Chiral Organic Structure-Directing Agents

  • Luis Gómez-Hortigüela
  • Beatriz Bernardo-Maestro
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 175)

Abstract

Chirality is crucial for life. The preparation of enantiopure chiral compounds is highly desirable in the chemical industry, especially in the pharmaceutical sector. In this context, the design of chiral solids able to discriminate between enantiomers of chiral compounds, either during adsorption or asymmetric catalytic processes, is one of the greatest challenges nowadays in chemical research. Zeolite-type materials represent ideal candidates to achieve enantioselective chiral solids since they could combine their high stability, surface area, and shape-selectivity with a potential enantioselectivity that could be enhanced by the confinement effect. Despite the occurrence of chiral zeolite frameworks and the strong interest in preparing these chiral solids, very little success has been met in preparing these in homochiral form. The main strategy to induce chirality in zeolite materials has been the use of chiral structure-directing agents, in an attempt to transfer their chiral feature into the nascent zeolite structure. However, although many chiral organic species have directed the crystallization of zeolite frameworks, some of them even being chiral, there is only one unique very recent example of success in transferring the chirality from the organic structure-directing agent into an enantioenriched chiral zeolite material. Chiral coordination compounds have been very successful in transferring their chirality onto inorganic frameworks through the development of extensive H-bond host–guest interactions, but these chiral materials usually collapse upon removal of the guest species. In this chapter we report the different types of chiral molecules, both organic and organometallic compounds, used so far as structure-directing agents in an attempt to promote the crystallization of homochiral zeolites; we analyze in detail the possible reasons for the general failure in transferring their chirality, and we propose approaches to prepare known chiral zeolite frameworks in homochiral form. Furthermore, we also review a different approach we have followed in our group in order to induce chirality in zeolite materials, consisting in the development of chiral spatial distributions of dopants embedded in otherwise achiral zeolite frameworks.

Keywords

Chirality Enantiomer Host-guest chemistry Structure-directing agents Templates Zeolites 

Notes

Acknowledgements

Funding from the Spanish Ministry of Science and Innovation (MICINN) through projects MAT2012-31127 and MAT2015-65767-P is acknowledged. BBM acknowledges the Spanish Ministry of Economy and Competitivity for a predoctoral (BES-2013-064605) contract.

References

  1. 1.
    Lough WJ, Wainer IW (eds) (2002) Chirality in natural and applied science. CRC Press. ISBN 0-632-05435-2Google Scholar
  2. 2.
    Chan RS, Ingold CK, Prelog V (1966) Specification of molecular chirality. Angew Chem Int Ed 5(4):385–415CrossRefGoogle Scholar
  3. 3.
    Martin RH (1974) The helicenes. Angew Chem Int Ed Engl 13(10):649–660CrossRefGoogle Scholar
  4. 4.
    Gardner M (1964) The ambidextrous universe. Symmetry and asymmetry from mirror reflections to superstrings, 3rd revised edn. Penguin BooksGoogle Scholar
  5. 5.
    Guijarro A, Yus M (2009) The origin of chirality in the molecules of life: a revision from awareness to the current theories and perspectives for this unsolved problem. RSC Publishing. ISBN 978-0-85404-156-5Google Scholar
  6. 6.
    Mason SF (1984) Origins of biomolecular handedness. Nature 311:19–23CrossRefGoogle Scholar
  7. 7.
    Patil PN (2002) Chirality in medicinal chemistry. In: Lough WJ, Wainer IW (eds) Chapter 6 in chirality in natural and applied science. CRC Press, pp 139–178. ISBN 0-632-05435-2Google Scholar
  8. 8.
    Rouhi M (2005) Top pharmaceuticals: thalidomide. Chem Eng News 83:122–123CrossRefGoogle Scholar
  9. 9.
    Thayer AM (2007) Centering on chirality. Chem Eng News 85:11–19Google Scholar
  10. 10.
    Haris KDM, Thomas SJM (2009) Selected thoughts on chiral crystals, chiral surfaces, and asymmetric heterogeneous catalysis. ChemCatChem 1:223–231CrossRefGoogle Scholar
  11. 11.
    Hazen RM, Sholl DS (2003) Chiral selection on inorganic crystalline surfaces. Nat Mater 2:367–374CrossRefGoogle Scholar
  12. 12.
