Beyond Nitrogen OSDAs

Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 175)

Abstract

The use of organic structure-directing agents (OSDAs) is perhaps the most important factor to be considered for the synthesis of zeolitic materials. Several OSDAs had been used along the last 70 years, especially ammonium organic cations, letting the synthesis of a large number of materials. But besides ammonium cations, organic cations with different chemical natures had also been used, which resulted in the synthesis of very interesting zeolitic materials. This review includes most of the non-ammonium cations used up to date, namely, phosphorous cations, sulfonium cations, crown macrocycles and metal complexes, but also when N-containing OSDAs play a different role than in conventional zeolite syntheses, such as proton sponges, self-assembled compounds or ionic liquids.

Keywords

Heterosubstituted organic cation Structure directing agent Synthesis Zeolite 

References

  1. 1.
    Barrer RM (1948). J Chem Soc 127:2158–2163Google Scholar
  2. 2.
    Vollhardt P, Schore N (2011) Organic chemistry. 6th ednGoogle Scholar
  3. 3.
    Baerlocher C (2017) Database of zeolite structures. http://www.iza-structure.org/databases/
  4. 4.
    Li J, Corma A, Yu J (2015). Chem Soc Rev 44(20):7112–7127CrossRefGoogle Scholar
  5. 5.
    Li Y, Yu J (2014). Chem Rev 114(14):7268–7316CrossRefGoogle Scholar
  6. 6.
    Moliner M, Rey F, Corma A (2013). Angew Chem Int Ed 52(52):13880–13889CrossRefGoogle Scholar
  7. 7.
    Moliner M, Martínez C, Corma A (2013). Chem Mater 26(1):246–258CrossRefGoogle Scholar
  8. 8.
    Meng X, Xiao F-S (2013). Chem Rev 114(2):1521–1543CrossRefGoogle Scholar
  9. 9.
    Davis ME (2013). Chem Mater 26(1):239–245CrossRefGoogle Scholar
  10. 10.
    Cundy CS, Cox PA (2005). Microporous Mesoporous Mater 82(1–2):1–78CrossRefGoogle Scholar
  11. 11.
    Davis ME, Lobo RF (1992). Chem Mater 4(4):756–768CrossRefGoogle Scholar
  12. 12.
    Olah GA (1998) Onium ions. Wiley, HobokenGoogle Scholar
  13. 13.
    Corbridge DE (2013) Phosphorus: chemistry, biochemistry and technology. CRC press, Boca RatonCrossRefGoogle Scholar
  14. 14.
    Bradaric CJ, Downard A, Kennedy C, Robertson AJ, Zhou Y (2003). Green Chem 5(2):143–152CrossRefGoogle Scholar
  15. 15.
    Bradaric-Baus CJ, Zhou Y (2014) US 8901338 B2Google Scholar
  16. 16.
    Atefi F, Garcia MT, Singer RD, Scammells PJ (2009). Green Chem 11(10):1595–1604CrossRefGoogle Scholar
  17. 17.
    Fraser KJ, MacFarlane DR (2009). Aust J Chem 62(4):309–321CrossRefGoogle Scholar
  18. 18.
    Selva M, Perosa A, Noè M (2016). Org Chem 45:132Google Scholar
  19. 19.
    Bryant D (2004). Phosp Environ Technol 1Google Scholar
  20. 20.
    Quin LD (2000) A guide to organophosphorus chemistry. Wiley, HobokenGoogle Scholar
  21. 21.
    Hudson H, Hartley F (1990) Primary, secondary and tertiary phosphates and heterocyclic organophosphorus (III) compounds, p 1Google Scholar
  22. 22.
    Stewart B, Harriman A, Higham LJ (2011). Organometallics 30(20):5338–5343CrossRefGoogle Scholar
  23. 23.
    Xie W, Xie R, Pan W-P, Hunter D, Koene B, Tan L-S, Vaia R (2002). Chem Mater 14(11):4837–4845CrossRefGoogle Scholar
  24. 24.
    Zanger M, Vander Werf CA, McEwen WE (1959). J Am Chem Soc 81(14):3806–3807CrossRefGoogle Scholar
  25. 25.
    Van Kruchten EMGA (2000) US 6124508 AGoogle Scholar
  26. 26.
    Ates A, Hardacre C (2012). J Colloid Interface Sci 372(1):130–140CrossRefGoogle Scholar
  27. 27.
    Gopalakrishnan J (2009). Appl Organomet Chem 23(8):291–318CrossRefGoogle Scholar
  28. 28.
    Schwesinger R, Schlemper H (1987). Angew Chem Int Ed Engl 26(11):1167–1169CrossRefGoogle Scholar
  29. 29.
    Ishikawa T (2009) Superbases for organic synthesis: guanidines, amidines, phosphazenes and related organocatalysts. Wiley, HobokenCrossRefGoogle Scholar
  30. 30.
    Stringfellow G (1989). San Diego:109Google Scholar
  31. 31.
    Edmundson R (1987) Dictionary of organophosphorus compounds. CRC Press, Boca RatonGoogle Scholar
  32. 32.
    Whittam TV (1976) DE 2548695Google Scholar
  33. 33.
    Butter S, Jurewicz A, Kaeding W, Chang CD, Silvestri AJ, Smith RL (1976) US Patent 3:483Google Scholar
  34. 34.
    Araya AL (1983) Barrie Milner EP 108486Google Scholar
  35. 35.
    Rieck HPD, Litterer HD (1985) US 4528172 AGoogle Scholar
  36. 36.
    Tuel A, Taarit YB (1993). Zeolites 13(5):357–364CrossRefGoogle Scholar
  37. 37.
    Tuel A, Taarit YB (1994). Zeolites 14(4):272–281CrossRefGoogle Scholar
  38. 38.
    Lingappan N, Krishnasamy V (1996). Bull Chem Soc Jpn 69(4):1125–1128CrossRefGoogle Scholar
  39. 39.
    Marler B, Daniels P, i Muné JS (2003). Microporous Mesoporous Mater 64(1):185–201CrossRefGoogle Scholar
  40. 40.
    Dorset DL, Kennedy GJ, Strohmaier KG, Diaz-Cabañas MJ, Rey F, Corma A (2006). J Am Chem Soc 128(27):8862–8867CrossRefGoogle Scholar
  41. 41.
    Dorset DL, Strohmaier KG, Kliewer CE, Corma A, Díaz-Cabañas MJ, Rey F, Gilmore CJ (2008). Chem Mater 20(16):5325–5331CrossRefGoogle Scholar
  42. 42.
