Alkoxido-Derivatised Lindqvist- and Keggin-Type Polyoxometalates

  • R. John ErringtonEmail author
  • Balamurugan Kandasamy
  • Daniel Lebbie
  • Thompson Izuagie
Part of the Structure and Bonding book series (STRUCTURE, volume 176)


The targeted application of polyoxometalates (POMs) in catalysis, materials science and biology requires an in-depth understanding of how their properties might be tuned through compositional and structural molecular engineering. In practice, this requires chemical methodologies that enable reliable, systematic manipulation of families of related POMs in conjunction with detailed experimental and theoretical studies. Lindqvist-type hexametalates [LM′M5O18] n provide a convenient platform for systematic studies in which M, M′ and L may be varied, and this chapter gives an overview of the development of versatile synthetic methods and the results of detailed reactivity studies based on alkoxido-derivatised anions [(RO)M′M5O18] n. Solid-state structures and NMR studies of solution reactivities are providing an insight into the effects on bonding and electronic properties of metal and ligand substitution in this family of POMs, and comparisons with the related Keggin-type POMs [(RO)M′PW11O39] n enable an assessment of the effect of the supporting POM structure on the reactivity of the heterometal site. The chapter begins with recent investigations of aggregation in nonaqueous synthesis of POMs from metal alkoxides and the introduction of heterometal sites into the hexametalate framework. Subsequent sections discuss how protonolysis of M′OR bonds can be used in the synthesis of ligand-exchanged anions and also for the generation of highly reactive {M′M5} species in solution.


Hydrolysis Keggin Lindqvist Metal alkoxides Polyoxometalates Protonation 



We are grateful to COST Action CM1203 (Polyoxometalate Chemistry for Molecular Nanoscience, PoCheMoN) for funding Short-Term Scientific Missions, the Niger Delta Development Commission for a scholarship to TI, the University of St. Andrews for studentship funding (BK) and to Prof. W. G. Klemperer for support.


