Structure and Reactivity of Carbones and Ylide Stabilized Carbenes: Contributions from Theory

  • Bitupon Borthakur
  • Ashwini K. Phukan
Part of the Structure and Bonding book series (STRUCTURE, volume 177)


This chapter presents the results of theoretical studies on divalent C(0) bases as well as on ylide stabilized carbenes. The primary difference between C(0) and C(II) compounds is the presence of two lone pairs at the central carbon atom of the former, unlike one in the latter. Theoretical studies reveal that the first and especially second proton affinity values can be used to distinguish carbenes from carbones. Further, the difference in reactivity of C(0) and C(II) compounds towards electrophiles such as H+, BH3 and AuCl is also found to be effective in distinguishing these two classes of compounds. Moreover, the 13C NMR chemical shifts of the central carbon atom as well as reactivity towards nucleophiles such as CNMe provide another criteria for distinguishing not only C(0) and C(II) compounds but also those having hidden C(0) characters. In addition, this chapter also deals with the recent studies carried out on ylide stabilized carbenes which possess excellent electron donation abilities. However, the ylide substituted carbenes are found to be ineffective towards activation of small molecules like H2 and NH3 due to the absence of a suitable low-lying π-acceptor orbital at the carbene centre.


13C NMR Carbenes Carbones Proton affinity Ylide 


  1. 1.
    Igau A, Grutzmacher H, Baceiredo A, Bertrand G (1988) J Am Chem Soc 110:6463CrossRefGoogle Scholar
  2. 2.
    Arduengo III AJ, Harlow RL, Kline M (1991) J Am Chem Soc 113:361CrossRefGoogle Scholar
  3. 3.
    Moss RA, Jones Jr M (1978) Reactive intermediates, vol 1. Wiley, New York, p 69Google Scholar
  4. 4.
    Jones Jr M, Moss RA (eds) (1973) Carbenes, vol 1. Wiley, New York, p 153Google Scholar
  5. 5.
    Jones Jr M, Moss RA (eds) (1975) Carbenes, vol 2. Wiley, New York, p 101Google Scholar
  6. 6.
    Jones Jr M, Moss RA (eds) (2004) Reactive intermediate chemistry. Wiley-Interscience, HobokenGoogle Scholar
  7. 7.
    Arduengo III AJ, Goerlich JR, Marshall WJ (1997) Liebigs Ann 2:365CrossRefGoogle Scholar
  8. 8.
    Martin D, Baceiredo A, Gornitzka H, Schoeller WW, Bertrand G (2005) Angew Chem Int Ed 44:1700CrossRefGoogle Scholar
  9. 9.
    Lavallo V, Canac Y, Prӓsang C, Donnadieu B, Bertrand G (2005) Angew Chem Int Ed 44:5705CrossRefGoogle Scholar
  10. 10.
    Lavallo V, Canac Y, DeHope A, Donnadieu B, Bertrand G (2005) Angew Chem Int Ed 44:7236CrossRefGoogle Scholar
  11. 11.
    Soleilhavoup M, Bertrand G (2015) Acc Chem Res 48:256CrossRefGoogle Scholar
  12. 12.
    Präsang C, Donnadieu B, Bertrand G (2005) J Am Chem Soc 127:10182CrossRefGoogle Scholar
  13. 13.
    Krahulic KE, Enright GD, Parvez M, Roesler R (2005) J Am Chem Soc 127:4142CrossRefGoogle Scholar
  14. 14.
    Iglesias M, Beetstra DJ, Knight JC, Ooi L, Stasch A, Coles S, Male L, Hursthouse MB, Cavel KJ, Dervisi A, Fallis IA (2008) Organometallics 27:3279CrossRefGoogle Scholar
  15. 15.
    Boehme C, Frenking G (1996) J Am Chem Soc 118:2039CrossRefGoogle Scholar
  16. 16.
    Tukov AA, Normand AT, Nechaev MS (2009) Dalton Trans:7015Google Scholar
  17. 17.