    Kavasmaneck PR, Bonner WA (1977) Adsorption of amino acid derivatives by d- and l-quartz. J Am Chem Soc 99:44–50CrossRefGoogle Scholar
  13. 13.
    Bonner WA (1991) The origin and amplification of biomolecular chirality. Orig Life Evol Biosph 21:59–111CrossRefGoogle Scholar
  14. 14.
    Hazen RM, Filley TR, Goodfriend GA (2001) Selective adsorption of L- and D-amino acids on calcite: implication for biochemical homochirality. Proc Natl Acad Sci U S A 98(10):5487–5490CrossRefGoogle Scholar
  15. 15.
    Moliner M, Rey F, Corma A (2013) Towards the rational design of efficient organic structure-directing agents for zeolite synthesis. Angew Chem Int Ed 52:13880–13889CrossRefGoogle Scholar
  16. 16.
    Davis ME (2014) Zeolites from a materials chemistry perspective. Chem Mater 26:239–245CrossRefGoogle Scholar
  17. 17.
    Davis ME (2003) Reflections on routes to enantioselective solid catalysts. Top Catal 25:3–7CrossRefGoogle Scholar
  18. 18.
    Yu J, Xu R (2008) Chiral zeolitic materials: structural insights and synthetic challenges. J Mater Chem 18:4021–4030CrossRefGoogle Scholar
  19. 19.
    Dubbeldam D, Calero S, Vlugt TJH (2014) Exploring new methods and materials for enantioselective separations and catalysis. Mol Simul 40:585–598CrossRefGoogle Scholar
  20. 20.
    Mc Morn P, Hutchings GJ (2004) Heterogeneous enantioselective catalysts: strategies for the immobilisation of homogeneous catalysts. Chem Soc Rev 33:108–122CrossRefGoogle Scholar
  21. 21.
    Davis ME (1998) Zeolite-based catalysts for chemicals synthesis. Microporous Mesoporous Mater 21:173–182CrossRefGoogle Scholar
  22. 22.
    Treacy MMJ, Newsam JM (1988) 2 New 3-dimensional 12-ring zeolite frameworks of which zeolite beta is a disordered intergrowth. Nature 332:249–251CrossRefGoogle Scholar
  23. 23.
    Rajic N, Logar NZ, Kaucic V (1995) A novel open framework zincophosphate – synthesis and characterization. Zeolites 15:672–678CrossRefGoogle Scholar
  24. 24.
    Cheetham AK, Fjellvag H, Gier TE et al (2001) Very open microporous materials: from concept to reality. Stud Surf Sci Catal 135:158–158CrossRefGoogle Scholar
  25. 25.
    Bu X, Feng P, Gier TE et al (1998) Hydrothermal synthesis and structural characterization of zeolite-like structures based on gallium and aluminum germinates. J Am Chem Soc 120:13389–13397CrossRefGoogle Scholar
  26. 26.
    Rouse RC, Peacor DR (1986) Crystal structure of the zeolite mineral goosecreekite, CaAl2Si6O16·5H2O. Am Mineral 71:1494–1501Google Scholar
  27. 27.
    Broach RW, Kirchner RM (2011) Structures of the K+ and NH4+ forms of Linde J. Microporous Mesoporous Mat 143:398–400CrossRefGoogle Scholar
  28. 28.
    Song XW, Li Y, Gan L et al (2009) Heteroatom-stabilized chiral framework of aluminophosphate molecular sieves. Angew Chem Int Ed 48:314–317CrossRefGoogle Scholar
  29. 29.
    Sun J, Bonneau C, Cantín A et al (2009) The ITQ-37 mesoporous chiral zeolite. Nature 458:1154–1157CrossRefGoogle Scholar
  30. 30.
    Tang LQ, Shi L, Bonneau C et al (2008) A zeolite family with chiral and achiral structures built from the same building layer. Nat Mater 7:381–385CrossRefGoogle Scholar
  31. 31.
    Rojas A, Camblor MA (2012) A pure silica chiral polymorph with helical pores. Angew Chem Int Ed 51:3854–3856CrossRefGoogle Scholar
  32. 32.
    Rojas A, Arteaga O, Kahr B et al (2013) Synthesis, structure and optical activity of HPM-1, a pure silica chiral zeolite. J Am Chem Soc 135:11975–11984CrossRefGoogle Scholar
  33. 33.
