Advertisement

Location of Organic Structure-Directing Agents in Zeolites Using Diffraction Techniques

  • Stef Smeets
  • Lynne B. McCusker
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 175)

Abstract

In this chapter, we delve into the X-ray diffraction techniques that can be used to address the question as to where the organic structure-directing agents (OSDAs) are located in the pores of a zeolite framework structure and give an overview of some of the practical issues involved. By examining the results of such investigations, we attempt to establish whether the OSDAs are really disordered, as is often claimed, or if it is the methods we use that give this impression. In fact, the non-framework species in the channels of a zeolite appear to be arranged quite logically in a chemically sensible manner. In most cases, the OSDA within the pores can be described well as a superposition of just a few discrete, symmetry-related positions, provided the discrepancies between the OSDA and framework symmetries can be resolved. On the basis of some selected examples, we show that their arrangements can be extracted from experimental data using a systematic strategy and sometimes supplementary information.

Keywords

Simulated annealing Structure-directing agents X-ray (powder) diffraction Zeolites 

Notes

Acknowledgements

S.S. thanks the Swiss National Science Foundation for financial support (project number: 165282) and L.M. Chevron ETC.

References

  1. 1.
    Barrer RM, Denny PJ (1961) J Chem Soc 971–982. doi: 10.1039/JR9610000971
  2. 2.
    Lok BM, Cannan TR, Messina CA (1983) Zeolites 3(4):282–291CrossRefGoogle Scholar
  3. 3.
    Lobo RF, Zones SI, Davis ME (1995) J Incl Phenom Macrocycl Chem 21(1–4):47–78Google Scholar
  4. 4.
    Gies H, Marler B (1992) Zeolites 12(1):42–49CrossRefGoogle Scholar
  5. 5.
    Gies H (1994) In: Jansen JC, Stöcker M, Karge HG, Weitkamp J (eds) Advanced zeolite science and applications, vol 85, Elsevier, pp 295–327Google Scholar
  6. 6.
    Kubota Y, Helmkamp MM, Zones SI, Davis ME (1996) Microporous Mater 6(4):213–229CrossRefGoogle Scholar
  7. 7.
    Millini R, Carluccio L, Frigerio F, O’Neil Parker W, Bellussi G (1998) Micropor Mesopor Mat 24(4–6):199–211CrossRefGoogle Scholar
  8. 8.
    Wagner P, Nakagawa Y, Lee GS, Davis ME, Elomari S, Medrud RC, Zones SI (2000) J Am Chem Soc 122(2):263–273CrossRefGoogle Scholar
  9. 9.
    McCusker LB, Baerlocher C (in press) In: Vol H, Gilmore CJ, Kaduk J, Schenk H (eds) International tables for crystallography, WileyGoogle Scholar
  10. 10.
    Baerlocher C, McCusker LB. Database for zeolite structures. http://www.iza-structure.org/databases/
  11. 11.
    Jordá JL, Rey F, Sastre G, Valencia S, Palomino M, Corma A, Segura A, Errandonea D, Lacomba R, Manjón FJ, Gomis Ó, Kleppe AK, Jephcoat AP, Amboage M, Rodríguez-Velamazán JA (2013) Angew Chem 125(40):10652–10656CrossRefGoogle Scholar
  12. 12.
    Roth WJ, Nachtigall P, Morris RE, Wheatley PS, Seymour VR, Ashbrook SE, Chlubná P, Grajciar L, Položij M, Zukal A, Shvets O, Čejka J (2013) Nat Chem 5(7):628–633CrossRefGoogle Scholar
  13. 13.