    Bazinet P, Yap GAP, Richeson DS (2003) J Am Chem Soc 125:13314CrossRefGoogle Scholar
  18. 18.
    Kuhn N, Al-Sheikh A (2005) Coord Chem Rev 249:829CrossRefGoogle Scholar
  19. 19.
    Nair V, Bindu S, Sreekumar V (2004) Angew Chem Int Ed 43:5130CrossRefGoogle Scholar
  20. 20.
    Alcarazo M, Stork T, Anoop A, Thiel W, Fìrstner A (2010) Angew Chem Int Ed 49:2542CrossRefGoogle Scholar
  21. 21.
    Seo H, Roberts BP, Abboud KA, Merz KM, Hong S (2010) Org Lett 12:4860CrossRefGoogle Scholar
  22. 22.
    Hudnall TW, Bielawski CW (2009) J Am Chem Soc 131:16039CrossRefGoogle Scholar
  23. 23.
    Tonner R, Heydenrych G, Frenking G (2007) Chem Asian J 2:1555CrossRefGoogle Scholar
  24. 24.
    Jacobsen H, Correa A, Poater A, Costabile C, Cavallo L (2009) Coord Chem Rev 253:687CrossRefGoogle Scholar
  25. 25.
    Lavallo V, Frey GD, Kousar S, Donnadieu B, Bertrand G (2007) Proc Natl Acad Sci U S A 104:13569CrossRefGoogle Scholar
  26. 26.
    Chu J, Munz D, Jazzar R, Melaimi M, Bertrand G (2016) J Am Chem Soc 138:7884CrossRefGoogle Scholar
  27. 27.
    Frey G, Lavallo V, Donnadieu B, Schoeller WW, Bertrand G (2007) Science 316:439CrossRefGoogle Scholar
  28. 28.
    Masuda JD, Schoeller WW, Donnadieu B, Bertrand G (2007) Angew Chem Int Ed 46:7052CrossRefGoogle Scholar
  29. 29.
    Back O, Kuchenbeiser G, Donnadieu B, Bertrand G (2009) Angew Chem Int Ed 48:5530CrossRefGoogle Scholar
  30. 30.
    Lavallo V, Canac Y, Donnadieu B, Schoeller WW, Bertrand G (2006) Angew Chem Int Ed 45:3488CrossRefGoogle Scholar
  31. 31.
    Borthakur B, Phukan AK (2015) Chem Eur J 21:11603CrossRefGoogle Scholar
  32. 32.
    Borthakur B, Silvi B, Dewhurst RD, Phukan AK (2016) J Comput Chem 37:1484CrossRefGoogle Scholar
  33. 33.
    Nakafuji S, Kobayashi J, Kawashima T (2008) Angew Chem Int Ed 47:1141CrossRefGoogle Scholar
  34. 34.
    Asay M, Donnadieu B, Baceiredo A, Soleilhavoup M, Bertrand G (2008) Inorg Chem 47:3949CrossRefGoogle Scholar
  35. 35.
    Fürstner A, Alcarazo M, Radkowski K, Lehmann CW (2008) Angew Chem Int Ed 47:8302CrossRefGoogle Scholar
  36. 36.
    Kobayashi J, Nakafuji S, Yatabe A, Kawashima T (2008) Chem Commun:6233Google Scholar
  37. 37.
    Frenking G, Hermann M, Andrada DM, Holzmann N (2016) Chem Soc Rev 45:1129CrossRefGoogle Scholar
  38. 38.
    Zhao L, Hermann M, Holzmann N, Frenking G (2017) Coord Chem Rev 344:163CrossRefGoogle Scholar
  39. 39.
    Frenking G, Tonner R (2009) Pure Appl Chem 81:597CrossRefGoogle Scholar
  40. 40.
    Ramirez F, Desai NB, Hansen B, McKelvie N (1961) J Am Chem Soc 83:3539CrossRefGoogle Scholar
  41. 41.
    Tonner R, Öxler F, Neumüller B, Petz W, Frenking G (2006) Angew Chem Int Ed 45:8038CrossRefGoogle Scholar
  42. 42.
    Tonner R, Frenking G (2008) Chem Eur J 14:3260CrossRefGoogle Scholar
  43. 43.
    Quinlivan PJ, Parkin G (2017) Inorg Chem 56:5493CrossRefGoogle Scholar
  44. 44.
    Tonner R, Heydenrych G, Frenking G (2008) ChemPhysChem 9:1474CrossRefGoogle Scholar
  45. 45.
    Deshmukh MM, Gadre SR, Tonner R, Frenking G (2008) Phys Chem Chem Phys 10:2298CrossRefGoogle Scholar
  46. 46.
    Petz W, Öxler F, Neumüller B, Tonner R, Frenking G (2009) Eur J Inorg Chem:4507Google Scholar
  47. 47.
