Skip to main content

Discovery of the Transuranium Elements Inspired Rearrangement of the Periodic Table and the Approach for Finding New Elements

  • Chapter
  • First Online:
The Periodic Table I

Part of the book series: Structure and Bonding ((STRUCTURE,volume 181))

Abstract

The synthesis and characterization of transuranium elements played an important and in the history of the periodic table. Prior to their discovery, elements up to uranium were thought to be 6d elements, and in the late 1930s, they were placed in the periodic table as such. The discovery of neptunium and plutonium and the determination of their chemical properties suggested that valence electrons were entering 5f orbitals and represented the emergence of a new series in the periodic table. The original characterization of americium and curium failed, until it was realized that they may behave more like uranium and plutonium than transition elements. Glenn Seaborg introduced the actinide concept and proposed rearranging the periodic table to create a new 5f actinide series akin to the 4f lanthanide series. Due to imperfect screening of the 5f electrons, and the subsequent changes in the energetics of both the 5f and 6d orbitals as one progresses along the series, the actinides experience an actinide contraction and display a fascinating set of periodic trends. Moving from left to right, the valence 5f electrons contract and lose their ability to form chemical bonds. The crossover from bonding (itinerant) to ionic (magnetic) behavior gives rise to many exotic and interesting chemical and physical properties and has challenged modern approaches to electronic structure both in theory and experiment. The multiplicity of oxidation states, coupled with the hydrolysis behavior of the aqueous ions, makes the chemical behavior of protactinium through americium among the most complex of the elements in the periodic table.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mendeleev D (1869). Z für Chem 12:405–406

    Google Scholar 

  2. Bohr N (1913) The constitution of atoms and molecules. I and II. Phil Mag (1798–1977) 26(1–25):476–502

    Google Scholar 

  3. Moseley H, Darwin CG (1913) The reflection of the X-rays. Nature 90:594

    CAS  Google Scholar 

  4. Moseley HGJ, Darwin CG (1913) The reflection of the X-rays. Phil Mag (1798–1977) 26:210–232

    CAS  Google Scholar 

  5. Bohr N (1921) Atomic structure. Nature 108:208–209

    CAS  Google Scholar 

  6. Pauli Jr W (1927) The quantum mechanics of the rotating electron. Z für Phys 43:601–623

    CAS  Google Scholar 

  7. Seaborg GT (1994) Origin of the actinide concept. In: Gschneidner Jr KA, Eyring L, Choppin GR, Lander GH (eds) Lanthanides and actinides: chemistry. Handbook on the physics and chemistry of the rare earths, vol 18. Elsevier Science B.V, Amsterdam, pp 1–27

    Google Scholar 

  8. Seaborg GT (1996) Evolution of the modern periodic table. J Chem Soc Dalton Trans 20:3899–3907

    Google Scholar 

  9. Seaborg GT (1996) Modification and expansion of Mendeleev’s periodic table. J Radioanal Nucl Chem 203(2):233–245

    CAS  Google Scholar 

  10. Rudy R (1927) Some recent chapters of spectroscopy. Rev Gen Sci Pures Appl 38:661–677

    CAS  Google Scholar 

  11. McLennan JC, McLay AB, Smith HG (1926) Atomic states and spectral terms. Proc R Soc Lond Series A Math Phys Eng Sci 112:76–94

    CAS  Google Scholar 

  12. Goldschmidt VM (1937) Geochemistry and the periodic system of the chemical elements. Trav Congr Jubilaire Mendeleev 2:387–396

    CAS  Google Scholar 

  13. Grosse AV (1930) Analytical chemistry of element 91, ekatantalum, and its difference from tantalum. J Am Chem Soc 52:1742–1747

    CAS  Google Scholar 

  14. Grosse AV (1935) Chemical properties of elements 93 and 94. J Am Chem Soc 57:440–441

    CAS  Google Scholar 

  15. Wu T-Y, Goudsmit S (1933) Low states of the heaviest elements. Phys Rev 43:496

    CAS  Google Scholar 

  16. Bohr N (1923) The structure of the atom. Nature 112(Suppl 2801):29–44

    CAS  Google Scholar 

  17. Sugiura Y, Urey HC (1926) The quantum-theory explanation of the anomalies in the 6th and 7th periods of the periodic table. Kgl Danske Videnskab Selskab Math-fys Medd 7(13):3–18