    Chlubná-Eliásová P, Tian Y, Pinar AB, Kubr UM, Cejka J, Morris RE (2014) Angew Chem 126(27):7168–7172CrossRefGoogle Scholar
  14. 14.
    Breck DW, Eversole WG, Milton RM, Reed TB, Thomas TL (1956) J Am Chem Soc 78(23):5963–5972CrossRefGoogle Scholar
  15. 15.
    Reed TB, Breck DW (1956) J Am Chem Soc 78(23):5972–5977CrossRefGoogle Scholar
  16. 16.
    Gramlich V, Meier WM (1971) Z Kristallografiya 133(1–6):134–149CrossRefGoogle Scholar
  17. 17.
    Baerlocher C, Meier WM (1969) Helv Chim Acta 52(7):1853–1860CrossRefGoogle Scholar
  18. 18.
    Baerlocher C, Meier WM (1970) Helv Chim Acta 53(6):1285–1293CrossRefGoogle Scholar
  19. 19.
    Argauer RJ, Landolt GR (1972) Crystalline zeolite ZSM-5 and method of preparing the same. US3702886 AGoogle Scholar
  20. 20.
    Flanigen EM, Bennett JM, Grose RW, Cohen JP, Patton RL, Kirchner RM, Smith JV (1978) Nature 271(5645):512–516CrossRefGoogle Scholar
  21. 21.
    Kokotailo GT, Lawton SL, Olson DH, Meier WM (1978) Nature 272(5652):437–438CrossRefGoogle Scholar
  22. 22.
    Price GD, Pluth JJ, Smith JV, Araki T, Bennett JM (1981) Nature 292(5826):818–819CrossRefGoogle Scholar
  23. 23.
    Baerlocher C (1984) In: Olson DH, Bisio A (eds) 6th Int Zeolite Conf.; Guildford Butterworths: Reno, pp 823–833Google Scholar
  24. 24.
    van Koningsveld H, van Bekkum H, Jansen JC (1987) Acta Cryst B 43(2):127–132CrossRefGoogle Scholar
  25. 25.
    Bennett JM, Cohen JP, Flanigen EM, Pluth JJ, Smith JV (1983) In: Intrazeolite chemistry, ACS Symposium Series, vol 218, American Chemical Society, pp 109–118Google Scholar
  26. 26.
    Parise JB (1984) J Chem Soc Chem Commun 21:1449–1450CrossRefGoogle Scholar
  27. 27.
    Parise JB (1984) Acta Crystallogr C 40(10):1641–1643CrossRefGoogle Scholar
  28. 28.
    Gies H (1983) Z Kristallogr 164(3–4):247–257Google Scholar
  29. 29.
    Gerke H, Gies H (1984) Z Kristallogr 166(1–4):11–22Google Scholar
  30. 30.
    Gies H (1984) Z Kristallogr 167(1–4):73–82CrossRefGoogle Scholar
  31. 31.
    Gies H (1986) Z Kristallogr 175(1–4):93–104Google Scholar
  32. 32.
    McCusker L (1988) J Appl Cryst 21(4):305–310CrossRefGoogle Scholar
  33. 33.
    Harrison WTA, Martin TE, Gier TE, Stucky GD (1992) J Mater Chem 2(2):175–181CrossRefGoogle Scholar
  34. 34.
    Harrison WTA, Nenoff TM, Eddy MM, Martin TE, Stucky GD (1992) J Mater Chem 2(11):1127–1134CrossRefGoogle Scholar
  35. 35.
    Parise JB (1986) Acta Cryst C 42(6):670–673CrossRefGoogle Scholar
  36. 36.
    Loiseau T, Férey G (1992) J Chem Soc Chem Commun 17:1197–1198CrossRefGoogle Scholar
  37. 37.
    Weigel SJ, Morris RE, Stucky GD, Cheetham AK (1998) J Mater Chem 8(7):1607–1611CrossRefGoogle Scholar
  38. 38.
    Wragg DS, Bull I, Hix GB, Morris RE (1999) Chem Commun 20:2037–2038CrossRefGoogle Scholar
  39. 39.
    Davis ME, Saldarriaga C, Montes C, Garces J, Crowder C (1988) Zeolites 8(5):362–366CrossRefGoogle Scholar
  40. 40.
    Richardson JW, Smith JV, Pluth JJ (1989) J Phys Chem 93(25):8212–8219CrossRefGoogle Scholar
  41. 41.
    McCusker LB, Baerlocher C, Jahn E, Bülow M (1991) Zeolites 11(4):308–313CrossRefGoogle Scholar
  42. 42.
    Pinar AB, McCusker LB, Baerlocher C, Schmidt J, Hwang S-J, Davis ME, Zones SI (2015) Dalton Trans 44(13):6288–6295CrossRefGoogle Scholar
