterman PS (1999) Chem Mater 11:298

    CAS  PubMed  Google Scholar 

  199. Vaccari A (1998) Catal Today 41:53

    CAS  Google Scholar 

  200. Xu S-M, Pan T, Dou Y, Yan H, Zhang S, Ning F, Shi W, Wei M (2015) J Phys Chem C 119:18823

    CAS  Google Scholar 

  201. Moraes PI, Wypych F, Leitão AA (2019) J Phys Chem C 123:9838

    CAS  Google Scholar 

  202. Meyn M, Beneke K, Lagaly G (1990) Inorg Chem 29:5201

    CAS  Google Scholar 

  203. Lee JH, Rhee SW, Jung DY (2006) Chem Mater 18:4740

    CAS  Google Scholar 

  204. Prasad BE, Kamath PV, Vijayamohanan K (2011) Langmuir 27:13539

    CAS  PubMed  Google Scholar 

  205. Grégoire B, André E, Ruby C, Carteret C (2015) Curr Org Chem 5:2

    Google Scholar 

  206. Zhou L, Jiang S, Liu Y, Shao M, Wei M, Duan X (2018) ACS Appl Energy Mater 1:623

    CAS  Google Scholar 

  207. Zhang C, Shao M, Zhou L, Li Z, Xiao K, Wei M (2016) ACS Appl Mater Interfaces 8:33697

    CAS  PubMed  Google Scholar 

  208. Kanan DK, Carter EA (2012) J Phys Chem C 116:9876

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC: 21871021, 21521005 and 21627813), the National Key Research and Development Program (Grant No. 2017YFA0206804), and the Fundamental Research Funds for the Central Universities (buctylkxj01, XK1802-6 and 12060093063).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Yan or David G. Evans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yan, H., Zhao, XJ., Zhu, YQ., Wei, M., Evans, D.G., Duan, X. (2019). The Periodic Table as a Guide to the Construction and Properties of Layered Double Hydroxides. In: Mingos, D. (eds) The Periodic Table II. Structure and Bonding, vol 182. Springer, Cham. https://doi.org/10.1007/430_2019_47

Download citation

Publish with us

Policies and ethics