    Corma A, Diaz-Cabanas MJ, Jorda JL, Rey F, Sastre G, Strohmaier KG (2008). J Am Chem Soc 130(49):16482–16483CrossRefGoogle Scholar
  43. 43.
    Corma A, Díaz-Cabañas M, Jiang J, Afeworki M, Dorset D, Soled S, Strohmaier K (2010). Proc Natl Acad Sci 107(32):13997–14002CrossRefGoogle Scholar
  44. 44.
    Corma A, Rey García F, Navarro Villalba MT, Simancas R, Velamazan N, Cantín Á, Jordá Moret JL (2012) WO 2012/049344Google Scholar
  45. 45.
    García FR, Rodriguez MH, Moret JLJ (2014) US 20150038756 A1Google Scholar
  46. 46.
    Simancas R, Jordá JL, Rey F, Corma A, Cantín A, Peral I, Popescu C (2014). J Am Chem Soc 136(9):3342–3345CrossRefGoogle Scholar
  47. 47.
    Yun Y, Hernandez M, Wan W, Zou X, Jorda JL, Cantin A, Rey F, Corma A (2015). Chem Commun 51(36):7602–7605CrossRefGoogle Scholar
  48. 48.
    Simancas J, Simancas R, Bereciartua PJ, Jorda JL, Rey F, Corma A, Nicolopoulos S, Pratim Das P, Gemmi M, Mugnaioli E (2016). J Am Chem Soc 138(32):10116–10119CrossRefGoogle Scholar
  49. 49.
    Cantín Á, Corma A, Díaz-Cabañas MJ, Jordá JL, Moliner M, Rey F (2006). Angew Chem Int Ed 45(47):8013–8015CrossRefGoogle Scholar
  50. 50.
    Schmidt JE, Chen C-Y, Brand SK, Zones SI, Davis ME (2016) Chem A Eur J 22(12):4022–4029Google Scholar
  51. 51.
    Dou TL, Xiaofeng L, Xu J, Gui P, Wang L (2007) CN101054183Google Scholar
  52. 52.
    Calvert RB, Chang CD, Rubin MK, Valyocsik EW (1987) US 4642226 AGoogle Scholar
  53. 53.
    Burton A (2007) US 7682600 B2Google Scholar
  54. 54.
    Valyocsik EW (1986) US 4568654 AGoogle Scholar
  55. 55.
    Hernández-Rodríguez M, Jordá JL, Rey F, Corma A (2012). J Am Chem Soc 134(32):13232–13235CrossRefGoogle Scholar
  56. 56.
    Smeets S, McCusker LB, Baerlocher C, Xie D, Chen C-Y, Zones SI (2015). J Am Chem Soc 137(5):2015–2020CrossRefGoogle Scholar
  57. 57.
    Itabashi K, Okubo T, Elangovan SP (2010) JP 2010260777Google Scholar
  58. 58.
    Simancas R, Dari D, Velamazán N, Navarro MT, Cantín A, Jordá JL, Sastre G, Corma A, Rey F (2010). Science 330(6008):1219–1222CrossRefGoogle Scholar
  59. 59.
    Canós AC, García FR, Villalba MTN, Coloma RS, Cirujeda NV, Sanz ÁC, Moret JLJ (2012) US 20130046123 A1Google Scholar
  60. 60.
    Kun Q, Xiao-Wei S, Da X, Ji-Yang L (2012). Chem J Chin Univ 33(10):2141–2145Google Scholar
  61. 61.
    Zhang X, Liu D, Xu D, Asahina S, Cychosz KA, Agrawal KV, Al Wahedi Y, Bhan A, Al Hashimi S, Terasaki O (2012). Science 336(6089):1684–1687CrossRefGoogle Scholar
  62. 62.
    Wang Y, Li ZD, Jian, Wang Q, He M, Liu Q, Gao X, Yan L, Pang X, Li F (2014) CN 104098111Google Scholar
  63. 63.
    Sonoda T, Maruo T, Yamasaki Y, Tsunoji N, Takamitsu Y, Sadakane M, Sano T (2015). J Mater Chem A 3(2):857–865CrossRefGoogle Scholar
  64. 64.
    Tsapatsis M, Zhang X (2015) US 9180413 B2Google Scholar
  65. 65.
    Yamasaki Y, Tsunoji N, Takamitsu Y, Sadakane M, Sano T (2016). Microporous Mesoporous Mater 223:129–139CrossRefGoogle Scholar
  66. 66.
    Lemishko T, Simancas J, Hernández-Rodríguez M, Jiménez-Ruiz M, Sastre G, Rey F (2016). Phys Chem Chem Phys 18:17244–17252CrossRefGoogle Scholar
  67. 67.
    Martín N, Li Z, Martínez-Triguero J, Yu J, Moliner M, Corma A (2016). Chem Commun 52(36):6072–6075CrossRefGoogle Scholar
  68. 68.
    Kokotailo G, Lawton S, Olson D (1978). Nature 272:437–438CrossRefGoogle Scholar
  69. 69.
    Chou YH, Cundy CS, Garforth AA, Zholobenko VL (2006). Microporous Mesoporous Mater 89(1–3):78–87CrossRefGoogle Scholar
  70. 70.
    Chauhan NL, Das J, Jasra RV, Parikh PA, Murthy ZVP (2012). Mater Lett 74:115–117CrossRefGoogle Scholar
  71. 71.
    Gies H, Marker B (1992). Zeolites 12(1):42–49CrossRefGoogle Scholar
  72. 72.
    Franklin KR, Lowe BM (1989). Stud Surf Sci Catal 49:179–188CrossRefGoogle Scholar
  73. 73.
    Tuel A, Taǎrit YB, Naccache C (1993). Zeolites 13(6):454–461CrossRefGoogle Scholar
  74. 74.
    Wadlinger RL, Kerr GT, Rosinski EJ (1967) US 3308069 AGoogle Scholar
  75. 75.
    Rosinski E, Rubin M (1974) US 3832449 AGoogle Scholar
  76. 76.
    Ciric J (1977) US 4021331 AGoogle Scholar
  77. 77.
    Rollmann LD, Valyocsik EW (1980) US 4205052 AGoogle Scholar
  78. 78.
    Schlenker J, Dwyer F, Jenkins E, Rohrbaugh W, Kokotailo G, Meier W 1981Google Scholar
  79. 79.
    Vaughan DE (1985) US 4554146 AGoogle Scholar
  80. 80.