  43. 43.
    Pinar AB, McCusker LB, Baerlocher C, Hwang S-J, Xie D, Benin AI, Zones SI (2016) New J Chem 40(5):4160–4166CrossRefGoogle Scholar
  44. 44.
    Bergmann J, Le Bail A, Shirley R, Zlokazov V (2004) Z Kristallogr Cryst Mater 219(12):783–790CrossRefGoogle Scholar
  45. 45.
    Rietveld HM (1969) J Appl Cryst 2(2):65–71CrossRefGoogle Scholar
  46. 46.
    Giacovazzo C, Monaco HL, Artioli G, Viterbo D, Ferraris G, Gilli G, Zanotti G, Catti M (2002) Fundamentals of crystallography. In: Giaccovazzo C Series Ed., Oxford Science PublicationsGoogle Scholar
  47. 47.
    McCusker LB, Von Dreele RB, Cox DE, Louër D, Scardi P (1999) J Appl Crystallogr 32(1):36–50CrossRefGoogle Scholar
  48. 48.
    Young RA (1993) The rietveld method. In: Young RA, Series Ed, Oxford University PressGoogle Scholar
  49. 49.
    Coelho AA (2012) TOPAS-ACADEMIC v5.0Google Scholar
  50. 50.
    Toby BH, Von Dreele RB (2013) J Appl Crystallogr 46(2):544–549CrossRefGoogle Scholar
  51. 51.
    Rodríguez-Carvajal J (1990) In: Galy J, Louër D (eds) Abstracts of the meeting on powder diffraction (Toulouse, France), pp 127–128Google Scholar
  52. 52.
    Le Bail A, Duroy H, Fourquet JL (1988) Mater Res Bull 23(3):447–452CrossRefGoogle Scholar
  53. 53.
    Pawley GS (1981) J Appl Crystallogr 14(6):357–361CrossRefGoogle Scholar
  54. 54.
    Baerlocher C, Hepp A, Meier WM (1976) DLS-76Google Scholar
  55. 55.
    Gale JD, Rohl AL (2003) Mol Simul 29(5):291–341CrossRefGoogle Scholar
  56. 56.
    Momma K, Izumi F (2011) J Appl Crystallogr 44(6):1272–1276CrossRefGoogle Scholar
  57. 57.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25(13):1605–1612CrossRefGoogle Scholar
  58. 58.
    Smeets S, McCusker LB, Baerlocher C, Elomari S, Xie D, Zones SI (2016) J Am Chem Soc 138(22):7099–7106CrossRefGoogle Scholar
  59. 59.
    David WIF, Shankland K (2008) Acta Cryst A 64(1):52–64CrossRefGoogle Scholar
  60. 60.
    Deem MW, Newsam JM (1989) Nature 342(6247):260–262CrossRefGoogle Scholar
  61. 61.
    Porcher F, Borissenko E, Souhassou M, Takata M, Kato K, Rodriguez-Carvajal J, Lecomte C (2008) Acta Crystallogr B 64(6):713–724CrossRefGoogle Scholar
  62. 62.
    Fyfe CA, Lee JSJ, Cranswick LMD, Swainson I (2008) Micropor Mesopor Mat 112(1–3):299–307CrossRefGoogle Scholar
  63. 63.
    Meilikhov M, Yusenko K, Fischer RA (2010) Dalton Trans 39(45):10990–10999CrossRefGoogle Scholar
  64. 64.
    Dejoie C, Martinetto P, Tamura N, Kunz M, Porcher F, Bordat P, Brown R, Dooryhée E, Anne M, McCusker LB (2014) J Phys Chem C 118(48):28032–28042CrossRefGoogle Scholar
  65. 65.
    Inge AK, Huang S, Chen H, Moraga F, Sun J, Zou X (2012) Cryst Growth Des 12(10):4853–4860CrossRefGoogle Scholar
  66. 66.
    Xu Y, Liu L, Chevrier DM, Sun J, Zhang P, Yu J (2013) Inorg Chem 52(18):10238–10244CrossRefGoogle Scholar
  67. 67.
    Chen R, Yao J, Gu Q, Smeets S, Baerlocher C, Gu H, Zhu D, Morris W, Yaghi OM, Wang H (2013) Chem Commun 49(82):9500–9502CrossRefGoogle Scholar
  68. 68.
    Reimer N, Reinsch H, Inge AK, Stock N (2015) Inorg Chem 54(2):492–501CrossRefGoogle Scholar
  69. 69.