    Marrot S, Kato T, Gornitzka H, Baceiredo A (2006) Angew Chem Int Ed 45:2598CrossRefGoogle Scholar
  48. 48.
    Tonner R, Frenking G (2007) Angew Chem Int Ed 46:8695CrossRefGoogle Scholar
  49. 49.
    Dyker CA, Lavallo V, Donnadieu B, Bertrand G (2008) Angew Chem Int Ed 47:3206CrossRefGoogle Scholar
  50. 50.
    Fürstner A, Alcarazo M, Goddard R, Lehmann CW (2008) Angew Chem Int Ed 47:3210CrossRefGoogle Scholar
  51. 51.
    Frenking G, Tonner R (2011) WIREs Comput Mol Sci 1:869CrossRefGoogle Scholar
  52. 52.
    Tonner R, Frenking G (2008) Chem Commun 13:1584CrossRefGoogle Scholar
  53. 53.
    Liberman-Martin AL, Grubbs RH (2017) Organometallics 36:4091CrossRefGoogle Scholar
  54. 54.
    Pranckevicius C, Fan L, Stephan DW (2015) J Am Chem Soc 137:5582CrossRefGoogle Scholar
  55. 55.
    Hsu YC, Shen JS, Lin BC, Chen WC, Chan YT, Ching WM, Yap GPA, Hsu CP, Ong TG (2015) Angew Chem Int Ed 54:2420CrossRefGoogle Scholar
  56. 56.
    Goldfogel MJ, Roberts CC, Meek SJ (2014) J Am Chem Soc 136:6227CrossRefGoogle Scholar
  57. 57.
    Roberts CC, Matías DM, Goldfogel MJ, Meek SJ (2015) J Am Chem Soc 137:6488CrossRefGoogle Scholar
  58. 58.
    Chen WC, Shen JS, Jurca T, Peng CJ, Lin YH, Wang YP, Shih WC, Yap GPA, Ong TG (2015) Angew Chem Int Ed 54:15207CrossRefGoogle Scholar
  59. 59.
    Chen WC, Shih WC, Jurca T, Zhao L, Andrada DM, Peng CJ, Chang CC, Liu SK, Wang YP, Wen YS, Yap GPA, Hsu CP, Frenking G, Ong TG (2017) J Am Chem Soc 139:12830CrossRefGoogle Scholar
  60. 60.
    Phukan AK, Guha AK (2012) Dalton Trans 41:8973CrossRefGoogle Scholar
  61. 61.
    Guha AK, Konwar B, Sarmah S, Phukan AK (2012) Theor Chem Accounts 131:1134CrossRefGoogle Scholar
  62. 62.
    Bader RWF (1990) Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  63. 63.
    Bader RFW (1991) Chem Rev 91:893CrossRefGoogle Scholar
  64. 64.
    Cremer D, Kraka E (1984) Angew Chem Int Ed 23:627CrossRefGoogle Scholar
  65. 65.
    Patel DS, Bharatam PV (2011) J Org Chem 76:2558CrossRefGoogle Scholar
  66. 66.
    Lavallo V, Dyker CA, Donnadieu B, Bertrand G (2008) Angew Chem Int Ed 47:5411CrossRefGoogle Scholar
  67. 67.
    Melaimi M, Parameswaran P, Donnadieu B, Frenking G, Bertrand G (2009) Angew Chem Int Ed 48:4792CrossRefGoogle Scholar
  68. 68.
    Weiss R, Reichel S, Handke M, Hampel F (1998) Angew Chem Int Ed 37:344CrossRefGoogle Scholar
  69. 69.
    Guha AK, Phukan AK (2012) Chem Eur J 18:4419CrossRefGoogle Scholar
  70. 70.
    Klein S, Frenking G (2010) Angew Chem Int Ed 49:7106CrossRefGoogle Scholar
  71. 71.
    Tonner R, Frenking G (2008) Chem Eur J 14:3273CrossRefGoogle Scholar
  72. 72.
    Esterhuysen C, Frenking G (2011) Chem Eur J 17:9944CrossRefGoogle Scholar
  73. 73.
    Vicente J, Singhal AR, Jones PG (2002) Organometallics 21:5887CrossRefGoogle Scholar
  74. 74.
    Guha AK, Gogoi U, Phukan AK (2013) Int J Quantum Chem 113:2471Google Scholar
  75. 75.
    Guha AK, Borthakur B, Phukan AK (2015) J Org Chem 80:7301CrossRefGoogle Scholar
  76. 76.
    El-Hellani A, Monot J, Tang S, Guillot R, Bour C, Gandon V (2013) Inorg Chem 52:11493CrossRefGoogle Scholar
  77. 77.
    Bharadwaz P, Chetia P, Phukan AK (2017) Chem Eur J 23:9926CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical SciencesTezpur UniversityNapaamIndia

Personalised recommendations