    Vaughan DEW, Strohmaier KG (1987) US 4661332 AGoogle Scholar
  81. 81.
    Marcus BK, Lok BM (1989) US 4857288 AGoogle Scholar
  82. 82.
    Franco M, Perez-Pariente J, Fornes V (1991). Zeolites 11(4):349–355CrossRefGoogle Scholar
  83. 83.
    Annen MJ, Davis ME, Higgins JB, Schlenker JL (1991). J Chem Soc Chem Commun (17):1175–1176Google Scholar
  84. 84.
    Lok BM, Messina CA, Patton RL, Gajek RT, Cannan TR, Flanigen EM (1984). J Am Chem Soc 106(20):6092–6093CrossRefGoogle Scholar
  85. 85.
    Wilson ST, Lok BM, Messina CA, Cannan TR, Flanigen EM (1983). J Am Chem Soc 218:79–106Google Scholar
  86. 86.
    Akporiaye D, Fjellvag H, Halvorsen E, Haug T, Karlsson A, Lillerud K (1996). Chem Commun 13:1553–1554CrossRefGoogle Scholar
  87. 87.
    Vaughan DE, Strohmaier KG (1995) US 5455020 AGoogle Scholar
  88. 88.
    Yoshikawa M, Zones SI, Davis ME (1997). Microporous Mater 11(3–4):127–136CrossRefGoogle Scholar
  89. 89.
    Miller SJ (1998) US 5716593 AGoogle Scholar
  90. 90.
    Simmen A, McCusker L, Baerlocher C, Meier W (1991). Zeolites 11(7):654–661CrossRefGoogle Scholar
  91. 91.
    Bibby D, Milestone N, Aldridge L (1979). Nature 280(5724):664–665CrossRefGoogle Scholar
  92. 92.
    Klotz MR (1981) US 4269813 AGoogle Scholar
  93. 93.
    Davis M, Montes C, Hathaway P, Garces J (1989). Stud Surf Sci Catal 49:199–214CrossRefGoogle Scholar
  94. 94.
    Vaughan DE, Strohmaier KG (1990) US 4931267 AGoogle Scholar
  95. 95.
    Kowalak S, Jankowska A, Mikołajska E (2010). Microporous Mesoporous Mater 127(1):126–132CrossRefGoogle Scholar
  96. 96.
    Bai R, Sun Q, Wang N, Zou Y, Guo G, Iborra S, Corma A, Yu J (2016). Chem Mater 28(18):6455–6458CrossRefGoogle Scholar
  97. 97.
    Corma A, Díaz-Cabañas MJ, Jordá JL, Martinez C, Moliner M (2006). Nature 443(7113):842–845CrossRefGoogle Scholar
  98. 98.
    Nair S, Jeong H-K, Chandrasekaran A, Braunbarth CM, Tsapatsis M, Kuznicki SM (2001). Chem Mater 13(11):4247–4254CrossRefGoogle Scholar
  99. 99.
    Anderson M, Terasaki O, Ohsuna T, Malley P, Philippou A, MacKay S, Ferreira A, Rocha J (1995) Lidin, S. Philos Mag B 71(5):813–841CrossRefGoogle Scholar
  100. 100.
    Kustova MY, Hasselriis P, Christensen CH (2004). Catal Lett 96(3-4):205–211CrossRefGoogle Scholar
  101. 101.
    Briscoe N, Johnson D, Shannon M, Kokotailo G, McCusker L (1988). Zeolites 8(1):74–76CrossRefGoogle Scholar
  102. 102.
    Barrer R, Denny P (1961). J Chem Soc:971–982Google Scholar
  103. 103.
    Aiello R, Barrer R (1970). J Chem Soc A:1470–1475Google Scholar
  104. 104.
    Hopkins P (1989) Role of the tetramethylammonium cation in the synthesis of zeolites ZK-4, Y, and HS. ACS Publications, Washington, DCCrossRefGoogle Scholar
  105. 105.
    Patarin J, Caullet P, Marler B, Faust A, Guth J (1994). Zeolites 14(8):675–681CrossRefGoogle Scholar
  106. 106.
    Schoeman BJ, Sterte J, Otterstedt J-E (1995). J Colloid Interface Sci 170(2):449–456CrossRefGoogle Scholar
  107. 107.
    Valtchev VP (1994). J Chem Soc Chem Commun (3):261–262Google Scholar
  108. 108.
    Wagner P, Nakagawa Y, Lee GS, Davis ME, Elomari S, Medrud RC, Zones S (2000). J Am Chem Soc 122(2):263–273CrossRefGoogle Scholar
  109. 109.
    Zones SI (1985) US 4544538 AGoogle Scholar
  110. 110.
    Vortmann S, Marler B, Gies H, Daniels P (1995). Microporous Mater 4(2):111–121CrossRefGoogle Scholar
  111. 111.
    Butter SA, Kaeding WW (1976) US 3972832 AGoogle Scholar
  112. 112.
    Blasco T, Corma A, Martínez-Triguero J (2006). J Catal 237(2):267–277CrossRefGoogle Scholar
  113. 113.
    Caeiro G, Magnoux P, Lopes J, Ribeiro FR, Menezes S, Costa A, Cerqueira H (2006). Appl Catal A Gen 314(2):160–171CrossRefGoogle Scholar
  114. 114.
    Xue N, Olindo R, Lercher JA (2010). J Phys Chem C 114(37):15763–15770CrossRefGoogle Scholar
  115. 115.
    van der Bij HE, Weckhuysen BM (2015). Chem Soc Rev 44(20):7406–7428CrossRefGoogle Scholar
  116. 116.
    Rahimi N, Karimzadeh R (2011). Appl Catal A Gen 398(1):1–17CrossRefGoogle Scholar
  117. 117.
    Damodaran K, Wiench J, de Menezes SC, Lam Y, Trébosc J, Amoureux J-P, Pruski M (2006). Microporous Mesoporous Mater 95(1):296–305CrossRefGoogle Scholar
  118. 118.
    Cabral de Menezes SM, Lam YL, Damodaran K, Pruski M (2006). Microporous Mesoporous Mater 95(1–3):286–295CrossRefGoogle Scholar
  119. 119.
    Corma A, Mengual J, Miguel PJ (2012). Appl Catal A Gen 421–422:121–134CrossRefGoogle Scholar
  120. 120.
    Galadima A, Muraza O (2017) Microporous and Mesoporous Mater 249:42–54Google Scholar
  121. 121.