    Halis S, Inge AK, Dehning N, Weyrich T, Reinsch H, Stock N (2016) Inorg Chem 55(15):7425–7431CrossRefGoogle Scholar
  70. 70.
    Favre-Nicolin V, Černý R (2002) J Appl Crystallogr 35(6):734–743CrossRefGoogle Scholar
  71. 71.
    David WIF, Shankland K, van de Streek J, Pidcock E, Motherwell WDS, Cole JC (2006) J Appl Crystallogr 39(6):910–915CrossRefGoogle Scholar
  72. 72.
    Allen FH (2002) Acta Crystallogr B 58(3):380–388CrossRefGoogle Scholar
  73. 73.
    Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) J ChemInform 4(1):17–17CrossRefGoogle Scholar
  74. 74.
    Hanson RM (2010) J Appl Cryst 43(5):1250–1260CrossRefGoogle Scholar
  75. 75.
    Weininger D (1988) J Chem Inf Comput Sci 28(1):31–36CrossRefGoogle Scholar
  76. 76.
    O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) J Chem 3(1):33CrossRefGoogle Scholar
  77. 77.
    Prince E (ed) (2006) International tables for crystallography: mathematical, physical and chemical tables, vol C, 1st edn. Fuess H, Hahn T, Wondratschek H, Müller U, Shmueli U, Prince E, Authier A, Kopský V, Litvin DB, Rossmann MG, Arnold E, Hall S, McMahon B, Series Eds, International tables for crystallography; International Union of Crystallography, Chester, EnglandGoogle Scholar
  78. 78.
    Smeets S, McCusker LB, Baerlocher C, Xie D, Chen C-Y, Zones SI (2015) J Am Chem Soc 137(5):2015–2020CrossRefGoogle Scholar
  79. 79.
    Smeets S, Xie D, Baerlocher C, McCusker LB, Wan W, Zou X, Zones SI (2014) Angew Chem 126(39):10566–10570CrossRefGoogle Scholar
  80. 80.
    Baerlocher C, Xie D, McCusker LB, Hwang S-J, Chan IY, Ong K, Burton AW, Zones SI (2008) Nat Mater 7(8):631–635CrossRefGoogle Scholar
  81. 81.
    Burton A, Lee GS, Zones SI (2006) Micropor Mesopor Mat 90(1–3):129–144CrossRefGoogle Scholar
  82. 82.
    Yamamoto K, Ikeda T, Onodera M, Muramatsu A, Mizukami F, Wang Y, Gies H (2010) Micropor Mesopor Mat 128(1–3):150–157CrossRefGoogle Scholar
  83. 83.
    Collins DM (1982) Nature 298(5869):49–51CrossRefGoogle Scholar
  84. 84.
    Momma K, Ikeda T, Belik AA, Izumi F (2013) Powder Diffract 28(3):184–193CrossRefGoogle Scholar
  85. 85.
    Noble GW, Wright PA, Kvick Å (1997) Dalton Trans (23):4485–4490Google Scholar
  86. 86.
    Castro M, Seymour VR, Carnevale D, Griffin JM, Ashbrook SE, Wright PA, Apperley DC, Parker JE, Thompson SP, Fecant A, Bats N (2010) J Phys Chem C 114(29):12698–12710CrossRefGoogle Scholar
  87. 87.
    Spackman MA, Jayatilaka D (2009) CrstEngComm 11(1):19–32CrossRefGoogle Scholar
  88. 88.
    Camblor MA, Díaz-Cabañas M-J, Perez-Pariente J, Teat SJ, Clegg W, Shannon IJ, Lightfoot P, Wright PA, Morris RE (1998) Angew Chem Int Ed 37(15):2122–2126CrossRefGoogle Scholar
  89. 89.
    Bu X, Feng P, Gier TE, Zhao D, Stucky GD (1998) J Am Chem Soc 120(51):13389–13397CrossRefGoogle Scholar
  90. 90.
    Bu X, Feng P, Stucky GD (1998) J Am Chem Soc 120(43):11204–11205CrossRefGoogle Scholar
  91. 91.
    Josien L, Simon A, Gramlich V, Patarin J (2001) Chem Mater 13(4):1305–1311CrossRefGoogle Scholar
  92. 92.
    Ove Kongshaug K, Fjellvåg H, Petter Lillerud K (2001) J Mater Chem 11(4):1242–1247CrossRefGoogle Scholar
  93. 93.
    Marler B, Werthmann U, Gies H (2001) Micropor Mesopor Mat 43(3):329–340CrossRefGoogle Scholar