    Liu X, Xing Y, Wang X et al (2010) Chirality and magnetism of an open-framework cobalt phosphite containing helical channels from achiral materials. Chem Commun 46:2614–2616CrossRefGoogle Scholar
  34. 34.
    Dryzun C, Mastai Y, Shvalb A et al (2009) Chiral silicate zeolites. J Mater Chem 19:2062–2069CrossRefGoogle Scholar
  35. 35.
    Zhang J, Chen SM, XH B (2009) Nucleotide-catalyzed conversion of racemic zeolite-type zincophosphate into enantioenriched crystals. Angew Chem Int Ed 49:6049–6051CrossRefGoogle Scholar
  36. 36.
    Issue S (2014) Metal-organic frameworks. Chem Soc Rev 43:5403–6176CrossRefGoogle Scholar
  37. 37.
    Ma L, Abney C, Lin W (2009) Enantioselective catalysis with homochiral metal-organic frameworks. Chem Soc Rev 38:1248–1256CrossRefGoogle Scholar
  38. 38.
    Liu Y, Xuan W, Cui Y (2010) Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv Mater 22:4112–4135CrossRefGoogle Scholar
  39. 39.
    Morris RE, XH B (2010) Induction of chiral porous solids containing only achiral building blocks. Nat Chem 2:353–361CrossRefGoogle Scholar
  40. 40.
    Lobo RF, Davis ME (1994) Synthesis and characterization of pure-silica and boron-substituted SSZ-24 using N(16) methylsparteinium bromide as structure-directing agent. Microporous Mater 3:61–69CrossRefGoogle Scholar
  41. 41.
    Yoshikawa M, Wagner P, Lovallo M et al (1998) Synthesis, characterization, and structure solution of CIT-5, a new, high-silica, extra-large-pore molecular sieve. J Phys Chem B 102:7139–7147CrossRefGoogle Scholar
  42. 42.
    Corma A, Díaz-Cabañas MJ, Martínez-Triguero J et al (2002) A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst. Nature 418:514–517CrossRefGoogle Scholar
  43. 43.
    Tsuji K, Wagner P, Davis ME (1999) High-silica molecular sieve syntheses using the sparteine related compounds as structure-directing agents. Microporous Mesoporous Mater 28:461–469CrossRefGoogle Scholar
  44. 44.
    Kubota Y, Helmkamp MM, Zones SI et al (1996) Properties of organic cations that lead to the structure-direction of high-silica molecular sieves. Microporous Mater 6:213–229CrossRefGoogle Scholar
  45. 45.
    Lobo RF, Davis ME (1995) CIT-1: a new molecular sieve with intersecting pores bounded by 10- and 12-rings. J Am Chem Soc 117:3766–3779CrossRefGoogle Scholar
  46. 46.
    Xie D, McCusker LB, Baerlocher C et al (2013) SSZ-52, a zeolite with an 18-layer aluminosilicate framework structure related to that of the DeNOx catalyst Cu-SSZ-13. J Am Chem Soc 135:10519–10524CrossRefGoogle Scholar
  47. 47.
    Jiang J, Xu Y, Cheng P et al (2011) Investigation of extra-large pore zeolite synthesis by a high-throughput approach. Chem Mater 23:4709–4715CrossRefGoogle Scholar
  48. 48.
    García R, Gómez-Hortigüela L, Sánchez F et al (2010) Diastereoselective structure directing effect of (1S,2S)-2-hydroxymethyl-1-benzyl-1-methylpyrrolidinium in the synthesis of ZSM-12. Chem Mater 22:2276–2286CrossRefGoogle Scholar
  49. 49.
    García R, Gómez-Hortigüela L, Pérez-Pariente J (2012) Study of the structure directing effect of the chiral cation (1S,2S)-2-hydroxymethyl-1-benzyl-1-methylpyrrolidinium in aluminosilicate preparations in the presence of co-structure directing agents. Catal Today 179:16–26CrossRefGoogle Scholar
  50. 50.
    García R, Gómez-Hortigüela L, Sánchez F et al (2011) Structure-direction of chiral 2-hydroxymethyl-1-benzyl-1-methylpyrrolidinium in the cotemplated synthesis of ferrierite: fundaments of diastereo-recognition from non-chiral microporous structures. Microporous Mesoporous Mater 146:57–68CrossRefGoogle Scholar
  51. 51.
    Lobo RF, Tsapatsis M, Freyhardt CC et al (1997) A model for the structure of the large-pore zeolite SSZ-31. J Am Chem Soc 119:3732–3744CrossRefGoogle Scholar
  52. 52.
    Brand SK, Schmidt JE, Deem MW et al (2017) Enantiomerically enriched, polycrystalline molecular sieves. Proc Natl Acad Sci U S A 114(20):5101–5106CrossRefGoogle Scholar
  53. 53.
    Martínez-Franco R, Paris C, Martínez-Triguero J et al (2017) Direct synthesis of the aluminosilicate form of the small pore CDO zeolite with novel OSDAs and the expanded polymorphs. Microporous Mesoporous Mater 246:147–157CrossRefGoogle Scholar
  54. 54.
    Golebiewski WM, Spenser ID (1988) Biosynthesis of the lupine alkaloids. II. Sparteine and lupanine. Can J Chem 66(7):1734–1748CrossRefGoogle Scholar
  55. 55.
    Wagner P, Yoshikawa M, Lovallo M et al (1997) CIT-5: a high-silica zeolite with 14-ring pores. Chem Commun 2179–2180Google Scholar
  56. 56.
    Gómez-Hortigüela L, Álvaro-Muñoz T. Unpublished resultsGoogle Scholar
  57. 57.
    Dong Z, Zhao L, Liang Z et al (2010) [Zn(HPO3)(C11N2O2H12)] and [Zn3(H2O)(PO4)(HPO4)(C6H9N3O2)2 (C6H8N3O2)]: homochiral zinc phosphite/phosphate networks with biofunctional amino acids. Dalton Trans 39:5439–5445CrossRefGoogle Scholar
  58. 58.
    Komura K, Horibe Y, Yajima H et al (2016) Synthesis, crystal structure and characterization of novel open framework CHA-type aluminophosphate involving a chiral diamine. Dalton Trans 45:15193–15202CrossRefGoogle Scholar
  59. 59.
    Gómez-Hortigüela L, Pérez-Pariente J, Blasco T (2007) (S)-(−)-N-benzylpyrrolidine-2-methanol: a new and efficient structure directing agent for the synthesis of crystalline microporous aluminophosphates with AFI-type structure. Microporous Mesoporous Mater 100:55–62CrossRefGoogle Scholar
  60. 60.
    Pinar AB, Gómez-Hortigüela L, McCusker LB et al (2011) Synthesis of Zn-containing microporous aluminophosphate with the STA-1 structure. Dalton Trans 40:8125–8131CrossRefGoogle Scholar
  61. 61.
    Álvaro-Muñoz T, López-Arbeloa F, Pérez-Pariente J et al (2014) (1R,2S)-Ephedrine: a new self-assembling chiral template for the synthesis of aluminophosphate frameworks. J Phys Chem C 118:3069–3077CrossRefGoogle Scholar
  62. 62.
    Bernardo-Maestro B, López-Arbeloa F, Pérez-Pariente J et al (2015) Supramolecular chemistry controlled by conformational space during structure-direction of nanoporous materials: self-assembly of ephedrine and pseudoephedrine. J Phys Chem C 119:28214–28225CrossRefGoogle Scholar
  63. 63.
    Bernardo-Maestro B, Vos E, López-Arbeloa F et al (2017) Supramolecular chemistry controlled by packing interactions during structure-direction of nanoporous materials: effect of the addition of methyl groups on ephedrine derivatives. Microporous Mesoporous Mater 239:432–443CrossRefGoogle Scholar
  64. 64.
    Pinilla-Herrero I, Gómez-Hortigüela L, Márquez-Álvarez C et al (2016) Unexpected crystal growth modifier effect of glucosamine as additive in the synthesis of SAPO-35. Microporous Mesoporous Mater 219:322–326CrossRefGoogle Scholar
  65. 65.
    Nenoff TM, Thoma SG, Provencio P et al (1998) Novel zinc phosphate phases formed with chiral d-glucosamine molecules. Chem Mater 10:3077–3080CrossRefGoogle Scholar
  66. 66.