    Védrine JC, Auroux A, Dejaifve P, Ducarme V, Hoser H, Zhou S (1982). J Catal 73(1):147–160CrossRefGoogle Scholar
  122. 122.
    Vinek H, Rumplmayr G, Lercher JA (1989). J Catal 115(2):291–300CrossRefGoogle Scholar
  123. 123.
    Xue N, Chen X, Nie L, Guo X, Ding W, Chen Y, Gu M, Xie Z (2007). J Catal 248(1):20–28CrossRefGoogle Scholar
  124. 124.
    Lee H, Zones SI, Davis ME (2003). Nature 425(6956):385–388CrossRefGoogle Scholar
  125. 125.
    Lee H, Zones SI, Davis ME (2005). J Phys Chem B 109(6):2187–2191CrossRefGoogle Scholar
  126. 126.
    Margarit VJ, Martínez-Armero ME, Navarro MT, Martínez C, Corma A (2015). Angew Chem 127(46):13928–13932CrossRefGoogle Scholar
  127. 127.
    Kloetstra KR, Zandbergen HW, Jansen JC, van Bekkum H (1996). Microporous Mater 6(5):287–293CrossRefGoogle Scholar
  128. 128.
    Na K, Choi M, Ryoo R (2013). Microporous Mesoporous Mater 166:3–19CrossRefGoogle Scholar
  129. 129.
    Kakiuchi Y, Yamasaki Y, Tsunoji N, Takamitsu Y, Sadakane M, Sano T (2016) Chem Lett (0)Google Scholar
  130. 130.
    Matsumoto H, Matsuda T, Miyazaki Y (2000). Chem Lett 29(12):1430–1431CrossRefGoogle Scholar
  131. 131.
    Fang S, Yang L, Wei C, Peng C, Tachibana K, Kamijima K (2007). Electrochem Commun 9(11):2696–2702CrossRefGoogle Scholar
  132. 132.
    Paulsson H, Hagfeldt A, Kloo L (2003). J Phys Chem B 107(49):13665–13670CrossRefGoogle Scholar
  133. 133.
    Butte W, Eilers J, Kirsch M (1982). Anal Lett 15(10):841–850CrossRefGoogle Scholar
  134. 134.
    Large GB (1982) US 4315765 AGoogle Scholar
  135. 135.
    Paulsson H, Berggrund M, Svantesson E, Hagfeldt A, Kloo L (2004). Sol Energy Mater Sol Cells 82(3):345–360CrossRefGoogle Scholar
  136. 136.
    Gerhard D, Alpaslan SC, Gores HJ, Uerdingen M, Wasserscheid P (2005). Chem Commun (40):5080–5082Google Scholar
  137. 137.
    Lee C-P, Peng J-D, Velayutham D, Chang J, Chen P-W, Suryanarayanan V, Ho K-C (2013). Electrochim Acta 114:303–308CrossRefGoogle Scholar
  138. 138.
    Evans ST (1996) US 5552132 AGoogle Scholar
  139. 139.
    Jo C, Lee S, Cho SJ, Ryoo R (2015). Angew Chem Int Ed 54(43):12805–12808CrossRefGoogle Scholar
  140. 140.
    Bennett J, Cohen J, FLANIGEN EM, Pluth J, Smith J (1983) Crystal structure of tetrapropylammonium hydroxide—aluminum phosphate number 5. ACS Publications, Washington, DCCrossRefGoogle Scholar
  141. 141.
    Kirchner RM, Bennett JM (1994). Zeolites 14(7):523–528CrossRefGoogle Scholar
  142. 142.
    Villaescusa LA, Barrett PA, Camblor MA (1999). Angew Chem Int Ed 38(13-14):1997–2000CrossRefGoogle Scholar
  143. 143.
    Bennett J, Richardson J, Pluth J, Smith J (1987). Zeolites 7(2):160–162CrossRefGoogle Scholar
  144. 144.
    Parise JB (1986). Acta Crystallogr Sect C: Cryst Struct Commun 42(6):670–673CrossRefGoogle Scholar
  145. 145.
    Kokotailo G, Chu P, Lawton S, Meier W (1978). Nature 275(5676):119–120CrossRefGoogle Scholar
  146. 146.
    Wilson ST, Flanigen EM (1989) Synthesis and characterization of metal aluminophosphate molecular sieves. ACS Publications, Washington, DCCrossRefGoogle Scholar
  147. 147.
    Dickins R, Parker D, Gloe K (2005) Macrocyclic chemistry: current trends and future perspectives. Springer, DordrechtGoogle Scholar
  148. 148.
    Timmons JC, Hubin TJ (2010). Coord Chem Rev 254(15–16):1661–1685CrossRefGoogle Scholar
  149. 149.
    Curtis N (1960) J Chem Soc 11:4409–4413Google Scholar
  150. 150.
    Bradshaw JS, Krakowiak KE, Izatt RM (2009) The chemistry of heterocyclic compounds, aza-crown macrocycles, vol 51. Wiley, HobokenGoogle Scholar
  151. 151.
    Wragg DS, Morris R, Burton AW, Zones SI, Ong K, Lee G (2007). Chem Mater 19(16):3924–3932CrossRefGoogle Scholar
  152. 152.
    Wright PA, Morris RE, Wheatley PS (2007). Dalton Trans (46):5359–5368Google Scholar
  153. 153.
    Millini R, Carluccio L, Frigerio F, O’Neil Parker Jr W, Bellussi G (1998). Microporous Mesoporous Mater 24(4–6):199–211CrossRefGoogle Scholar
  154. 154.
    Schreyeck L, D’Agosto F, Stumbe J, Caullet P, Mougenel J (1997). Chem Commun 13:1241–1242CrossRefGoogle Scholar
  155. 155.
    Wessels T, McCusker L, Baerlocher C, Reinert P, Patarin J (1998). Microporous Mesoporous Mater 23(1):67–77CrossRefGoogle Scholar
  156. 156.
    Wragg DS, Hix GB, Morris RE (1998). J Am Chem Soc 120(27):6822–6823CrossRefGoogle Scholar
  157. 157.
    Khan TA, Hriljac JA (1999). Inorg Chim Acta 294(2):179–182CrossRefGoogle Scholar
  158. 158.
    Patinec V, Wright PA, Lightfoot P, Alan Aitken R, Cox PA (1999). J Chem Soc Dalton Trans 22:3909–3911CrossRefGoogle Scholar
  159. 159.