    CAS  Google Scholar 

  18. McMillan E, Abelson PH (1940) Radioactive element 93. Phys Rev 57:1185–1186

    CAS  Google Scholar 

  19. Seaborg GT, McMillan EM, Kennedy JW, Wahl AC (1946) Radioactive element 94 from deuterons on uranium. Phys Rev 69:366–367

    CAS  Google Scholar 

  20. Kennedy JW, Seaborg GT, Segre E, Wahl AC (1941) Properties of 94(239). Phys Rev 70:555–556

    CAS  Google Scholar 

  21. Seaborg GT, Wahl AC, Kennedy JW (1949) Nuclear properties of 94(238) and 93(238). Natl Nuclear Energy Ser Div IV 14B(Pt. I):13–20

    CAS  Google Scholar 

  22. Seaborg GT, Wahl AC (1948) The chemical properties of elements 94 and 93. J Am Chem Soc 70:1128–1134

    CAS  Google Scholar 

  23. Seaborg GT, Wahl AC (1949) The chemical properties of elements 94 and 93. Natl Nuclear Energy Ser Div IV 14B(Pt. I):25

    Google Scholar 

  24. Seaborg GT, Wahl AC (1942) Report to uranium committee. Report A-135, March 19

    Google Scholar 

  25. Zachariasen WH (1944) Report USAEC manhattan project report CK-1518. Metallurgical Laboratory

    Google Scholar 

  26. Zachariasen WH (1944) X-ray diffraction results for uranium and plutonium compounds. Report USAEC Manhattan project report CK-1367, Metallurgical Laboratory

    Google Scholar 

  27. Seaborg GT, Katz JJ, Manning WM (eds) (1949) The transuranium elements. McGraw-Hill, New York

    Google Scholar 

  28. Seaborg GT (1944) Report metallurgical project report CK-1968 (A-2845). Metallurgical Laboratory

    Google Scholar 

  29. Ghiorso A, James RA, Morgan LO, Seaborg GT (1950) Preparation of transplutonium isotopes by neutron irradiation. Phys Rev 78:472

    CAS  Google Scholar 

  30. Seaborg GT (1945) The chemical and radioactive properties of the heavy elements. Chem Eng News 23:2190–2193

    CAS  Google Scholar 

  31. Seaborg GT (1968) Elements beyond 100, present status and future prospects. Annu Rev Nucl Sci 18:15

    Google Scholar 

  32. Oehrstroem L, Reedijk J (2016) Names and symbols of the elements with atomic numbers 113, 115, 117 and 118 (IUPAC recommendations 2016). Pure Appl Chem 88(12):1225–1229

    CAS  Google Scholar 

  33. Duellmann CE (2011) Superheavy element studies with preseparated isotopes. Radiochim Acta 99(7–8):515–526

    CAS  Google Scholar 

  34. Turler A (2019) The expansion of the periodic table to its natural limits. Chimia 73(3):173–178

    CAS  PubMed  Google Scholar 

  35. Seaborg GT, Loveland WD (1990) The elements beyond uranium. Wiley, New York

    Google Scholar 

  36. Chemey AT, Albrecht-Schmitt TE (2019) Evolution of the periodic table through the synthesis of new elements. Radiochim Acta. https://doi.org/10.1515/ract-2018-3082

    CAS  Google Scholar 

  37. Scerri ER (2006) The periodic table. Its story and its significance. Oxford University Press, Oxford, p 346

    Google Scholar 

  38. Wen X-D, Martin RL, Henderson TM, Scuseria GE (2013) Density functional theory studies of the electronic structure of solid state actinide oxides. Chem Rev 113(2):1063–1096

    CAS  PubMed  Google Scholar 

  39. Edelstein NM, Fuger J, Katz JJ, Morss LR (2006) Summary and comparison of properties of the actinide and transactinide elements. In: Morss LR, Edelstein NM, Fuger J (eds) The chemistry of the actinide and transactinide elements, vol 3. 3rd edn. Springer, Berlin, pp 1753–1835