  1. 1.
    Yu X, Marks TJ, Facchetti A (2016) Metal oxides for optoelectronic applications. Nat Mater 15:383–396CrossRefGoogle Scholar
  2. 2.
    Yuan C, Wu HB, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 53:1488–1504CrossRefGoogle Scholar
  3. 3.
    Kung HH (1989) Transition metal oxides: surface chemistry and catalysis, studies in surface science and catalysis, vol 45. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Meyer J, Hamwi S, Kröger M, Kowalsky W, Riedl T, Kahn A (2012) Transition metal oxides for organic electronics: energetics, device physics and applications. Adv Mater 24:5408–5427CrossRefGoogle Scholar
  5. 5.
    Bradley DC, Mehrotra RC, Gaur DP (1978) Metal alkoxides. Academic, LondonGoogle Scholar
  6. 6.
    Bradley DC, Mehrotra RC, Rothwell IP, Singh A (2001) Alkoxo and aryloxo derivatives of metals. Academic, LondonGoogle Scholar
  7. 7.
    Hench LL, West JK (1990) The sol-gel process. Chem Rev 90:33–72CrossRefGoogle Scholar
  8. 8.
    Brinker CJ, Scherer GW (1990) Sol-gel science. Academic, San DiegoGoogle Scholar
  9. 9.
    Sanchez C, Rozes L, Ribot F, Laberty-Robert C, Grosso D, Sassoye C, Boissiere C, Nicole L (2010) “Chimie douce”: a land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials. C R Chim 13:3–39CrossRefGoogle Scholar
  10. 10.
    Watenpaugh K, Caughlan CN (1967) The crystal and molecular structure of the first hydrolysis product (Ti7O24Et19) of titanium tetraethoxide. J Chem Soc Chem Commun 2:76–77Google Scholar
  11. 11.
    Schmidt R, Mosset A, Galy J (1991) New compounds in the chemistry of group 4 transition-metal alkoxides. Part 4. Synthesis and molecular structures of two polymorphs of [Ti16O16(OEt)32] and refinement of the structure of [Ti7O4(OEt)20]. J Chem Soc Dalton Trans 8:1999–2005CrossRefGoogle Scholar
  12. 12.
    Day VW, Eberspacher TA, Klemperer WG, Park CW, Rosenberg FS (1991) Solution structure elucidation of early transition-metal polyoxoalkoxides using 17O nuclear magnetic resonance spectroscopy. J Am Chem Soc 113:8190–8192CrossRefGoogle Scholar
  13. 13.
    Mosset A, Galy J (1988) Synthèse et etude structural de l’édifice Ti16O16(OC2H5)32: un example de maclage intramoléculaire. C R Acad Sci Paris Ser II 307:1747–1750Google Scholar
  14. 14.
    Day VW, Eberspacher TA, Klemperer WG, Park CW (1993) Dodecatitanates: a new family of stable polyoxotitanates. J Am Chem Soc 115:8469–8470CrossRefGoogle Scholar
  15. 15.
    Chen YW, Klemperer WG, Park CW (1992) Polynuclear titanium oxoalkoxides: molecular building blocks for new materials? MRS Online Proc Libr 271:57–63CrossRefGoogle Scholar
  16. 16.
    Day VW, Eberspacher TA, Chen Y, Hao J, Klemperer WG (1995) Low-nuclearity titanium oxoalkoxides: the trititanates [Ti3O](OPri)10 and [Ti3O](OPri)9(OMe). Inorg Chim Acta 229:391–405CrossRefGoogle Scholar
  17. 17.
    Rozes L, Sanchez C (2011) Titanium oxo-clusters: precursors for a Lego-like construction of nanostructured hybrid materials. Chem Soc Rev 40:1006–1030CrossRefGoogle Scholar
  18. 18.
    Rozes L, Steunou N, Fornasieri G, Sanchez C (2006) Titanium-oxo clusters, versatile nanobuilding blocks for the design of advanced hybrid materials. Monatsh Chem 137:501–528CrossRefGoogle Scholar
  19. 19.
    Knoth W, Harlow RL (1981) Derivatives of heteropolyanions. 3. O-alkylation of Mo12PO40 3− and W12PO40 3−. J Am Chem Soc 103:4265–4266CrossRefGoogle Scholar
  20. 20.
    Chen Q, Zubieta J (1992) Coordination chemistry of soluble metal oxides of molybdenum and vanadium. Coord Chem Rev 114:107–167CrossRefGoogle Scholar
  21. 21.
    Khan MI, Chen Q, Goshorn DP, Zubieta J (1993) Polyoxoalkoxide clusters of vanadium: structural characterisation of the decavanadate core in the “fully reduced” vanadium(IV) species [V10O16{(OCH2)3CCH2CH3}4]2− (R = –CH2CH3, –CH3). Inorg Chem 32:672–680CrossRefGoogle Scholar
  22. 22.
    Hu X, Xiao Z, Huang B, Hu X, Cheng M, Lin X, Wu P, Wei Y (2017) Syntheses and post-functionalization of tri-substituted polyalkoxohexavanadates containing tris(alkoxo) ligands. Dalton Trans 46:8505–8513CrossRefGoogle Scholar
  23. 23.
    Errington RJ, Richards DG, Clegg W, Fraser KA (1994) New aspects of non-aqueous polyoxometalate chemistry. In: Müller A, Pope MT (eds) Polyoxometalates: from platonic solids to anti-retroviral activity. Topics in molecular organization, vol 10. Kluwer, Dordrecht, pp 105–114Google Scholar