    Maple MJ, Philp EF, Slawin AMZ, Lightfoot P, Cox PA, Wright PA (2001). J Mater Chem 11(1):98–104CrossRefGoogle Scholar
  160. 160.
    Paillaud JL, Caullet P, Schreyeck L, Marler B (2001). Microporous Mesoporous Mater 42(2–3):177–189CrossRefGoogle Scholar
  161. 161.
    Wheatley PS, Morris RE (2002). J Solid State Chem 167(2):267–273CrossRefGoogle Scholar
  162. 162.
    Huang A, Weidenthaler C, Caro J (2010). Microporous Mesoporous Mater 130(1):352–356CrossRefGoogle Scholar
  163. 163.
    Dhainaut J, Daou TJ, Chappaz A, Bats N, Harbuzaru B, Lapisardi G, Chaumeil H, Defoin A, Rouleau L, Patarin J (2013). Microporous Mesoporous Mater 174:117–125CrossRefGoogle Scholar
  164. 164.
    Smith JV, Pluth JJ, Andries KJ (1993). Zeolites 13(3):166–169CrossRefGoogle Scholar
  165. 165.
    Bennett JM, Cohen JM, Artioli G, Pluth JJ, Smith JV (1985). Inorg Chem 24(2):188–193CrossRefGoogle Scholar
  166. 166.
    Davis ME, Saldarriaga C, Montes C, Garces J, Crowdert C (1988). Nature 331:698–699CrossRefGoogle Scholar
  167. 167.
    Pedersen CJ (1967). J Am Chem Soc 89(26):7017–7036CrossRefGoogle Scholar
  168. 168.
    Yoshio M, Noguchi H (1982). Anal Lett 15(15):1197–1276CrossRefGoogle Scholar
  169. 169.
    Alexander V (1995). Chem Rev 95(2):273–342CrossRefGoogle Scholar
  170. 170.
    Gokel GW, Leevy WM, Weber ME (2004). Chem Rev 104(5):2723–2750CrossRefGoogle Scholar
  171. 171.
    Hiraoka M (2016) Crown ethers and analogous compounds, vol 45. Elsevier, AmsterdamGoogle Scholar
  172. 172.
    Delprato F, Delmotte L, Guth J, Huve L (1990). Zeolites 10(6):546–552CrossRefGoogle Scholar
  173. 173.
    Dougnier F, Patarin J, Guth J, Anglerot D (1992). Zeolites 12(2):160–166CrossRefGoogle Scholar
  174. 174.
    Burkett SL, Davis ME (1993). Microporous Mater 1(4):265–282CrossRefGoogle Scholar
  175. 175.
    Chatelain T, Patarin J, Fousson E, Soulard M, Guth J, Schulz P (1995). Microporous Mater 4(2-3):231–238CrossRefGoogle Scholar
  176. 176.
    Chatelain T, Patarin J, Farre R, Petigny O, Schulz P (1996). Zeolites 17(4):328–333CrossRefGoogle Scholar
  177. 177.
    Shantz DF, Burton A, Lobo RF (1999). Microporous Mesoporous Mater 31(1):61–73CrossRefGoogle Scholar
  178. 178.
    van de Goor G, Behrens P, Felsche J (1994). Microporous Mater 2(6):501–514CrossRefGoogle Scholar
  179. 179.
    Keijsper J, Den Ouden C, Post M (1989). Stud Surf Sci Catal 49:237–247CrossRefGoogle Scholar
  180. 180.
    Ke Q, Sun T, Cheng H, Chen H, Liu X, Wei X, Wang S (2017) Chem Asian J 12(10):1043–1047Google Scholar
  181. 181.
    Baerlocher C, Meier W (1969). Helv Chim Acta 52(7):1853–1860CrossRefGoogle Scholar
  182. 182.
    Feijen E, Devadder K, Bosschaerts MH, Lievens JL, Martens JA, Grobet PJ, Jacobs PA (1994). J Am Chem Soc 116(7):2950–2957CrossRefGoogle Scholar
  183. 183.
    Llamas-Saiz AL, Foces-Foces C, Elguero J (1994). J Mol Struct 328:297–323CrossRefGoogle Scholar
  184. 184.
    Staab HA, Saupe T (1988). Angew Chem Int Ed Engl 27(7):865–879CrossRefGoogle Scholar
  185. 185.
    Martínez-Franco R, Moliner M, Yun Y, Sun J, Wan W, Zou X, Corma A (2013). Proc Natl Acad Sci 110(10):3749–3754CrossRefGoogle Scholar
  186. 186.
    Möller K, Borvornwattananont A, Bein T (1989). J Phys Chem 11:4562–4571CrossRefGoogle Scholar
  187. 187.
    DeWilde W, Peeters G, Lunsford JH (1980). J Phys Chem (United States) 84 (18): 2306–2310Google Scholar
  188. 188.
    Kawi S, Chang J, Gates B (1993). J Am Chem Soc 115Google Scholar
  189. 189.
    Recchia S, Dossi C, Fusi A, Sordelli L, Psaro R (1999). Appl Catal A Gen 182(1):41–51CrossRefGoogle Scholar
  190. 190.
    Dams M, Drijkoningen L, Pauwels B, Van Tendeloo G, De Vos D, Jacobs P (2002). J Catal 209(1):225–236CrossRefGoogle Scholar
  191. 191.
    Basset J, Choplin A (1983). J Mol Catal 21(1-3):95–108CrossRefGoogle Scholar
  192. 192.
    van de Goor G, Freyhardt CC, Behrens P (1995). Z Anorg Allg Chem 621(2):311–322CrossRefGoogle Scholar
  193. 193.
    Balkus K, Gabrielov A, Zones S (1995). Stud Surf Sci Catal 97:519–525CrossRefGoogle Scholar
  194. 194.
    Lobo RF, Tsapatsis M, Freyhardt CC, Khodabandeh S, Wagner P, Chen C-Y, Balkus KJ, Zones SI, Davis ME (1997). J Am Chem Soc 119(36):8474–8484CrossRefGoogle Scholar
  195. 195.
    Freyhardt C, Tsapatsis M, Lobo R, Balkus K, Davis M (1996). Nature 381(6580):295–298CrossRefGoogle Scholar
  196. 196.
    Balkus KJ, Gabrielov AG, Shepelev S (1995). Microporous Mater 3(4):489–495CrossRefGoogle Scholar
  197. 197.
    Garcia R, Philp EF, Slawin AM, Wright PA, Cox PA (2001). J Mater Chem 11(5):1421–1427CrossRefGoogle Scholar
  198. 198.
    Han Y, Li Y, Yu J, Xu R (2011). Angew Chem Int Ed 50(13):3003–3005CrossRefGoogle Scholar
  199. 199.
    Xu Y, Li Y, Han Y, Song X, Yu J (2013). Angew Chem Int Ed 52(21):5501–5503CrossRefGoogle Scholar
  200. 200.
    Barrett PA, Sankar G, Stephenson R, Catlow CRA, Thomas JM, Jones RH, Teat SJ (2006). Solid State Sci 8(3):337–341CrossRefGoogle Scholar
  201. 201.
    Bu X, Feng P, Stucky GD (1997). Science 278(5346):2080–2085CrossRefGoogle Scholar
  202. 202.
    Feng P, Bu X, Stucky GD (1998). Microporous Mesoporous Mater 23(5):315–322CrossRefGoogle Scholar
  203. 203.
    Martínez Franco R, Moliner M, Thogersen JR, Corma A (2013). ChemCatChem 5(11):3316–3323CrossRefGoogle Scholar
  204. 204.
    Ren L, Zhu L, Yang C, Chen Y, Sun Q, Zhang H, Li C, Nawaz F, Meng X, Xiao F-S (2011). Chem Commun 47(35):9789–9791CrossRefGoogle Scholar
  205. 205.
    Deka U, Lezcano-Gonzalez I, Warrender SJ, Lorena Picone A, Wright PA, Weckhuysen BM, Beale AM (2013). Microporous Mesoporous Mater 166:144–152CrossRefGoogle Scholar
  206. 206.
    Martínez-Franco R, Moliner M, Franch C, Kustov A, Corma A (2012). Appl Catal B Environ 127:273–280CrossRefGoogle Scholar
  207. 207.
    Lorena Picone A, Warrender SJ, Slawin AMZ, Dawson DM, Ashbrook SE, Wright PA, Thompson SP, Gaberova L, Llewellyn PL, Moulin B, Vimont A, Daturi M, Park MB, Sung SK, Nam I-S, Hong SB (2011). Microporous Mesoporous Mater 146(1–3):36–47CrossRefGoogle Scholar
  208. 208.
    Maes A, Cremers A (1973). J Am Chem Soc 121:230–239Google Scholar
  209. 209.
    Guczi L, Kiricsi I (1999). Appl Catal A Gen 186(1–2):375–394CrossRefGoogle Scholar
  210. 210.
    Moliner M (2012). ISRN Mater Sci 2012:1–24Google Scholar
  211. 211.
    Marler B, Dehnbostel N, Eulert H-H, Gies H, Liebau F (1986). J Incl Phenom Macrocycl Chem 4(4):339–349CrossRefGoogle Scholar
  212. 212.
    Schott-Darie C, Patarin J, Le Goff P, Kessler H, Benazzi E (1994). Microporous Mater 3(1-2):123–132CrossRefGoogle Scholar
  213. 213.
    Feng P, Bu X, Stucky GD (1997). Nature 388(6644):735–741CrossRefGoogle Scholar
  214. 214.
    Palella B, Cadoni M, Frache A, Pastore H, Pirone R, Russo G, Coluccia S, Marchese L (2003). J Catal 217(1):100–106Google Scholar
  215. 215.
    Gennari C, Piarulli U (2003). Chem Rev 103(8):3071–3100CrossRefGoogle Scholar
  216. 216.
    Franciò G, Faraone F, Leitner W (2000). Angew Chem Int Ed 39(8):1428–1430CrossRefGoogle Scholar
  217. 217.
    Fernández-Pérez H, Etayo P, Panossian A, Vidal-Ferran A (2011). Chem Rev 111(3):2119–2176CrossRefGoogle Scholar
  218. 218.
    Pfaltz A, Drury WJ (2004). Proc Natl Acad Sci U S A 101(16):5723–5726CrossRefGoogle Scholar
  219. 219.
    Dolhem F, Johansson MJ, Antonsson T, Kann N (2007). J Comb Chem 9(3):477–486CrossRefGoogle Scholar
  220. 220.
    Gómez-Hortigüela L, López-Arbeloa F, Corà F, Pérez-Pariente J (2008). J Am Chem Soc 130(40):13274–13284CrossRefGoogle Scholar
  221. 221.
    Corma A, Rey F, Rius J, Sabater MJ, Valencia S (2004). Nature 431(7006):287–290CrossRefGoogle Scholar
  222. 222.
    Gómez-Hortigüela L, Corà F, Catlow CRA, Pérez-Pariente J (2004). J Am Chem Soc 126(38):12097–12102CrossRefGoogle Scholar
  223. 223.
    Gómez-Hortigüela L, Pérez-Pariente J, Corà F, Catlow CRA, Blasco T (2005). J Phys Chem B 109(46):21539–21548CrossRefGoogle Scholar
  224. 224.
    Gómez-Hortigüela L, López-Arbeloa F, Pérez-Pariente J (2009). Microporous Mesoporous Mater 119(1–3):299–305CrossRefGoogle Scholar
  225. 225.
    Huang A, Caro J (2009). J Cryst Growth 311(21):4570–4574CrossRefGoogle Scholar
  226. 226.
    García R, Gómez-Hortigüela L, Sánchez F, Pérez-Pariente J (2010). Chem Mater 22(7):2276–2286CrossRefGoogle Scholar
  227. 227.
    Martínez-Franco R, Sun J, Sastre G, Yun Y, Zou X, Moliner M, Corma A (2014). Proc R Soc A 470:20140107CrossRefGoogle Scholar
  228. 228.
    Chen FJ, Xu Y, Du HB (2014). Angew Chem Int Ed 53(36):9592–9596CrossRefGoogle Scholar
  229. 229.
    Gao Z-H, Chen F-J, Xu L, Sun L, Xu Y, Du H-B (2016). Chem Eur J 22(40):14367–14372CrossRefGoogle Scholar
  230. 230.
    Xu D, Ma Y, Jing Z, Han L, Singh B, Feng J, Shen X, Cao F, Oleynikov P, Sun H (2014). Nat Commun 5:4262Google Scholar
  231. 231.
    Xu L, Ji X, Li S, Zhou Z, Du X, Sun J, Deng F, Che S, Wu P (2016). Chem Mater 28(12):4512–4521CrossRefGoogle Scholar
  232. 232.
    Chen F-J, Gao Z-H, Liang L-L, Zhang J, Du H-B (2016). CrystEngComm 18(15):2735–2741CrossRefGoogle Scholar
  233. 233.
    Gómez-Hortigüela L, Pinar AB, Pérez-Pariente J, Corà F (2009). Chem Mater 21(14):3447–3457CrossRefGoogle Scholar
  234. 234.
    Pinar AB, Gomez-Hortiguela L, McCusker LB, Perez-Pariente J (2011). Dalton Trans 40(32):8125–8131CrossRefGoogle Scholar
  235. 235.
    Alvaro-Munoz T, Lopez-Arbeloa F, Perez-Pariente J, Gómez-Hortigüela L (2014). J Phys Chem C 118(6):3069–3077CrossRefGoogle Scholar
  236. 236.
    Gomez-Hortiguela L, Alvaro-Munoz T, Bernardo-Maestro B, Perez-Pariente J (2015). Phys Chem Chem Phys 17(1):348–357CrossRefGoogle Scholar
  237. 237.
    Bernardo-Maestro B, Vos E, López-Arbeloa F, Pérez-Pariente J, Gómez-Hortigüela L (2017). Microporous Mesoporous Mater 239:432–443CrossRefGoogle Scholar
  238. 238.
    Álvaro-Muñoz T, Pinar AB, Šišak D, Pérez-Pariente J, Gómez-Hortigüela L (2014). J Phys Chem C 118(9):4835–4845CrossRefGoogle Scholar
  239. 239.
    Gómez-Hortigüela L, Sanz A, Álvaro-Muñoz T, López-Arbeloa F, Pérez-Pariente J (2014). Microporous Mesoporous Mater 183:99–107CrossRefGoogle Scholar
  240. 240.
    Martínez-Franco R, Cantín Á, Moliner M, Corma A (2014). Chem Mater 26(15):4346–4353CrossRefGoogle Scholar
  241. 241.
    Martínez-Franco R, Cantín Á, Vidal-Moya A, Moliner M, Corma A (2015). Chem Mater 27(8):2981–2989CrossRefGoogle Scholar
  242. 242.
    Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R (2009). Nature 461(7261):246–249CrossRefGoogle Scholar
  243. 243.
    Luo HY, Michaelis VK, Hodges S, Griffin RG, Román-Leshkov Y (2015). Chem Sci 6(11):6320–6324CrossRefGoogle Scholar
  244. 244.
    Sun J, Bonneau C, Cantín Á, Corma A, Díaz-Cabañas MJ, Moliner M, Zhang D, Li M, Zou X (2009). Nature 458(7242):1154–1157CrossRefGoogle Scholar
  245. 245.
    Noble GW, Wright PA, Lightfoot P, Morris RE, Hudson KJ, Kvick Å, Graafsma H (1997). Angew Chem Int Ed Engl 36(1-2):81–83CrossRefGoogle Scholar
  246. 246.
    Zaera F (2012). Catal Lett 142(5):501–516CrossRefGoogle Scholar
  247. 247.
    Coronas J (2010). Chem Eng J 156(2):236–242CrossRefGoogle Scholar
  248. 248.
    Bellussi G, Carati A, Rizzo C, Millini R (2013). Cat Sci Technol 3(4):833–857CrossRefGoogle Scholar
  249. 249.
    Ma H, Tian Z, Xu R, Wang B, Wei Y, Wang L, Xu Y, Zhang W, Lin L (2008). J Am Chem Soc 130(26):8120–8121CrossRefGoogle Scholar
  250. 250.
    Welton T (1999). Chem Rev 99(8):2071–2084CrossRefGoogle Scholar
  251. 251.
    Wasserscheid P, Welton T (2008) Ionic liquids in synthesis. Wiley, HobokenGoogle Scholar
  252. 252.
    Ventura SP, Gonçalves AM, Sintra T, Pereira JL, Gonçalves F, Coutinho JA (2013). Ecotoxicology 22(1):1–12CrossRefGoogle Scholar
  253. 253.
    Seddon KR (1997). J Chem Technol Biotechnol 68(4):351–356CrossRefGoogle Scholar
  254. 254.
    Plechkova NV, Seddon KR (2008). Chem Soc Rev 37(1):123–150CrossRefGoogle Scholar
  255. 255.
    Smiglak M, Pringle J, Lu X, Han L, Zhang S, Gao H, MacFarlane D, Rogers R (2014). Chem Commun 50(66):9228–9250CrossRefGoogle Scholar
  256. 256.
    MacFarlane DR, Tachikawa N, Forsyth M, Pringle JM, Howlett PC, Elliott GD, Davis JH, Watanabe M, Simon P, Angell CA (2014). Energy Environ Sci 7(1):232–250CrossRefGoogle Scholar
  257. 257.
    Ho TD, Zhang C, Hantao LW, Anderson JL (2013). Anal Chem 86(1):262–285CrossRefGoogle Scholar
  258. 258.
    Steinrueck H-P, Wasserscheid P (2015). Catal Lett 145(1):380–397CrossRefGoogle Scholar
  259. 259.
    Parnham ER, Morris RE (2007). Acc Chem Res 40(10):1005–1013CrossRefGoogle Scholar
  260. 260.
    Morris RE (2009). Chem Commun (21):2990–2998Google Scholar
  261. 261.
    Tian Z-J, Liu H (2016) Zeolites in sustainable chemistry. Springer, Berlin, Heidelberg, pp 37–76CrossRefGoogle Scholar
  262. 262.
    Cooper ER, Andrews CD, Wheatley PS, Webb PB, Wormald P, Morris RE (2004). Nature 430(7003):1012–1016CrossRefGoogle Scholar
  263. 263.
    Parnham ER, Wheatley PS, Morris RE (2006). Chem Commun 4:380–382CrossRefGoogle Scholar
  264. 264.
    Parnham ER, Morris RE (2006). J Am Chem Soc 128(7):2204–2205CrossRefGoogle Scholar
  265. 265.
    Han L, Wang Y, Li C, Zhang S, Lu X, Cao M (2008). AICHE J 54(1):280–288CrossRefGoogle Scholar
  266. 266.
    Ma H, Xu R, You W, Wen G, Wang S, Xu Y, Wang B, Wang L, Wei Y, Xu Y, Zhang W, Tian Z, Lin L (2009). Microporous Mesoporous Mater 120(3):278–284CrossRefGoogle Scholar
  267. 267.
    Ng E-P, Sekhon SS, Mintova S (2009). Chem Commun (13):1661–1663Google Scholar
  268. 268.