    Lin HM, Lii KH (1998) Synthesis and structure of [(1R,2R)-C6H10(NH3)2][Ga(OH)(HPO4)2]·H2O, the first metal phosphate containing a chiral amine. Inorg Chem 37:4220–4222CrossRefGoogle Scholar
  67. 67.
    Abourashed EA, El-Alfy AT, Khan IA et al (2003) Ephedra in perspective − a current review. Phytother Res 17:703–712CrossRefGoogle Scholar
  68. 68.
    Bernardo-Maestro B, Roca-Moreno MD, López-Arbeloa F et al (2016) Supramolecular chemistry of chiral (1R,2S)-ephedrine confined within the AFI framework as a function of the synthesis conditions. Catal Today 277:9–20CrossRefGoogle Scholar
  69. 69.
    Bernardo-Maestro B, López-Arbeloa F, Pérez-Pariente J et al (2017) Comparison of the structure-directing effect of ephedrine and pseudoephedrine during crystallization of nanoporous aluminophosphates. Microporous Mesoporous Mater. In Press.  https://doi.org/10.1016/j.micromeso.2017.04.008
  70. 70.
    Shi X, Zhu G, Qiu S et al (2004) Zn2[(S)-O3PCH2NHC4H7CO2]2: a homochiral 3D zinc phosphonate with helical channels. Angew Chem Int Ed 43:6482–6485CrossRefGoogle Scholar
  71. 71.
    Bernardo-Maestro B, Gómez-Hortigüela L. Unpublished resultsGoogle Scholar
  72. 72.
    Morgan K, Gainsford G, Milestone N (1995) A novel layered aluminophosphate [Co(en)3Al3P4O16·3H2O] assembled about a chiral metal complex. J Chem Soc Chem Commun 425–426Google Scholar
  73. 73.
    Bruce DA, Wilkinson AP, White MG, Bertrand JA (1995) The synthesis and structure of a chiral layered aluminophosphate containing the template Co(tn)33+. J Chem Soc Chem Commun 2059–2060Google Scholar
  74. 74.
    Bruce DA, Wilkinson AP, White MG et al (1996) The synthesis and characterization of an aluminophosphate with chiral layers; trans-Co(dien)2·Al3P4O16·3H2O. J Solid State Chem 125:228–233CrossRefGoogle Scholar
  75. 75.
    Gray MJ, Jasper JD, Wilkinson AP et al (1997) Synthesis and synchrotron microcrystal structure of an aluminophosphate with chiral layers containing Λ tris(ethylendiamine)cobalt(III). Chem Mater 9:976–980CrossRefGoogle Scholar
  76. 76.
    Yu J, Wang Y, Shi Z et al (2001) Hydrothermal synthesis and characterization of two new zinc phosphates assembled about a chiral metal complex: [CoII(en)3]2[Zn6P8O32H8] and [CoIII(en)3][Zn8P6O24Cl]·2H2O. Chem Mater 13:2972–2978CrossRefGoogle Scholar
  77. 77.
    Wang Y, Yu J, Li Y et al (2003) Chirality transfer from guest chiral metal complexes to inorganic framework: the role of hydrogen bonding. Chem A Eur J 9:5048–5055CrossRefGoogle Scholar
  78. 78.
    Chen P, Li J, Yu J et al (2005) The synthesis and structure of a chiral 1D aluminophosphate chain compound: d-Co(en)3[AlP2O8]·6.5H2O. J Solid State Chem 178:1929–1934CrossRefGoogle Scholar
  79. 79.
    Wang Y, Yu J, Guo M et al (2003) [Zn2(HPO4)4][Co(dien)2]·H3O: a zinc phosphate with multidirectional intersecting helical channels. Angew Chem Int Ed 42:4089–4092CrossRefGoogle Scholar
  80. 80.
    Han Y, Li Y, Yu J et al (2011) A gallogermanate zeolite constructed exclusively by three-ring building units. Angew Chem Int Ed 50:3003–3005CrossRefGoogle Scholar
  81. 81.
    Xu Y, Li Y, Han Y et al (2013) A gallogermanate zeolite with eleven-membered-ring channels. Angew Chem Int Ed 52:5501–5503CrossRefGoogle Scholar
  82. 82.
    Balkus KJ, Hargis CD, Kowalak S (1992) Synthesis of NaX zeolites with metallophthalocyanines. ACS Symp Ser 499:347–354CrossRefGoogle Scholar
  83. 83.