    Google Scholar 

  40. Schreckenbach G, Hay PJ, Martin RL (1999) Density functional calculations on actinide compounds: survey of recent progress and application to [UO2X4]2- (X = F, Cl, OH) and AnF6 (An = U, Np, Pu). J Comput Chem 20(1):70–90

    CAS  Google Scholar 

  41. Denning RG (1992) Electronic structure and bonding in actinyl ions. Complexes, clusters and crystal chemistry. Structure and bonding, vol 79. Springer, Berlin, pp 215–276

    Google Scholar 

  42. Kaltsoyannis N, Hay PJ, Li J, Blaudeau J-P, Bursten BE (2006) Theoretical studies of the electronic structure of compounds of the actinide elements. In: Morss L, Edelstein NM, Fuger J (eds) The chemistry of the actinide and transactinide elements, vol 3. 3rd edn. Springer, Berlin, pp 1893–2012

    Google Scholar 

  43. Tatsumi K, Hoffmann R (1980) Bent cis d0 MoO2 2+ vs. linear trans d0f0 UO2 2+: a significant role for nonvalence 6p orbitals in uranyl. Inorg Chem 19(9):2656–2658

    CAS  Google Scholar 

  44. Denning RG (2007). J Phys Chem A 111:4125–4143

    CAS  PubMed  Google Scholar 

  45. Dyall KG (1999) Bonding and bending in the actinyls. Mol Phys 96(4):511–518

    CAS  Google Scholar 

  46. Pepper M, Bursten BE (1991) The electronic structure of actinide-containing molecules: a challenge to applied quantum chemistry. Chem Rev 91(5):719–741

    CAS  Google Scholar 

  47. Hu S-X, Chen M, Ao B (2018) Theoretical studies on the oxidation states and electronic structures of actinide-borides: AnB12 (An = Th–Cm) clusters. Phys Chem Chem Phys 20(37):23856–23863

    CAS  PubMed  Google Scholar 

  48. Minasian SG, Keith JM, Batista ER, Boland KS, Clark DL, Conradson SD, Kozimor SA, Martin RL, Schwarz DE, Shuh DK, Wagner GL, Wilkerson MP, Wolfsberg LE, Yang P (2012) Determining relative f and d orbital contributions to M-Cl covalency in MCl6 2− (M = Ti, Zr, Hf, U) and UOCl5 using Cl K-edge X-ray absorption spectroscopy and time-dependent density functional theory. J Am Chem Soc 134(12):5586–5597

    CAS  PubMed  Google Scholar 

  49. Minasian SG, Keith JM, Batista ER, Boland KS, Clark DL, Kozimor SA, Martin RL, Shuh DK, Tyliszczak T (2014) New evidence for 5f covalency in actinocenes determined from carbon K-edge XAS and electronic structure theory. Chem Sci 5(1):351–359

    CAS  Google Scholar 

  50. Neidig ML, Clark DL, Martin RL (2013) Covalency in f-element complexes. Coord Chem Rev 257(2):394–406

    CAS  Google Scholar 

  51. Su J, Batista ER, Boland KS, Bone SE, Bradley JA, Cary SK, Clark DL, Conradson SD, Ditter AS, Kaltsoyannis N, Keith JM, Kerridge A, Kozimor SA, Loble MW, Martin RL, Minasian SG, Mocko V, La Pierre HS, Seidler GT, Shuh DK, Wilkerson MP, Wolfsberg LE, Yang P (2018) Energy-degeneracy-driven covalency in actinide bonding. J Am Chem Soc 140(51):17977–17984

    CAS  PubMed  Google Scholar 

  52. Bursten BE, Strittmatter RJ (1991) Cyclopentadienyl complexes of actinides. Formation and electron configuration. Angew Chem Int Ed Engl 30(9):1069–1085

    Google Scholar 

  53. Matsika S, Zhang Z, Brozell SR, Blaudeau JP, Wang Q, Pitzer RM (2001) Electronic structure and spectra of actinyl ions. J Phys Chem A 105(15):3825–3828

    CAS  Google Scholar 

  54. Wills JM, Eriksson O (1992) Crystal-structure stabilities and electronic structure for the light actinides thorium, protactinium, and uranium. Phys Rev B Condens Matt Mater Phys 45(24):13879–13890

