Polyoxometalates Assemblies and Their Electrochemical Applications

  • Wenjing Liu
  • Xiao-Li Wang
  • Ya-Qian LanEmail author
Part of the Structure and Bonding book series (STRUCTURE, volume 176)


Polyoxometalates (POMs) possess a large structural and compositional variety, coupled with their highly redox activity, leading to applications in deriving advanced materials for clean and renewable energy storage and conversion. The synthetic strategies used to prepare POM-assisted nanocomposites are discussed. The principal classes of POM derived electrocatalysts reported so far, such as polyoxometalates based metal-organic framework (POMOFs) materials, metal carbides, metal oxides, metal sulfides, and heteroatom-doped carbon materials for hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and the overall water splitting are reviewed. These composites provide a chemist’s way to prepare highly efficient and low-cost non-noble metal electrocatalysts.


HER OER Overall water splitting Polyoxometalate 


  1. 1.
    Turner JA (2004) Sustainable hydrogen production. Science 305(5686):972–974CrossRefGoogle Scholar
  2. 2.
    Subbaraman R, Tripkovic D, Strmcnik D, Chang K-C, Uchimura M, Paulikas AP, Stamenkovic V, Markovic NM (2011) Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 334(6060):1256CrossRefGoogle Scholar
  3. 3.
    Subbaraman R, Tripkovic D, Chang K-C, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM (2012) Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat Mater 11(6):550–557CrossRefGoogle Scholar
  4. 4.
    Lim H-D, Yun YS, Cho SY, Park K-Y, Song MY, Jin H-J, Kang K (2017) All-carbon-based cathode for a true high-energy-density Li-O2 battery. Carbon 114:311–316CrossRefGoogle Scholar
  5. 5.
    Lee G-H, Lee S, Kim J-C, Kim DW, Kang Y, Kim D-W (2017) MnMoO4 electrocatalysts for superior long-life and high-rate lithium-oxygen batteries. Adv Energy Mater 7(6):1601741CrossRefGoogle Scholar
  6. 6.
    Wu X, Han X, Ma X, Zhang W, Deng Y, Zhong C, Hu W (2017) Morphology-controllable synthesis of Zn–Co-mixed sulfide nanostructures on carbon fiber paper toward efficient rechargeable zinc–air batteries and water electrolysis. ACS Appl Mater Interfaces 9(14):12574–12583CrossRefGoogle Scholar
  7. 7.
    Cheng Y, Dou S, Veder J-P, Wang S, Saunders M, Jiang SP (2017) Efficient and durable bifunctional oxygen catalysts based on NiFeO@MnOx core–shell structures for rechargeable Zn–Air batteries. ACS Appl Mater Interfaces 9(9):8121–8133CrossRefGoogle Scholar
  8. 8.
    Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12(3):194–206CrossRefGoogle Scholar
  9. 9.
    Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110(11):6446–6473CrossRefGoogle Scholar
  10. 10.
    Wang J, Yang J-Y, Fazal IM, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner AE (2012) Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics 6(7):488–496CrossRefGoogle Scholar
  11. 11.
    Reece SY, Hamel JA, Sung K, Jarvi TD, Esswein AJ, Pijpers JJH, Nocera DG (2011) Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334(6056):645CrossRefGoogle Scholar
  12. 12.
    Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38(12):4901–4934CrossRefGoogle Scholar
  13. 13.
    Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy 35(17):9349–9384CrossRefGoogle Scholar
  14. 14.
    Zeng K, Zhang D (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36(3):307–326CrossRefGoogle Scholar
  15. 15.
    Barbir F (2005) PEM electrolysis for production of hydrogen from renewable energy sources. Sol Energy 78(5):661–669CrossRefGoogle Scholar
  16. 16.
    Liang Y, Li Y, Wang H, Dai H (2013) Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J Am Chem Soc 135(6):2013–2036CrossRefGoogle Scholar
  17. 17.
    Vrubel H, Hu X (2012) Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew Chem Int Ed 51(51):12703–12706CrossRefGoogle Scholar
  18. 18.
    Song J, Li GR, Xiong FY, Gao XP (2012) Synergistic effect of molybdenum nitride and carbon nanotubes on electrocatalysis for dye-sensitized solar cells. J Mater Chem 22(38):20580–20585CrossRefGoogle Scholar
  19. 19.
    Weidman MC, Esposito DV, Hsu Y-C, Chen JG (2012) Comparison of electrochemical stability of transition metal carbides (WC, W2C, Mo2C) over a wide pH range. J Power Sources 202:11–17CrossRefGoogle Scholar
  20. 20.
    Wan C, Regmi YN, Leonard BM (2014) Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. Angew Chem Int Ed 53(25):6407–6410CrossRefGoogle Scholar
  21. 21.
    Dong S, Chen X, Zhang X, Cui G (2013) Nanostructured transition metal nitrides for energy storage and fuel cells. Coord Chem Rev 257(13–14):1946–1956CrossRefGoogle Scholar
  22. 22.
    Hargreaves JSJ (2013) Heterogeneous catalysis with metal nitrides. Coord Chem Rev 257(13–14):2015–2031CrossRefGoogle Scholar
  23. 23.
    Chen W-F, Sasaki K, Ma C, Frenkel AI, Marinkovic N, Muckerman JT, Zhu Y, Adzic RR (2012) Hydrogen-evolution catalysts based on non-noble metal nickel–molybdenum nitride nanosheets. Angew Chem Int Ed 51(25):6131–6135CrossRefGoogle Scholar
  24. 24.
    Cao B, Veith GM, Neuefeind JC, Adzic RR, Khalifah PG (2013) Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J Am Chem Soc 135(51):19186–19192CrossRefGoogle Scholar
  25. 25.
    Zhang X, Zhang Q, Sun Y, Zhang P, Gao X, Zhang W, Guo J (2016) MoS2-graphene hybrid nanosheets constructed 3D architectures with improved electrochemical performance for lithium-ion batteries and hydrogen evolution. Electrochim Acta 189:224–230CrossRefGoogle Scholar
  26. 26.
    Ganesan R, Lee JS (2005) Tungsten carbide microspheres as a noble-metal-economic electrocatalyst for methanol oxidation. Angew Chem Int Ed 44(40):6557–6560CrossRefGoogle Scholar
  27. 27.
    Zhang Y, Zhang Y, Ji Q, Ju J, Yuan H, Shi J, Gao T, Ma D, Liu M, Chen Y (2013) Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 7(10):8963–8971CrossRefGoogle Scholar
  28. 28.
    Voiry D, Yamaguchi H, Li J, Silva R, Alves DCB, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013) Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat Mater 12(9):850–855CrossRefGoogle Scholar
  29. 29.
    Yang J, Voiry D, Ahn SJ, Kang D, Kim AY, Chhowalla M, Shin HS (2013) Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution. Angew Chem Int Ed 52(51):13751–13754CrossRefGoogle Scholar
  30. 30.
    Peng S, Li L, Han X, Sun W, Srinivasan M, Mhaisalkar SG, Cheng F, Yan Q, Chen J, Ramakrishna S (2014) Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angew Chem Int Ed 126(46):12802–12807CrossRefGoogle Scholar
  31. 31.
    Jiang P, Liu Q, Liang Y, Tian J, Asiri AM, Sun X (2014) A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew Chem Int Ed 53(47):12855–12859CrossRefGoogle Scholar
  32. 32.
    Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135(25):9267–9270CrossRefGoogle Scholar
  33. 33.
    Pu Z, Liu Q, Tang C, Asiri AM, Sun X (2014) Ni2P nanoparticle films supported on a Ti plate as an efficient hydrogen evolution cathode. Nanoscale 6(19):11031–11034CrossRefGoogle Scholar
  34. 34.
    Huang Z, Chen Z, Chen Z, Lv C, Meng H, Zhang C (2014) Ni12P5 nanoparticles as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis. ACS Nano 8(8):8121–8129CrossRefGoogle Scholar
  35. 35.
    Jiang P, Liu Q, Sun X (2014) NiP2 nanosheet arrays supported on carbon cloth: an efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale 6(22):13440CrossRefGoogle Scholar
  36. 36.
    Zhan T, Liu X, Lu S, Hou W (2017) Nitrogen doped NiFe layered double hydroxide/reduced graphene oxide mesoporous nanosphere as an effective bifunctional electrocatalyst for oxygen reduction and evolution reactions. Appl Catal B 205:551–558CrossRefGoogle Scholar
  37. 37.