    Khoo DY, Kok W-M, Mukti RR, Mintova S, Ng E-P (2013). Solid State Sci 25:63–69CrossRefGoogle Scholar
  269. 269.
    Shi Y, Liu G, Wang L, Zhang X (2014). Microporous Mesoporous Mater 193:1–6CrossRefGoogle Scholar
  270. 270.
    Pinar AB, McCusker LB, Baerlocher C, Hwang S-J, Xie D, Benin AI, Zones SI (2016). New J Chem 40(5):4160–4166CrossRefGoogle Scholar
  271. 271.
    Sánchez-Sánchez M, Romero ÁA, Pinilla-Herrero I, Sastre E. Catal Today 296:239–246Google Scholar
  272. 272.
    Wang L, Xu Y, Wei Y, Duan J, Chen A, Wang B, Ma H, Tian Z, Lin L (2006). J Am Chem Soc 128(23):7432–7433CrossRefGoogle Scholar
  273. 273.
    Xu R, Zhang W, Guan J, Xu Y, Wang L, Ma H, Tian Z, Han X, Lin L, Bao X (2009). Chem Eur J 15(21):5348–5354CrossRefGoogle Scholar
  274. 274.
    Pei R, Tian Z, Wei Y, Li K, Xu Y, Wang L, Ma H (2010). Mater Lett 64(19):2118–2121CrossRefGoogle Scholar
  275. 275.
    Fayad EJ, Bats N, Kirschhock CEA, Rebours B, Quoineaud A-A, Martens JA (2010). Angew Chem 122(27):4689–4692CrossRefGoogle Scholar
  276. 276.
    Musa M, Dawson DM, Ashbrook SE, Morris RE (2017). Microporous Mesoporous Mater 239:336–341CrossRefGoogle Scholar
  277. 277.
    Xing H, Li J, Yan W, Chen P, Jin Z, Yu J, Dai S, Xu R (2008). Chem Mater 20(13):4179–4181CrossRefGoogle Scholar
  278. 278.
    Wei Y, Tian Z, Gies H, Xu R, Ma H, Pei R, Zhang W, Xu Y, Wang L, Li K, Wang B, Wen G, Lin L (2010). Angew Chem 122(31):5495–5498CrossRefGoogle Scholar
  279. 279.
    Wheatley PS, Allan PK, Teat SJ, Ashbrook SE, Morris RE (2010). Chem Sci 1(4):483–487CrossRefGoogle Scholar
  280. 280.
    Cundy CS (1998). Collect Czechoslov Chem Commun 63(11):1699–1723CrossRefGoogle Scholar
  281. 281.
    Morris RE (2008). Angew Chem Int Ed 47(3):442–444CrossRefGoogle Scholar
  282. 282.
    Martínez-Palou R (2010). Mol Divers 14(1):3–25CrossRefGoogle Scholar
  283. 283.
    Wang L, Xu Y-P, Wang B-C, Wang S-J, Yu J-Y, Tian Z-J, Lin L-W (2008). Chem Eur J 14(34):10551–10555CrossRefGoogle Scholar
  284. 284.
    Cai R, Liu Y, Gu S, Yan Y (2010). J Am Chem Soc 132(37):12776–12777CrossRefGoogle Scholar
  285. 285.
    Parise JB (1985). Chem Commun 9:606–607CrossRefGoogle Scholar
  286. 286.
    Estermann M, McCusker L (1991). Nature 352(6333):320CrossRefGoogle Scholar
  287. 287.
    Argauer RJ, Landolt GR (1972) US 3702886 AGoogle Scholar
  288. 288.
    Barri S, Smith G, White D, Young D (1984) Nature 312(5994):533–534Google Scholar
  289. 289.
    Robert G, MeurigáThomas J (1993). Chem Commun 7:633–635Google Scholar
  290. 290.
    Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004). J Am Chem Soc 126(29):9142–9147CrossRefGoogle Scholar
  291. 291.
    Zhang Q, Vigier KDO, Royer S, Jérôme F (2012). Chem Soc Rev 41(21):7108–7146CrossRefGoogle Scholar
  292. 292.
    Zhao H, Baker GA (2013). J Chem Technol Biotechnol 88(1):3–12CrossRefGoogle Scholar
  293. 293.
    Drylie EA, Wragg DS, Parnham ER, Wheatley PS, Slawin AMZ, Warren JE, Morris RE (2007). Angew Chem Int Ed 46(41):7839–7843CrossRefGoogle Scholar
  294. 294.
    Liu L, Kong Y, Xu H, Li JP, Dong JX, Lin Z (2008). Microporous Mesoporous Mater 115(3):624–628CrossRefGoogle Scholar
  295. 295.
    Liu L, Li X, Xu H, Li J, Lin Z, Dong J (2009). Dalton Trans (47):10418–10421Google Scholar
  296. 296.
    Zhao X, Kang C, Wang H, Luo C, Li G, Wang X (2011). J Porous Mater 18(5):615–621CrossRefGoogle Scholar
  297. 297.
    Zhao X, Wang H, Dong B, Sun Z, Li G, Wang X (2012). Microporous Mesoporous Mater 151:56–63CrossRefGoogle Scholar
  298. 298.
    Zhao X, Wang H, Kang C, Sun Z, Li G, Wang X (2012). Microporous Mesoporous Mater 151:501–505CrossRefGoogle Scholar
  299. 299.
    Zhou XT, Liu QF, Liu Y (2012) Ionothermal synthesis of sodalite from metakaolin, advanced materials research. Trans Tech Publications, Switzerland, pp 789–792Google Scholar
  300. 300.
    Lin ZS, Huang Y (2016). Can J Chem 94(6):533–540CrossRefGoogle Scholar
  301. 301.
    Richardson J, Pluth J, Smith J (1989). Naturwissenschaften 76(10):467–469CrossRefGoogle Scholar
  302. 302.
    Barrett PA, Jones RH (2000). Phys Chem Chem Phys 2(3):407–412CrossRefGoogle Scholar
  303. 303.
    Chen J, Natarajan S, Thomas JM, Jones RH, Hursthouse MB (1994). Angew Chem Int Ed Engl 33(6):639–640CrossRefGoogle Scholar
  304. 304.
    Marler B, Patarin J, Sierra L (1995). Microporous Mater 5(3):151–159CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Instituto de Tecnología Química, Consejo Superior de Investigaciones Científicas – Universitat Politècnica de València (C.S.I.C. – U.P.V.)ValenciaSpain

Personalised recommendations