  94. 94.
    Wheatley PS, Morris RE (2002) J Solid State Chem 167(2):267–273CrossRefGoogle Scholar
  95. 95.
    Jordá JL, McCusker LB, Baerlocher C, Morais CM, Rocha J, Fernandez C, Borges C, Lourenco JP, Ribeiro MF, Gabelica Z (2003) Micropor Mesopor Mat 65(1):43–57CrossRefGoogle Scholar
  96. 96.
    Yang X, Camblor MA, Lee Y, Liu H, Olson DH (2004) J Am Chem Soc 126(33):10403–10409CrossRefGoogle Scholar
  97. 97.
    Zanardi S, Alberti A, Cruciani G, Corma A, Fornés V, Brunelli M (2004) Angew Chem Int Ed 43(37):4933–4937CrossRefGoogle Scholar
  98. 98.
    Li Y, Zou X (2005) Angew Chem Int Ed 44(13):2012–2015CrossRefGoogle Scholar
  99. 99.
    Parnham ER, Morris RE (2006) Chem Mater 18(20):4882–4887CrossRefGoogle Scholar
  100. 100.
    Tang L, Shi L, Bonneau C, Sun J, Yue H, Ojuva A, Lee B-L, Kritikos M, Bell RG, Bacsik Z, Mink J, Zou X (2008) Nat Mater 7(5):381–385CrossRefGoogle Scholar
  101. 101.
    Su J, Wang Y, Wang Z, Lin J (2009) J Am Chem Soc 131(17):6080–6081CrossRefGoogle Scholar
  102. 102.
    Armstrong JA, Weller MT (2010) J Am Chem Soc 132(44):15679–15686CrossRefGoogle Scholar
  103. 103.
    Broach RW, Kirchner RM (2011) Micropor Mesopor Mat 143(2–3):398–400CrossRefGoogle Scholar
  104. 104.
    Liu Z, Song X, Li J, Li Y, Yu J, Xu R (2012) Inorg Chem 51(3):1969–1974CrossRefGoogle Scholar
  105. 105.
    Shao L, Li Y, Yu J, Xu R (2012) Inorg Chem 51(1):225–229CrossRefGoogle Scholar
  106. 106.
    Xie D, McCusker LB, Baerlocher C, Zones SI, Wan W, Zou X (2013) J Am Chem Soc 135(28):10519–10524CrossRefGoogle Scholar
  107. 107.
    Wang Y, Li Y, Yan Y, Xu J, Guan B, Wang Q, Li J, Yu J (2013) Chem Commun 49(79):9006–9008CrossRefGoogle Scholar
  108. 108.
    Broach RW, Greenlay N, Jakubczak P, Knight LM, Miller SR, Mowat JPS, Stanczyk J, Lewis GJ (2014) Micropor Mesopor Mat 189:49–63CrossRefGoogle Scholar
  109. 109.
    Smeets S, Xie D, McCusker LB, Baerlocher C, Zones SI, Thompson JA, Lacheen HS, Huang H-M (2014) Chem Mater 26(13):3909–3913CrossRefGoogle Scholar
  110. 110.
    Willhammar T, Burton AW, Yun Y, Sun J, Afeworki M, Strohmaier KG, Vroman H, Zou X (2014) J Am Chem Soc 136(39):13570–13573CrossRefGoogle Scholar
  111. 111.
    Smeets S, Koch L, Mascello N, Sesseg J, Hernández-Rodríguez M, Mitchell S, Pérez-Ramírez J (2015) CrstEngComm 17(26):4865–4870CrossRefGoogle Scholar
  112. 112.
    Bae J, Cho J, Lee JH, Seo SM, Hong SB (2016) Angew Chem 128(26):7495–7499CrossRefGoogle Scholar
  113. 113.
    Kang JH, Xie D, Zones SI, Smeets S, McCusker LB, Davis ME (2016) Chem Mater 28(17):6250–6259CrossRefGoogle Scholar
  114. 114.
    Guo P, Strohmaier K, Vroman H, Afeworki M, Ravikovitch PI, Paur CS, Sun J, Burton A, Zou X (2016) Inorg Chem Front 3(11):1444–1448CrossRefGoogle Scholar
  115. 115.
    Chen F-J, Gao Z-H, Liang L-L, Zhang J, Du H-B (2016) CrstEngComm 18(15):2735–2741CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Materials and Environmental ChemistryStockholm UniversityStockholmSweden
  2. 2.Department of MaterialsETH ZurichZurichSwitzerland
  3. 3.Department of Chemical EngineeringUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations