Porous Ionic Crystals Based on Polyoxometalates

  • Sayaka UchidaEmail author
Part of the Structure and Bonding book series (STRUCTURE, volume 176)


The properties of porous ionic crystals based on polyoxometalate (POM) anions, which are different from conventional porous crystalline materials such as zeolites and metal-organic frameworks (MOFs), can be summarized as follows: (a) POMs show reversible redox properties, which can lead to the formation of “redox-active” porous ionic crystals. (b) Specific functions such as guest binding and catalytically active sites can be incorporated beforehand into the ionic components, and these functions can be maintained and utilized after complexation of the ionic components since they still exist as discrete molecules in the crystal lattice. (c) The ionic components create strong electrostatic fields at internal surfaces, which are suitable for accommodation and stabilization of polar guests and cationic intermediates. (d) Since Coulomb interaction works isotropically in a long range, the crystal structures are often flexible and can transform to adapt to specific guests. Crystal structures of porous ionic crystals can be controlled by the appropriate choice of elements, charges, sizes, symmetry, or ligands of the ionic components. These properties and control of structural features lead to interesting functions in gas adsorption/separation, ion-exchange and conduction, heterogeneous catalysis, reduction-induced highly selective ion uptake, etc., which are unique to porous ionic crystals.


Adsorption Heterogeneous catalysis Ionic crystal Metal carboxylate Polymorph Polyoxometalate Porous structure Redox Self-assembly 



This work was supported by JST-PRESTO Grant Number JPMJPR1312 and Grant-in-Aids for Scientific Research from the Ministry of Education, Culture, Science, Sports, and Technology of Japan.


  1. 1.
    Ma F-J, Liu S-X, Sun C-Y, Liang D-D, Ren G-J, Wei F, Chen Y-G, Su Z-M (2011) J Am Chem Soc 133(12):4178–4181CrossRefGoogle Scholar
  2. 2.
    Song J, Luo Z, Britt DK, Furukawa H, Yaghi OM, Hardcastle KI, Hill CL (2011) J Am Chem Soc 133(42):16839–16846CrossRefGoogle Scholar
  3. 3.
    Yan A-X, Yao S, Li Y-G, Zhang Z-M, Lu Y, Chen W-L, Wang E-B (2014) Chem Eur J 20(23):6927–6933CrossRefGoogle Scholar
  4. 4.
    Zhang Z-M, Zhang T, Wang C, Lin Z, Long L-S, Lin W (2015) J Am Chem Soc 137(9):3197–3200CrossRefGoogle Scholar
  5. 5.
    Kong X-J, Lin Z, Zhang Z-M, Zhang T, Lin W (2016) Angew Chem Int Ed Engl 55(22):6411–6416CrossRefGoogle Scholar
  6. 6.
    Fujihara T, Aonahata J, Kumakura S, Nagasawa A, Murakami K, Ito T (1998) Inorg Chem 37(15):3779–3784CrossRefGoogle Scholar
  7. 7.
    Sreerama SG, Pal S (2002) Inorg Chem 41(19):4843–4845CrossRefGoogle Scholar
  8. 8.
    Vimont A, Goupil JM, Lavalley JC, Daturi M, Surble S, Serre C, Millange F, Férey G, Audebrand N (2006) J Am Chem Soc 128(10):3218–3227CrossRefGoogle Scholar
  9. 9.
    Weller M, Overton T, Rourke J, Armstrong F (2014) Shriver-Atkins inorganic chemistry, 6th edn. Oxford University Press, OxfordGoogle Scholar
  10. 10.
    Uchida S, Hashimoto M, Mizuno N (2002) Angew Chem Int Ed Engl 41(15):2814–2817CrossRefGoogle Scholar
  11. 11.
    Uchida S, Mizuno N (2004) J Am Chem Soc 126(6):1602–1603CrossRefGoogle Scholar
  12. 12.
    Kawamoto R, Uchida S, Mizuno N (2005) J Am Chem Soc 127(30):10560–10567CrossRefGoogle Scholar
  13. 13.
    Jiang C, Lesbani A, Kawamoto R, Uchida S, Mizuno N (2006) J Am Chem Soc 128(44):14240–14241CrossRefGoogle Scholar
  14. 14.
    Yang RT, Kikkinides ES (1995) AICHE J 41(3):509–517CrossRefGoogle Scholar
  15. 15.
    Uchida S, Kawamoto R, Tagami H, Nakagawa Y, Mizuno N (2008) J Am Chem Soc 130(37):12370–12376CrossRefGoogle Scholar
  16. 16.
    Tagami H, Uchida S, Mizuno N (2009) Angew Chem Int Ed Engl 48(33):6160–6164CrossRefGoogle Scholar
  17. 17.
    Uchida S, Eguchi R, Mizuno N (2010) Angew Chem Int Ed Engl 49(51):9930–9934CrossRefGoogle Scholar
  18. 18.
    Uchida S, Lesbani A, Ogasawara Y, Mizuno N (2012) Inorg Chem 51(2):775–777CrossRefGoogle Scholar
  19. 19.
    Berson JA (2002) Angew Chem Int Ed Engl 41(24):4655–4660CrossRefGoogle Scholar
  20. 20.
    Atwood DA, Jegier JA, Rutherford D (1995) J Am Chem Soc 117(25):6779–6780CrossRefGoogle Scholar
  21. 21.
    Castro-Osma JA, North M, Wu X (2016) Chem Eur J 22(6):2100–2107CrossRefGoogle Scholar
  22. 22.
    Kawahara R, Osuga R, Kondo JN, Mizuno N, Uchida S (2017) Dalton Trans 46(10):3105–3109CrossRefGoogle Scholar
  23. 23.
    Barbour LJ, Orr GW, Atwood JL (1998) Nature 393:671–673CrossRefGoogle Scholar
  24. 24.
    Kawahara R, Niinomi K, Kondo JN, Hibino M, Mizuno N, Uchida S (2016) Dalton Trans 45(7):2805–2809CrossRefGoogle Scholar
  25. 25.
    Csicsery SM (1984) Zeolites 4(3):202–213CrossRefGoogle Scholar
  26. 26.
    Nishihara H, Kyotani T (2012) Adv Mater 24(33):4473–4498CrossRefGoogle Scholar
  27. 27.
    Eguchi R, Uchida S, Mizuno N (2012) Angew Chem Int Ed Engl 51(7):1635–1639CrossRefGoogle Scholar
  28. 28.
    Uchida S, Kawahara R, Ogasawara Y, Mizuno N (2013) Dalton Trans 42(45):16209–16215CrossRefGoogle Scholar
  29. 29.
    Wakabayashi R, Ikeda T, Kubo Y, Shinkai S, Takeuchi M (2009) Angew Chem Int Ed Engl 48(36):6667–6670CrossRefGoogle Scholar
  30. 30.
    Kawahara R, Uchida S, Mizuno N (2014) Inorg Chem 53(7):3655–3661CrossRefGoogle Scholar
  31. 31.
    Kim M, Cahill JF, Fei H, Prather KA, Cohen SM (2012) J Am Chem Soc 134(43):18082–18088CrossRefGoogle Scholar
  32. 32.
    Yamada T, Kitagawa H (2009) J Am Chem Soc 131(18):6312–6313CrossRefGoogle Scholar
  33. 33.
    Wang Z, Cohen SM (2007) J Am Chem Soc 129(41):12368–12369CrossRefGoogle Scholar
  34. 34.
    Zhu W, He C, Wu P, Wu X, Duan C (2012) Dalton Trans 41(10):3072–3077CrossRefGoogle Scholar
  35. 35.
    Uchida S, Takahashi E, Mizuno N (2013) Inorg Chem 52(16):9320–9326CrossRefGoogle Scholar
  36. 36.
    Uchida S, Mizuno K, Kawahara R, Takahashi E, Mizuno N (2014) Chem Lett 43(8):1192–1194CrossRefGoogle Scholar
  37. 37.
    Hanaor DAH, Sorrell CC (2011) J Mater Sci 46(4):855–874CrossRefGoogle Scholar
  38. 38.
    Son J-H, Choi H, Kwon Y-U (2000) J Am Chem Soc 122(30):7432–7433CrossRefGoogle Scholar
  39. 39.
    Son J-H, Kwon Y-U (2004) Inorg Chem 43(6):1929–1932CrossRefGoogle Scholar
  40. 40.
    Son J-H, Kwon Y-U (2005) Inorg Chim Acta 358(2):310–314CrossRefGoogle Scholar
  41. 41.
    Rodriguez-Albelo LM, Ruiz-Salvador AR, Sampieri A, Lewis DW, Gómez A, Nohra B, Mialane P, Marrot J, Sécheresse F, Mellot-Draznieks C, Biboum RN, Keita B, Nadjo L, Dolbecq A (2009) J Am Chem Soc 131(44):16078–16087CrossRefGoogle Scholar
  42. 42.
    Rodriguez-Albelo LM, Ruiz-Salvador AR, Lewis DW, Gómez A, Mialane P, Marrot J, Dolbecq A, Sampieri A, Mellot-Draznieks C (2010) Phys Chem Chem Phys 12(30):8632–8639CrossRefGoogle Scholar
  43. 43.
    Mizuno K, Mura T, Uchida S (2016) Cryst Growth Des 16(9):4968–4974CrossRefGoogle Scholar
  44. 44.
    Wang H, Hamanaka S, Nishimoto Y, Irle S, Yokoyama T, Yoshikawa H, Awaga K (2012) J Am Chem Soc 134(10):4918–4924CrossRefGoogle Scholar
  45. 45.
    Kawahara R, Uchida S, Mizuno N (2015) Chem Mater 27(6):2092–2099CrossRefGoogle Scholar
  46. 46.
    Fawcett WR (1999) J Phys Chem B 103(50):11181–11185CrossRefGoogle Scholar
  47. 47.
    Ishizaki M, Akiba S, Ohtani A, Hoshi Y, Ono K, Matsuba M, Togashi T, Kananizuka K, Sakamoto M, Takahashi A, Kawamoto T, Tanaka H, Watanabe M, Arisaka M, Nankawa T, Kurihara M (2013) Dalton Trans 42(45):16049–16055CrossRefGoogle Scholar
  48. 48.
    Manos MJ, Kanatzidis MG (2009) J Am Chem Soc 131(18):6599–6607CrossRefGoogle Scholar
  49. 49.
    Seino S, Kawahara R, Ogasawara Y, Mizuno N, Uchida S (2016) Angew Chem Int Ed Engl 55(12):3987–3991CrossRefGoogle Scholar
  50. 50.
    Ito T, Hashimoto M, Uchida S, Mizuno N (2001) Chem Lett 1272–1273Google Scholar
  51. 51.
    Okamoto K, Uchida S, Ito T, Mizuno N (2007) J Am Chem Soc 129(23):7378–7384CrossRefGoogle Scholar
  52. 52.
    Kukino T, Kikuchi R, Takeguchi T, Matsui T, Eguchi K (2005) Solid State Ionics 176(23–24):1845–1848CrossRefGoogle Scholar
  53. 53.
    Caron HL, Sugihara TT (1962) Anal Chem 34(9):1082–1086CrossRefGoogle Scholar
  54. 54.
    Misono M (2001) Chem Commun 1141–1152Google Scholar
  55. 55.
    Kamiya Y, Okuhara T, Misono M, Miyaji A, Tsuji K, Nakajo T (2008) Catal Sur Asia 12:101–113CrossRefGoogle Scholar
  56. 56.
    Berndt S, Herein D, Zemlin F, Beckmann E, Weinberg G, Schütze J, Mestl G, Schlögl R (1998) Ber Bunsenges Phys Chem 102:763–774CrossRefGoogle Scholar
  57. 57.
    Laronze N, Marchal-Roch C, Guillou N, Liu FX, Hervé G (2003) J Catal 220(1):172–181CrossRefGoogle Scholar
  58. 58.
    Kamiya Y, Sano S, Miura Y, Uchida Y, Ogawa Y, Watase Y, Okuhara T (2010) Chem Lett 39(8):881–883CrossRefGoogle Scholar
  59. 59.
    Ogasawara Y, Uchida S, Maruichi T, Ishikawa R, Shibata N, Ikuhara Y, Mizuno N (2013) Chem Mater 25(6):905–911CrossRefGoogle Scholar
  60. 60.
    Spencer ND, Schoonmaker RC, Somorjai GA (1981) Nature 294(5842):643–644CrossRefGoogle Scholar
  61. 61.
    Xu Y, Wang H, Yu Y, Tian L, Zhao W, Zhang B (2011) J Phys Chem C 115(31):15288–15296CrossRefGoogle Scholar
  62. 62.
    Deori K, Ujjain SK, Sharma RK, Deka S (2013) ACS Appl Mater Interfaces 5(21):10665–10672CrossRefGoogle Scholar
  63. 63.
    Paetero L, Aquilano D, Moret M (2012) Cryst Growth Des 12(5):2306–2314CrossRefGoogle Scholar
  64. 64.
    Uchida S, Ogasawara Y, Maruichi T, Kumamoto A, Ikuhara Y, Yamada T, Kitagawa H, Mizuno N (2014) Cryst Growth Des 14(12):6620–6626CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Arts and SciencesThe University of TokyoTokyoJapan

Personalised recommendations