    Jasper JD, Wilkinson AP (1998) Synthesis of low-dimensional aluminophosphates from higher dimensional precursors: conversion of Λ,Δ-Co(en)3[Al3P4O16]·xH2O to the chain compound Λ,Δ-Co(en)3[AlP2O8]·xH2O. Chem Mater 10:1664–1667CrossRefGoogle Scholar
  84. 84.
    Tong M, Zhang D, Zhu L et al (2016) An elaborate structure investigation of the chiral polymorph A-enriched zeolite beta. CrstEngComm 18:1782–1789CrossRefGoogle Scholar
  85. 85.
    Stalder SM, Wilkinson AP (1997) Synthesis and characterization of a chiral 3D-framework material: d-Co(en)3[H3Ga2P4O16]. Chem Mater 9:2168–2173CrossRefGoogle Scholar
  86. 86.
    Wang Y, Yu J, Li Y et al (2003) Synthesis and characterization of a new layered gallium phosphate [Co(en)3][Ga3(H2PO4)6(HPO4)3] templated by cobalt complex. J Solid State Chem 170:176–181CrossRefGoogle Scholar
  87. 87.
    Yang G, Sevov SC (2001) [Co(en)3][B2P3O11(OH)2]: a novel borophosphate templated by a transition-metal complex. Inorg Chem 40:2214–2215CrossRefGoogle Scholar
  88. 88.
    Wadlinger RL, Kerr GT, Rosinski EJ (1967) Catalytic composition of a crystalline zeolite. US Patent 3,308,069Google Scholar
  89. 89.
    Newsam JM, Treacy MMJ, Koetsier WT et al (1988) Structural characterization of zeolite-beta. Proc R Soc London Ser A 420:375–405CrossRefGoogle Scholar
  90. 90.
    Higgins JB, LaPierre RB, Schlenker JL et al (1988) The framework topology of zeolite-beta. Zeolites 8:446–452CrossRefGoogle Scholar
  91. 91.
    Conradsson T, Dadachov MS, Zou XD (2000) Synthesis and structure of (Me3N)6[Ge32O64](H2O)4.5, a thermally stable novel zeotype with 3D interconnected 12-ring channels. Microporous Mesoporous Mat 41:183–191CrossRefGoogle Scholar
  92. 92.
    Davis ME, Lobo RF (1992) Zeolite and molecular sieve synthesis. Chem Mater 4:756–768CrossRefGoogle Scholar
  93. 93.
    Clark LA, Chempath S, Snurr RQ (2005) Simulated adsorption properties and synthesis prospects of homochiral porous solids based on their heterochiral analogs. Langmuir 21:2267–2272CrossRefGoogle Scholar
  94. 94.
    Manning MP, Warzywoda J, Karahan O et al (2004) Enantioselective adsorption of hydrobenzoin on zeolite beta. Stud Surf Sci Catal 154:1957–1960CrossRefGoogle Scholar
  95. 95.
    Takagi Y, Komatsu T, Kitabata Y (2008) Crystallization of zeolite beta in the presence of chiral amine or rhodium complex. Microporous Mesoporous Mater 109:567–576CrossRefGoogle Scholar
  96. 96.
    Camblor MA, Corma A, Valencia S (1996) Spontaneous nucleation and growth of pure silica zeolite-beta free of connectivity defects. Chem Commun 20:2365–2366CrossRefGoogle Scholar
  97. 97.
    Xia QH, Shen SC, Song J et al (2003) Structure, morphology, and catalytic activity of β zeolite synthesized in a fluoride medium for asymmetric hydrogenation. J Catal 219:74–84CrossRefGoogle Scholar
  98. 98.
    Taborda F, Willhammar T, Wang Z et al (2011) Synthesis and characterization of pure silica zeolite beta obtained by an aging-drying method. Microporous Mesoporous Mater 143:196–205CrossRefGoogle Scholar
  99. 99.
    Taborda F, Wang Z, Willhammar T et al (2012) Synthesis of Al-Si-beta and Ti-Si-beta by the aging-drying method. Microporous Mesoporous Mater 150:38–46CrossRefGoogle Scholar
  100. 100.
    Tong M, Zhang D, Fan W et al (2015) Synthesis of chiral polymorph A-enriched zeolite beta with an extremely concentrated fluoride route. Sci Rep 5:11521CrossRefGoogle Scholar
  101. 101.
    Lu T, Xu R, Yan W (2016) Co-templated synthesis of polymorph A-enriched zeolite beta. Microporous Mesoporous Mater 226:19–24CrossRefGoogle Scholar
  102. 102.
    Qian K, Li J, Jiang J et al (2012) Synthesis and characterization of chiral zeolite ITQ-37 by using achiral organic structure-directing agent. Microporous Mesoporous Mater 164:88–92CrossRefGoogle Scholar
  103. 103.
    Chen FJ, Gao ZH, Liang LL et al (2016) Facile preparation of extra-large pore zeolite ITQ-37 based on supramolecular assemblies as structure-directing agents. CrstEngComm 18:2735–2741CrossRefGoogle Scholar
  104. 104.
    Zhang N, Shi L, Yu T et al (2015) Synthesis and characterization of pure STW-zeotype germanosilicate, Cu- and Co-substituted STW-zeotype materials. J Solid State Chem 225:271–277CrossRefGoogle Scholar
  105. 105.
    Schmidt JE, Deem MW, Davis ME (2014) Synthesis of a specified, silica molecular sieve using computationally predicted organic structure-directing agents. Angew Chem Int Ed 53:8372–8374CrossRefGoogle Scholar
  106. 106.
    Castillo JM, Vlugt TJH, Dubbeldam D et al (2010) Performance of chiral zeolites for enantiomeric separation revealed by molecular simulation. J Phys Chem C 114:22207–22213CrossRefGoogle Scholar
  107. 107.
    Paris C, Moliner M (2017) Role of supramolecular chemistry during templating phenomenon in zeolite synthesis. Struct Bond.  https://doi.org/10.1007/430_2017_11. (in this volume)
  108. 108.
    Gómez-Hortigüela L, Corà F, Catlow CRA et al (2006) Computational study of a chiral supramolecular arrangement of organic structure directing molecules for the AFI structure. Phys Chem Chem Phys 8:486–493CrossRefGoogle Scholar
  109. 109.
    Gómez-Hortigüela L, Corà F, Pérez-Pariente J (2012) Chiral distributions of dopants in microporous materials: a new concept of chirality. Microporous Mesoporous Mater 155:14–15CrossRefGoogle Scholar
  110. 110.
    Comyns AE (2011) Chiral zeolites, a novel approach. Microporous Mesoporous Mater 138:243CrossRefGoogle Scholar
  111. 111.
    Gómez-Hortigüela L, Pinar AB, Corà F et al (2010) Dopant-siting selectivity in nanoporous catalysts: control of proton accessibility in zeolite catalysts through the rational use of templates. Chem Commun 46:2073–2075CrossRefGoogle Scholar
  112. 112.
    Pinar AB, Gómez-Hortigüela L, McCusker LB et al (2013) Controlling the aluminum distribution in the zeolite ferrierite via the organic structure directing agent. Chem Mater 25:3654–3661CrossRefGoogle Scholar
  113. 113.
    Gómez-Hortigüela L, Álvaro-Muñoz T, Bernardo-Maestro B et al (2015) Towards chiral distributions of dopants in microporous frameworks: helicoidal supramolecular arrangement of (1R,2S)-ephedrine and transfer of chirality. Phys Chem Chem Phys 17:348–357CrossRefGoogle Scholar
  114. 114.
    Gómez-Hortigüela L, Pérez-Pariente J, López-Arbeloa F (2009) Aggregation behavior of (S)-(–)-N-benzylpyrrolidine-2-methanol in the synthesis of the AFI structure in the presence of dopants. Microporous Mesoporous Mater 119:299–305CrossRefGoogle Scholar
  115. 115.
    Gómez-Hortigüela L, Lopez Arbeloa F, Márquez-Álvarez C et al (2013) Effect of fluorine and molecular charge-state on the aggregation behavior of (S)-(–)-N-benzylpyrrolidine-2-methanol confined within the AFI nanoporous structure. J Phys Chem C 117:8832–8839CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Luis Gómez-Hortigüela
    • 1
  • Beatriz Bernardo-Maestro
    • 1
  1. 1.Instituto de Catálisis y Petroleoquímica (ICP-CSIC)C/ Marie Curie 2MadridSpain

Personalised recommendations