    Jia Y, Zhang L, Gao G, Chen H, Wang B, Zhou J, Soo MT, Hong M, Yan X, Qian G (2017) A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv Mater 29:1700017CrossRefGoogle Scholar
  38. 38.
    Weng B, Xu F, Wang C, Meng W, Grice CR, Yan Y (2016) A layered Na1−xNiyFe1−yO2 double oxide oxygen evolution reaction electrocatalyst for highly efficient water-splitting. Energy Environ Sci 10:121–128CrossRefGoogle Scholar
  39. 39.
    Candelaria SL, Bedford NM, Woehl TJ, Rentz NS, Showalter AR, Pylypenko S, Bunker BA, Lee S, Reinhart B, Ren Y, Ertem SP, Coughlin EB, Sather NA, Horan JL, Herring AM, Greenlee LF (2017) Multi-component Fe-Ni hydroxide nanocatalyst for oxygen evolution and methanol oxidation reactions under alkaline conditions. ACS Catal 7(1):365–379CrossRefGoogle Scholar
  40. 40.
    Zheng Y, Jiao Y, Li LH, Xing T, Chen Y, Jaroniec M, Qiao SZ (2014) Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 8(5):5290–5296CrossRefGoogle Scholar
  41. 41.
    Gao S, Li GD, Liu Y, Chen H, Feng LL, Wang Y, Yang M, Wang D, Wang S, Zou X (2014) Electrocatalytic H2 production from seawater over Co, N-codoped nanocarbons. Nanoscale 7(6):2306CrossRefGoogle Scholar
  42. 42.
    Zou X, Huang X, Goswami A, Silva R, Sathe BR, Mikmeková E, Asefa T (2014) Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew Chem Int Ed 53(17):4372–4376CrossRefGoogle Scholar
  43. 43.
    Deng J, Ren P, Deng D, Yu L, Yang F, Bao X (2014) Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy Environ Sci 7(6):1919–1923CrossRefGoogle Scholar
  44. 44.
    Zou X, Zhang Y (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44(15):5148–5180CrossRefGoogle Scholar
  45. 45.
    Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG (2010) Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110(11):6474–6502CrossRefGoogle Scholar
  46. 46.
    Mizuno N, Misono M (1998) Heterogeneous catalysis. Chem Rev 98(1):199–218CrossRefGoogle Scholar
  47. 47.
    Pope MT, Müller A (1991) Polyoxometalate chemistry: an old field with new dimensions in several disciplines. Angew Chem Int Ed Engl 30(1):34–48CrossRefGoogle Scholar
  48. 48.
    Naruke H, Yamase T (1992) Structure of a photoluminescent polyoxotungstoantimonate. Acta Cryst Sect C 48(4):597–599CrossRefGoogle Scholar
  49. 49.
    Schmidt KJ, Schrobilgen GJ, Sawyer JF (1986) Hexasodium hexatungstotellurate(VI) 22-hydrate. Acta Cryst Sect C 42(9):1115–1118CrossRefGoogle Scholar
  50. 50.
    Nolan AL, Burns RC, Lawrance GA, Craig DC (2000) Octasodium hexatungstomanganate(IV) octadecahydrate. Acta Cryst Sect C 56(7):729–730CrossRefGoogle Scholar
  51. 51.
    Pope MT (1983) Heteropoly and isopoly oxometalates. Springer, BerlinCrossRefGoogle Scholar
  52. 52.
    Dawson B (1953) The structure of the 9(18)-heteropoly anion in potassium 9(18)-tungstophosphate, K6(P2W18O62).14H2O. Acta Crystallogr 6(2):113–126CrossRefGoogle Scholar
  53. 53.
    Müller A, Krickemeyer E, Bögge H, Schmidtmann M, Peters F (1998) Organizational forms of matter: an inorganic super fullerene and keplerate based on molybdenum oxide. Angew Chem Int Ed 37(24):3359–3363CrossRefGoogle Scholar
  54. 54.
    Wang H, Hamanaka S, Nishimoto Y, Irle S, Yokoyama T, Yoshikawa H, Awaga K (2012) In operando X-ray absorption fine structure studies of polyoxometalate molecular cluster batteries: polyoxometalates as electron sponges. J Am Chem Soc 134(10):4918–4924CrossRefGoogle Scholar
  55. 55.
    Keita B, Nadjo L (2006) In: Bard AJ, Stratmann M (eds) Encyclopedia of electrochemistry, vol 7. Wiley-VCH, WeinheimGoogle Scholar
  56. 56.
    Keita B, Kortz U, Holzle LRB, Brown S, Nadjo L (2007) Efficient hydrogen-evolving cathodes based on proton and electron reservoir behaviors of the phosphotungstate [H7P8W48O184]33− and the Co(II)-containing silicotungstates [Co6(H2O)30{Co9Cl2(OH)3(H2O)9(β-SiW8O31)3}]5− and [{Co3(B-β-SiW9O33(OH))(B-β-SiW8O29OH)2}2]22−. Langmuir 23(19):9531–9534CrossRefGoogle Scholar
  57. 57.
    Keita B, Lu YW, Nadjo L, Contant R (2000) Salient electrochemical and electrocatalytic behaviour of the crown heteropolyanion K28Li5H7P8W48O184·92H2O. Electrochem Commun 2(10):720–726CrossRefGoogle Scholar
  58. 58.
    Banerjee A, Bassil BS, Roschenthaler G-V, Kortz U (2012) Diphosphates and diphosphonates in polyoxometalate chemistry. Chem Soc Rev 41(22):7590–7604CrossRefGoogle Scholar
  59. 59.
    Prabhakaran V, Mehdi BL, Ditto JJ, Engelhard MH, Wang B, Gunaratne KDD, Johnson DC, Browning ND, Johnson GE, Laskin J (2016) Rational design of efficient electrode–electrolyte interfaces for solid-state energy storage using ion soft landing. Nat Commun 7:11399CrossRefGoogle Scholar
  60. 60.
    Barras-Almenar JJ, Coronado E, Müller A, Pope MT (2003) Polyoxometalate molecular science, vol 35. Springer, DordrechtCrossRefGoogle Scholar
  61. 61.
    Dolbecq A, Mialane P, Secheresse F, Keita B, Nadjo L (2012) Functionalized polyoxometalates with covalently linked bisphosphonate, N-donor or carboxylate ligands: from electrocatalytic to optical properties. Chem Commun 48(67):8299–8316CrossRefGoogle Scholar
  62. 62.
    Rhule JT, Hill CL, Judd DA, Schinazi RF (1998) Polyoxometalates in medicine. Chem Rev 98(1):327–358CrossRefGoogle Scholar
  63. 63.
    Nomiya K, Torii H, Hasegawa T, Nemoto Y, Nomura K, Hashino K, Uchida M, Kato Y, Shimizu K, Oda M (2001) Insulin mimetic effect of a tungstate cluster. Effect of oral administration of homo-polyoxotungstates and vanadium-substituted polyoxotungstates on blood glucose level of STZ mice. J Inorg Biochem 86(4):657–667CrossRefGoogle Scholar
  64. 64.
    Yamase T (2005) Anti-tumor, -viral, and -bacterial activities of polyoxometalates for realizing an inorganic drug. J Mater Chem 15(45):4773–4782CrossRefGoogle Scholar
  65. 65.
    Vasylyev MV, Neumann R (2003) New heterogeneous polyoxometalate based mesoporous catalysts for hydrogen peroxide mediated oxidation reactions. J Am Chem Soc 126(3):884–890CrossRefGoogle Scholar
  66. 66.
    Mbomekalle IM, Keita B, Nadjo L, Berthet P, Hardcastle KI, Hill CL, Anderson TM (2003) Multi-iron tungstodiarsenates. Synthesis, characterization, and electrocatalytic studies of αββα-(FeIIIOH2)2FeIII2(As2W15O56)2 12−. Inorg Chem 42(4):1163–1169CrossRefGoogle Scholar
  67. 67.
    Sartorel A, Bonchio M, Campagna S, Scandola F (2013) Tetrametallic molecular catalysts for photochemical water oxidation. Chem Soc Rev 42(6):2262–2280CrossRefGoogle Scholar
  68. 68.
    Berardi S, La Ganga G, Natali M, Bazzan I, Puntoriero F, Sartorel A, Scandola F, Campagna S, Bonchio M (2012) Photocatalytic water oxidation: tuning light-induced electron transfer by molecular Co4O4 cores. J Am Chem Soc 134(27):11104–11107CrossRefGoogle Scholar
  69. 69.
    Hill CL, Gueletii YV, Musaev DG, Yin Q, Botar B (2012) Polyoxometalate water oxidation catalysts and methods of use thereof. US20120027666A1Google Scholar
  70. 70.
    Miras HN, Yan J, Long DL, Cronin L (2012) Engineering polyoxometalates with emergent properties. Chem Soc Rev 41(22):7403–7430CrossRefGoogle Scholar
  71. 71.
    Long DL, Burkholder E, Cronin L (2007) Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices. Chem Soc Rev 36(1):105–121CrossRefGoogle Scholar
  72. 72.
    Nyman M (2011) Polyoxoniobate chemistry in the 21st century. Dalton Trans 40(32):8049–8058CrossRefGoogle Scholar
  73. 73.
    Song YF, Tsunashima R (2012) Recent advances on polyoxometalate-based molecular and composite materials. Chem Soc Rev 41(22):7384–7402CrossRefGoogle Scholar
  74. 74.
    Conway BE, Bai L, Sattar MA (1987) Role of the transfer coefficient in electrocatalysis: applications to the H2 and O2 evolution reactions and the characterization of participating adsorbed intermediates. Int J Hydrogen Energy 12(9):607–621CrossRefGoogle Scholar
  75. 75.
    Rausch B, Symes MD, Chisholm G, Cronin L (2014) Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science 345(6202):1326CrossRefGoogle Scholar
  76. 76.
    Keita B, Nadjo L (2007) Electrochemical reactions on modified electrodes. In: Bard AJ, Stratmann M (eds) Encyclopedia of electrochemistry, vol 11. Wiley-VCH, Weinheim, pp 685–728Google Scholar
  77. 77.
    Du D-Y, Qin J-S, Li S-L, Su Z-M, Lan Y-Q (2014) Recent advances in porous polyoxometalate-based metal-organic framework materials. Chem Soc Rev 43(13):4615–4632CrossRefGoogle Scholar
  78. 78.
    Striegler K, Glaeser R (2016) Strategies towards improved efficiency in photocatalytic hydrogen evolution from aqueous media. Prepr Am Chem Soc Div Energy Fuels 61(1):214–215Google Scholar
  79. 79.
    Schoenweiz S, Rommel SA, Kuebel J, Micheel M, Dietzek B, Rau S, Streb C (2016) Covalent photosensitizer-polyoxometalate-catalyst dyads for visible-light-driven hydrogen evolution. Chem Eur J 22(34):12002–12005CrossRefGoogle Scholar
  80. 80.
    Nohra B, El Moll H, Rodriguez Albelo LM, Mialane P, Marrot J, Mellot-Draznieks C, O’Keeffe M, Ngo Biboum R, Lemaire J, Keita B, Nadjo L, Dolbecq A (2011) Polyoxometalate-based metal organic frameworks (POMOFs): structural trends, energetics, and high electrocatalytic efficiency for hydrogen evolution reaction. J Am Chem Soc 133(34):13363–13374CrossRefGoogle Scholar
  81. 81.
    Qin J-S, Du D-Y, Guan W, Bo X-J, Li Y-F, Guo L-P, Su Z-M, Wang Y-Y, Lan Y-Q, Zhou H-C (2015) Ultrastable polymolybdate-based metal-organic frameworks as highly active electrocatalysts for hydrogen generation from water. J Am Chem Soc 137(22):7169–7177CrossRefGoogle Scholar
  82. 82.
    Wu HB, Xia BY, Yu L, Yu X-Y, Lou XWD (2015) Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nat Commun 6:6512CrossRefGoogle Scholar
  83. 83.
    Li J-S, Tang Y-J, Liu C-H, Li S-L, Li R-H, Dong L-Z, Dai Z-H, Bao J-C, Lan Y-Q (2016) Polyoxometalate-based metal-organic framework-derived hybrid electrocatalysts for highly efficient hydrogen evolution reaction. J Mater Chem A 4(4):1202–1207CrossRefGoogle Scholar
  84. 84.
    Tang Y-J, Gao M-R, Liu C-H, Li S-L, Jiang H-L, Lan Y-Q, Han M, Yu S-H (2015) Porous molybdenum-based hybrid catalysts for highly efficient hydrogen evolution. Angew Chem Int Ed 54(44):12928–12932Google Scholar
  85. 85.
    Li J-S, Li S-L, Tang Y-J, Han M, Dai Z-H, Bao J-C, Lan Y-Q (2015) Nitrogen-doped Fe/Fe3C@graphitic layer/carbon nanotube hybrids derived from MOFs: efficient bifunctional electrocatalysts for ORR and OER. Chem Commun 51(13):2710–2713CrossRefGoogle Scholar
  86. 86.
    Yang X, Feng X, Tan H, Zang H, Wang X, Wang Y, Wang E, Li Y (2016) N-doped graphene-coated molybdenum carbide nanoparticles as highly efficient electrocatalysts for the hydrogen evolution reaction. J Mater Chem A 4(10):3947–3954CrossRefGoogle Scholar
  87. 87.
    Barsukova-Stuckart M, Izarova NV, Jameson GB, Ramachandran V, Wang Z, van Tol J, Dalal NS, Ngo Biboum R, Keita B, Nadjo L, Kortz U (2011) Synthesis and characterization of the dicopper(II)-containing 22-palladate(II)[CuII2PdII22PV12O60(OH)8]20−. Angew Chem Int Ed 50(11):2639–2642CrossRefGoogle Scholar
  88. 88.
    Rousseau G, Zhang S, Oms O, Dolbecq A, Marrot J, Liu R, Shang X, Zhang G, Keita B, Mialane P (2015) Sequential synthesis of 3 d-3 d, 3 d-4 d, and 3 d-5 d hybrid polyoxometalates and application to the electrocatalytic oxygen reduction reaction. Chem Eur J 21(34):12153–12160CrossRefGoogle Scholar
  89. 89.
    Liu G, Pan J, Yin L, Irvine JTS, Li F, Tan J, Wormald P, Cheng H-M (2012) Heteroatom-modulated switching of photocatalytic hydrogen and oxygen evolution preferences of anatase TiO2 microspheres. Adv Funct Mater 22(15):3233–3238CrossRefGoogle Scholar
  90. 90.
    Zhong X, Sun Y, Chen X, Zhuang G, Li X, Wang J-G (2016) Mo doping induced more active sites in urchin-like W18O49 nanostructure with remarkably enhanced performance for hydrogen evolution reaction. Adv Funct Mater 26(32):5778–5786CrossRefGoogle Scholar
  91. 91.
    Xu W, Liu C, Xing W, Lu T (2007) A novel hybrid based on carbon nanotubes and heteropolyanions as effective catalyst for hydrogen evolution. Electrochem Commun 9(1):180–184CrossRefGoogle Scholar
  92. 92.
    Toma FM, Sartorel A, Iurlo M, Carraro M, Parisse P, Maccato C, Rapino S, Gonzalez BR, Amenitsch H, Da Ros T, Casalis L, Goldoni A, Marcaccio M, Scorrano G, Scoles G, Paolucci F, Prato M, Bonchio M (2010) Efficient water oxidation at carbon nanotube–polyoxometalate electrocatalytic interfaces. Nat Chem 2(10):826–831CrossRefGoogle Scholar
  93. 93.
    Ma Y-Y, Wu C-X, Feng X-J, Tan H-Q, Yan L-K, Liu Y, Kang Z-H, Wang E-B, Li Y-G (2017) Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy Environ Sci 10(3):788–798CrossRefGoogle Scholar
  94. 94.
    Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2(5):781–794CrossRefGoogle Scholar
  95. 95.
    Lin Z, Waller GH, Liu Y, Liu M, Wong C-P (2013) Simple preparation of nanoporous few-layer nitrogen-doped graphene for use as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions. Carbon 53:130–136CrossRefGoogle Scholar
  96. 96.
    Liu R, Zhang G, Cao H, Zhang S, Xie Y, Haider A, Kortz U, Chen B, Dalal NS, Zhao Y, Zhi L, Wu C-X, Yan L-K, Su Z, Keita B (2016) Enhanced proton and electron reservoir abilities of polyoxometalate grafted on graphene for high-performance hydrogen evolution. Energy Environ Sci 9(3):1012–1023CrossRefGoogle Scholar
  97. 97.
    Li J-S, Wang Y, Liu C-H, Li S-L, Wang Y-G, Dong L-Z, Dai Z-H, Li Y-F, Lan Y-Q (2016) Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nat Commun 7:11204CrossRefGoogle Scholar
  98. 98.
    Ma X, Meng H, Cai M, Shen PK (2012) Bimetallic carbide nanocomposite enhanced Pt catalyst with high activity and stability for the oxygen reduction reaction. J Am Chem Soc 134(4):1954–1957CrossRefGoogle Scholar
  99. 99.
    Liu Y, Li G-D, Yuan L, Ge L, Ding H, Wang D, Zou X (2015) Carbon-protected bimetallic carbide nanoparticles for a highly efficient alkaline hydrogen evolution reaction. Nanoscale 7(7):3130–3136CrossRefGoogle Scholar
  100. 100.
    Xiao P, Ge X, Wang H, Liu Z, Fisher A, Wang X (2015) Novel molybdenum carbide–tungsten carbide composite nanowires and their electrochemical activation for efficient and stable hydrogen evolution. Adv Funct Mater 25(10):1520–1526CrossRefGoogle Scholar
  101. 101.
    Liu C-H, Tang Y-J, Wang X-L, Huang W, Li S-L, Dong L-Z, Lan Y-Q (2016) Highly active Co-Mo-C/NRGO composite as efficient oxygen electrode for water-oxygen redox cycle. J Mater Chem A 4:18100–18106CrossRefGoogle Scholar
  102. 102.
    Fan X, Zhou H, Guo X (2015) WC nanocrystals grown on vertically aligned carbon nanotubes: an efficient and stable electrocatalyst for hydrogen evolution reaction. ACS Nano 9(5):5125–5134CrossRefGoogle Scholar
  103. 103.
    Hunt ST, Nimmanwudipong T, Román-Leshkov Y (2014) Engineering non-sintered, metal-terminated tungsten carbide nanoparticles for catalysis. Angew Chem Int Ed 53(20):5131–5136Google Scholar
  104. 104.
    Zhao Y, Kamiya K, Hashimoto K, Nakanishi S (2013) Hydrogen evolution by tungsten carbonitride nanoelectrocatalysts synthesized by the formation of a tungsten acid/polymer hybrid in situ. Angew Chem Int Ed 52(51):13638–13641CrossRefGoogle Scholar
  105. 105.
    Levy RB, Boudart M (1973) Platinum-like behavior of tungsten carbide in surface catalysis. Science 181(4099):547–549CrossRefGoogle Scholar
  106. 106.
    Wang X-L, Tang Y-J, Huang W, Liu C-H, Dong L-Z, Li S-L, Lan Y-Q (2017) Efficient electrocatalyst for the hydrogen evolution reaction derived from polyoxotungstate/polypyrrole/graphene. ChemSusChem 10:2402–2407CrossRefGoogle Scholar
  107. 107.
    Yan G, Wu C, Tan H, Feng X, Yan L, Zang H, Li Y (2016) N-Carbon coated P-W2C composite as efficient electrocatalyst for hydrogen evolution reactions over the whole pH range. J Mater Chem A 5:765–772CrossRefGoogle Scholar
  108. 108.
    Tang Y-J, Wang Y, Wang X-L, Li S-L, Huang W, Dong L-Z, Liu C-H, Li Y-F, Lan Y-Q (2016) Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution. Adv Energy Mater 6(12):1600116CrossRefGoogle Scholar
  109. 109.
    Morales-Guio CG, Hu X (2014) Amorphous molybdenum sulfides as hydrogen evolution catalysts. Acc Chem Res 47(8):2671–2681CrossRefGoogle Scholar
  110. 110.
    Tan C, Zhang H (2015) Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets. J Am Chem Soc 137(38):12162–12174CrossRefGoogle Scholar
  111. 111.
    Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317(5834):100–102CrossRefGoogle Scholar
  112. 112.
    Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013) Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett 13(12):6222–6227CrossRefGoogle Scholar
  113. 113.
    Liao L, Zhu J, Bian X, Zhu L, Scanlon MD, Girault HH, Liu B (2013) MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution. Adv Funct Mater 23(42):5326–5333CrossRefGoogle Scholar
  114. 114.
    Gao M-R, Chan MKY, Sun Y (2015) Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nat Commun 6:7493CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Nanjing Normal UniversityNanjingChina

Personalised recommendations