    CAS  Google Scholar 

  55. Friedel J (1969) In: Ziman JM (ed) The physics of metals. Cambridge University Press, New York, p 340

    Google Scholar 

  56. Opeil CP, Schulze RK, Volz HM, Lashley JC, Manley ME, Hults WL, Hanrahan Jr RJ, Smith JL, Mihaila B, Blagoev KB, Albers RC, Littlewood PB (2007) Angle-resolved photoemission and first-principles electronic structure of single-crystalline α-U(001). Phys Rev B Condens Matt Mater Phys 75(4):045120/1–045120/5

    CAS  Google Scholar 

  57. Naegele JR, Manes L, Spirlet JC, Mueller W (1984) Localization of 5f electrons in americium: a photoemission study. Phys Rev Lett 52(20):1834–1837

    CAS  Google Scholar 

  58. Cooper NG, Schecker JA (2000) Challenges in plutonium science, vol 26. Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  59. Smith JL, Kmetko EA (1983) Magnetism or bonding: a nearly periodic table of transition elements. J Less-Comm Met 90(1):83–88

    CAS  Google Scholar 

  60. Skriver HL (1985) Phys Rev B Solid State 31:1909

    CAS  Google Scholar 

  61. Janoschek M, Das P, Chakrabarti B, Abernathy DL, Lumsden MD, Lawrence JM, Thompson JD, Lander GH, Mitchell JN, Richmond S, Ramos M, Trouw F, Zhu J-X, Haule K, Kotliar G, Bauer ED (2015) The valence-fluctuating ground state of plutonium. Sci Adv 1(6):e1500188/1–e1500188/7

    CAS  Google Scholar 

  62. Savrasov SY, Kotliar G (2000) Ground state theory of delta-Pu. Phys Rev Lett 84(16):3670–3673

    CAS  PubMed  Google Scholar 

  63. Soderlind P, Zhou F, Landa A, Klepeis JE (2015) Phonon and magnetic structure in δ-plutonium from density-functional theory. Sci Rep 5:15958

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wills JM, Eriksson O (2000) Actinide ground-state properties. Los Alamos Science 26(1):128

    Google Scholar 

  65. Joyce JJ, Wills JM, Durakiewicz T, Butterfield MT, Guziewicz E, Moore DP, Sarrao JL, Morales LA, Arko AJ, Eriksson O, Delin A, Graham KS (2006) Dual nature of the 5f electrons in plutonium materials. Phys B Condens Matter 378–380:920–924

    Google Scholar 

  66. Niklasson AMN, Wills JM, Katsnelson MI, Abrikosov IA, Eriksson O, Johansson B (2003) Modeling the actinides with disordered local moments. Phys Rev B Condens Matt Mater Phys 67(23):235105/1–235105/6

    CAS  Google Scholar 

  67. Soderlind P, Sadigh B (2004) Density-functional calculations of alpha, beta, gamma, delta, delta’, and epsilon plutonium. Phys Rev Lett 92(18):185702

    PubMed  Google Scholar 

  68. Gutowski KE, Bridges NJ, Rogers DR (2006) Actinide structural chemistry. In: Morss LR, Edelstein NM, Fuger J (eds) The chemistry of the actinide and transactinide elements, vol 4. 3rd edn. Springer, Berlin, p 2622

    Google Scholar 

  69. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A Cryst Phys Diffr Theor Gen Crystallogr A32(5):751–767

    CAS  Google Scholar 

  70. Shannon RD, Prewitt CT (1970) Revised values of effective ionic radii. Acta Crystallogr Sect B: Struct Crystallogr Cryst Chem 26:1046–1048

    CAS  Google Scholar 

  71. Matonic JH, Scott BL, Neu MP (2001) High-yield synthesis and single-crystal X-ray structure of a plutonium(III) aquo complex: [Pu(H2O)9][CF3SO3]3. Inorg Chem 40(12):2638–2639

    CAS  PubMed  Google Scholar 

  72. Lindqvist-Reis P, Apostolidis C, Rebizant J, Morgenstern A, Klenze R, Water O, Fanghaenel T, Haire RG (2007) The structures and optical spectra of hydrated transplutonium ions in the solid state and in solution. Angew Chem Int Ed 46(6):919–922

    CAS  Google Scholar 

  73. Conradson S (1998) Application of X-ray absorption fine structure spectroscopy to materials and environmental science. Appl Spetros 52(7):A252–A279

    Google Scholar 

  74. Allen PG, Bucher JJ, Shuh DK, Edelstein NM, Craig I (2000) Coordination chemistry of trivalent lanthanide and actinide ions in dilute and concentrated chloride solutions. Inorg Chem 39(3):595–601

    CAS  PubMed  Google Scholar 

  75. Allen PG, Bucher JJ, Shuh DK, Edelstein NM, Reich T (1997) Investigation of aquo and chloro complexes of UO2 2+, NpO2 +, Np4+, and Pu3+ by X-ray absorption fine structure spectroscopy. Inorg Chem 36(21):4676–4683

    CAS  PubMed  Google Scholar 

  76. D’Angelo P, Martelli F, Spezia R, Filipponi A, Denecke Melissa A (2013) Hydration properties and ionic radii of actinide(III) ions in aqueous solution. Inorg Chem 52(18):10318–10324

    PubMed  Google Scholar 

  77. D’Angelo P, Spezia R (2012) Hydration of lanthanoids(III) and actinoids(III): an experimental/theoretical saga. Chem Eur J 18(36):11162–11178

    PubMed  Google Scholar 

  78. D’Angelo P, Zitolo A, Migliorati V, Chillemi G, Duvail M, Vitorge P, Abadie S, Spezia R (2011) Revised ionic radii of lanthanoid(III) ions in aqueous solution. Inorg Chem 50(10):4572–4579

    PubMed  Google Scholar 

  79. Morss LR, Edelstein NM, Fuger J (eds) (2006) The chemistry of the actinide and transactinide elements. 3rd edn. Springer, Berlin, p 3442

    Google Scholar 

  80. Firestone RB, Shirley VS, Baglin CM, Chu SYF, Zipkin J (1998) (eds) Table of isotopes. 8th edn. Wiley, New York

    Google Scholar 

  81. Su J, Windorff CJ, Batista ER, Evans WJ, Gaunt AJ, Janicke MT, Kozimor SA, Scott BL, Woen DH, Yang P (2018) Identification of the formal +2 oxidation state of neptunium: synthesis and structural characterization of {NpII[C5H3(SiMe3)2]3}1−. J Am Chem Soc 140(24):7425–7428

    CAS  PubMed  Google Scholar 

  82. Windorff Cory J, Chen Guo P, Cross Justin N, Evans William J, Furche F, Gaunt Andrew J, Janicke Michael T, Kozimor Stosh A, Scott Brian L (2017) Identification of the formal +2 oxidation state of plutonium: synthesis and characterization of {Pu(II)[C5H3(SiMe3)2]3}. J Am Chem Soc 139(11):3970–3973

    CAS  PubMed  Google Scholar 

  83. Huh DN, Ziller JW, Evans WJ (2018) Chelate-free synthesis of the U(II) complex, [(C5H3(SiMe3)2)3U]1−, using Li and Cs reductants and comparative studies of La(II) and Ce(II) analogs. Inorg Chem 57(18):11809–11814

    CAS  PubMed  Google Scholar 

  84. Ryan AJ, Angadol MA, Ziller JW, Evans WJ (2019) Isolation of U(II) compounds using strong donor ligands, C5Me4H and N(SiMe3)2, including a three-coordinate U(II) complex. Chem Commun 55(16):2325–2327

    CAS  Google Scholar 

  85. Kiselev YM, Nikonov MV, Dolzhenko VD, Ermilov AY, Tananaev IG, Myasoedov BF (2014) On existence and properties of plutonium(VIII) derivatives. Radiochim Acta 102(3):227–237

    CAS  Google Scholar 

  86. Mikheev NB, Spitsyn VI, Kamenskaya AN, Rumer IA, Gvozdev BA, Rozenkevich NA, Auerman LN (1973) Reduction of mendelevium to the univalent state. Dokl Akad Nauk SSSR 208(5):1146–1149

    CAS  Google Scholar 

  87. Lloyd MH, Haire RG (1978) The chemistry of plutonium in sol-gel processes. Radiochim Acta 25(3–4):139–148

    CAS  Google Scholar 

  88. Nugent LJ, Baybarz RD, Burnett JL, Ryan JL (1973) Electron-transfer and f-d absorption bands of some lanthanide and actinide complexes and the standard (II-III) oxidation potential for each member of the lanthanide and actinide series. J Phys Chem 77(12):1528–1539

    CAS  Google Scholar 

  89. Clark DL, Hecker SS, Jarvinen GD, Neu MP (2006) Plutonium. In: Morss LR, Edelstein NM, Fuger J (eds) The chemistry of the actinide and transactinide elements, vol 2. 3rd edn. Springer, Berlin, pp 813–1264

    Google Scholar 

  90. Madic C, Hobart DE, Begun GM (1983) Raman spectrometric studies of actinide(V) and -(VI) complexes in aqueous sodium carbonate solution and of solid sodium actinide(V) carbonate compounds. Inorg Chem 22(10):1494–1503

    CAS  Google Scholar 

  91. Edelstein NM (1991) Studies of f1 and d1 configurations in the lanthanide and actinide series. Eur J Sol State Inor 28(Suppl):47–55

    CAS  Google Scholar 

  92. Carnall WT (1992) A systematic analysis of the spectra of trivalent actinide chlorides in D3h site symmetry. J Chem Phys 96(12):8713–8726

    CAS  Google Scholar 

  93. Carnall WT, Liu GK, Williams CW, Reid MF (1991) Analysis of the crystal-field spectra of the actinide tetrafluorides. I. Uranium, neptunium, and plutonium tetrafluorides (UF4, NpF4, and PuF4). J Chem Phys 95(10):7194–7203

    CAS  Google Scholar 

  94. Denning RG (1999) The identification of intra-configurational states of lanthanides and actinides. Spectrochim Acta A 55(9):1757–1765

    Google Scholar 

  95. Mikheev NB, Rumer IA, Auerman LN (1983) Hydration energy and electron structure of lanthanides and actinides. Radiochem Radioanal Let 59(5–6):317–328

    CAS  Google Scholar 

  96. Liu G, Beitz JV (2006) Optical spectra and electronic structure. In: Morss LR, Edelstein NM, Fuger J (eds) The chemistry of the actinide and transactinide elements, vol 3. 3rd edn. Springer, Berlin, p 2013

    Google Scholar 

  97. Lumetta GJ, Thompson MC, Penneman RA, Eller PG (2006) Curium. In: Morss LR, Edelstein NM, Fuger J (eds) The chemistry of the actinide and transactinide elements, vol 3. 3rd edn. Springer, Berlin, pp 1397–1443

    Google Scholar 

  98. Altmaier M, Gaona X, Fellhauer D, Clark David L, Runde WH, Hobart DE (2019) Chapter 22. Aqueous solution and coordination chemistry of plutonium. In: Clark David L, Geeson DA, Hanrahan Jr RJ (eds) Plutonium handbook, vol 3. 2nd edn. American Nuclear Society, La Grange Park, pp 1543–1726

    Google Scholar 

  99. Jones LH (1955) Infrared spectra and structure of the crystalline sodium acetate complexes of U(VI), Np(VI), Pu(VI), and Am(VI). Comparison of metal-oxygen bond distance and bond force constant in this series. J Chem Phys 23:2105–2107

    CAS  Google Scholar 

  100. Jones LH, Penneman RA (1953) J Chem Phys 21(3):542–544

    CAS  Google Scholar 

  101. Basile LJ, Sullivan JC, Ferraro JR, LaBonville P (1974) Raman scattering of uranyl and transuranium V, VI, and VII ions. Appl Spectrosc 28(2):142–145

    CAS  Google Scholar 

  102. Liu J-B, Chen Guo P, Huang W, Schwarz WHE, Li J, Clark David L (2017) Bonding trends across the series of tricarbonato-actinyl anions [(AnO2)(CO3)3](4-) (An = U-Cm): the plutonium turn. Dalton Trans 46(8):2542–2550

    CAS  PubMed  Google Scholar 

  103. Madic C, Begun GM, Hobart DE, Hahn RL (1984) Raman spectroscopy of neptunyl and plutonyl ions in aqueous solution: hydrolysis of neptunium(VI) and plutonium(VI) and disproportionation of plutonium(V). Inorg Chem 23(13):1914–1921

    CAS  Google Scholar 

  104. Guillaume B, Begun GM, Hahn RL (1982) Raman spectrometric studies of “cation-cation” complexes of pentavalent actinides in aqueous perchlorate solutions. Inorg Chem 21(3):1159–1166

    CAS  Google Scholar 

  105. Jones LH (1959) Determination of uranium-oxygen bond distance in uranyl complexes from their infrared spectra. Spectrochim Acta 15:409–411

    Google Scholar 

  106. Conradson SD, Abney KD, Begg BD, Brady ED, Clark DL, Den Auwer C, Ding M, Dorhout PK, Espinosa-Faller FJ, Gordon PL, Haire RG, Hess NJ, Hess RF, Keogh DW, Lander GH, Lupinetti AJ, Morales LA, Neu MP, Palmer PD, Paviet-Hartmann P, Reilly SD, Runde WH, Tait CD, Veirs DK, Wastin F (2004) Higher order speciation effects on plutonium L3 X-ray absorption near edge spectra. Inorg Chem 43(1):116–131

    CAS  PubMed  Google Scholar 

  107. Conradson SD, Mahamid IA, Clark DL, Hess NJ, Hudson EA, Neu MP, Palmer PD, Runde WH, Tait CD (1998) Oxidation state determination of plutonium aquo ions using x-ray absorption spectroscopy. Polyhedron 17(4):599–602

    CAS  Google Scholar 

  108. Antonio MR, Soderholm L (2006) Chapter 28 – X-ray absorption spectroscopy of the actinides. In: Morss LR, Edelstein NM, Fuger J (eds) The chemistry of the actinide and transactinide elements. Springer, Berlin, pp 3086–3198

    Google Scholar 

  109. Reich T, Geipel G, Funke H, Hennig C, Rossberg A, Bernhard G (2001) XANES and EXAFS measurements of plutonium hydrates. Report Inst. Radiochemistry, Forschungszentrum Rossendorf, Dresden, pp 27–32

    Google Scholar 

  110. Antonio MR, Williams CW, Sullivan JA, Skanthakumar S, Hu Y-J, Soderholm L (2012) Preparation, stability, and structural characterization of plutonium(VII) in alkaline aqueous solution. Inorg Chem 51(9):5274–5281

    CAS  PubMed  Google Scholar 

  111. den Auwer C, Simoni E, Conradson S, Madic C (2003) Investigating actinyl oxo cations by x-ray absorption spectroscopy. Eur J Inorg Chem (21):3843–3859

    Google Scholar 

  112. Petiau J, Calas G, Petitmaire D, Bianconi A, Benfatto M, Marcelli A (1986) Delocalized versus localized unoccupied 5f states and the uranium site structure in uranium oxides and glasses probed by x-ray-absorption near-edge structure. Phys Rev B Condens Matt 34(10):7350–7361

    CAS  Google Scholar 

  113. Lozano JM, Clark DL, Conradson SD, den Auwer C, Fillaux C, Guilaumont D, Webster Keogh D, Mustre de Leon J, Palmer PD, Simoni E (2009) Influence of the local atomic structure in the x-ray absorption near edge spectroscopy of neptunium oxo ions. Phys Chem Chem Phys 11(44):10396–10402

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Los Alamos National Laboratory and the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy, for their support of actinide chemistry research at Los Alamos National Laboratory. DEH is supported by the Center for Actinide Science and Technology (CAST), an Energy Frontier Research Center (EFRC) funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award Number DE-SC0016568. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of US Department of Energy (Contract No. 89233218CNA000001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Clark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Clark, D.L., Hobart, D.E. (2019). Discovery of the Transuranium Elements Inspired Rearrangement of the Periodic Table and the Approach for Finding New Elements. In: Mingos, D. (eds) The Periodic Table I. Structure and Bonding, vol 181. Springer, Cham. https://doi.org/10.1007/430_2019_46

Download citation

Publish with us

Policies and ethics