  24. 24.
    Errington RJ (2001) Rational approaches to polyoxometalate synthesis. In: Pope MT, Müller A (eds) Polyoxometalate chemistry: from topology via self-assembly to applications. Kluwer, Dordrecht, pp 1–22Google Scholar
  25. 25.
    Errington RJ (2003) General strategies for non-aqueous polyoxometalate synthesis. In: Borrás-Almenar JJ, Coronado E, Müller A, Pope MT (eds) Polyoxometalate molecular science. Kluwer, Dordrecht, pp 55–77CrossRefGoogle Scholar
  26. 26.
    Errington RJ (2003) Structure of oxo metallic clusters. In: McCleverty JA, Meyer TJ (eds) Comprehensive coordination chemistry II, vol 2. Elsevier, Oxford, pp 759–773CrossRefGoogle Scholar
  27. 27.
    Errington RJ (2017) Nonaqueous polyoxometalate synthesis for systematic studies of hydrolysis, protonation and reduction. In: van Eldik R, Cronin L (eds) Polyoxometalate chemistry, Adv Inorg Chem, vol 69. Elsevier, Cambridge, pp 287–336Google Scholar
  28. 28.
    Lindqvist I (1953) The structure of the hexaniobate ion in 7 Na2O 6 Nb2O5 32 H2O. Arkiv Kemi 5:247–250Google Scholar
  29. 29.
    Marek KA (2001) PhD thesis, University of Illinois at Urbana-Champaign, ChampaignGoogle Scholar
  30. 30.
    Klemperer WG, Marek KA (2013) An 17O NMR study of hydrolyzed NbV in weakly acidic and basic aqueous solutions. Eur J Inorg Chem 10–11:1762–1771CrossRefGoogle Scholar
  31. 31.
    Nyman M (2011) Polyoxoniobate chemistry in the 21st century. Dalton Trans 40:8049–8058CrossRefGoogle Scholar
  32. 32.
    Daniel C, Hartl H (2009) A mixed-valence VIV/VV alkoxo-polyoxovanadium cluster series [V6O8(OCH3)11]n+/−: exploring the influence of a μ-oxo ligand in a spin frustrated structure. J Am Chem Soc 131:5101–5114CrossRefGoogle Scholar
  33. 33.
    Tytko KH, Schoenfeld B (1975) Concerning solid isopolymolybdates and their relation to isopolymolybdate ions in aqueous solution. Z Naturforsch Teil B 30:471–484Google Scholar
  34. 34.
    Boyer M, Le Meur B (1979) Nouvelle préparation et propriétés de l’ion hexatungstique W6O19 2−. C R Acad Sci Ser IIC 281:59–62Google Scholar
  35. 35.
    Che M, Fournier M, Launay JP (1979) The analog of surface molybdenyl ion in Mo/SiO2 supported catalysts: the isopolyanion Mo6O19 3− studied by EPR and UV-visible spectroscopy. Comparison with other molybdenyl compounds. J Chem Phys 71:1954–1960CrossRefGoogle Scholar
  36. 36.
    Sanchez C, Livage J, Launay JP, Fournier M (1983) Electron delocalization in mixed-valence tungsten polyanions. J Am Chem Soc 105:6817–6823CrossRefGoogle Scholar
  37. 37.
    Klemperer WG (1990) Inorg Synth 27:74–78 and 80–81Google Scholar
  38. 38.
    Jahr KF, Fuchs J, Witte P, Flindt EP (1965) Hydrolysis of amphoteric metal alkoxides. V. Saponification of tetraethyl tungstate(VI) in the presence of various bases. Chem Ber 98:3588–3599CrossRefGoogle Scholar
  39. 39.
    Jahr KF, Fuchs J, Oberhauser R (1968) Hydrolysis of amphoteric metal alkoxides. IX. Saponification of tetramethyl tungstate(VI) in the presence of tetraalkylammonium bases. Chem Ber 101:477–481CrossRefGoogle Scholar
  40. 40.
    Fuchs J, Jahr KF (1968) Über neue Polywolframate und –molybdate. Z Naturforsch Teil B 23:1380Google Scholar
  41. 41.
    Hsieh T-C, Zubieta J (1986) Synthesis and characterization of oxomolybdate clusters containing coordinatively bound organo-diazenido units: the crystal and molecular structure of the hexanuclear diazenido-oxomolybdate, (NBun 4)3[Mo6O18(N2C6H5)]. Polyhedron 5:1655–1657CrossRefGoogle Scholar
  42. 42.
    Kang H, Zubieta J (1988) Co-ordination complexes of polyoxomolybdates with a hexanuclear core: synthesis and structural characterization of (NBun 4)2[Mo6O18(NNMePh)]. J Chem Soc Chem Commun 17:1192–1193CrossRefGoogle Scholar
  43. 43.
    Du Y, Rheingold AL, Maatta EA (1992) A polyoxometalate incorporating an organoimido ligand: preparation and structure of [Mo5O18(MoNC6H4CH3)]2−. J Am Chem Soc 114:345–346CrossRefGoogle Scholar
  44. 44.
    Proust A, Thouvenot R, Chaussade M, Robert F, Gouzerh P (1994) Phenylimido derivatives of [Mo6O19]2−: synthesis, X-ray structures, vibrational, electrochemical, 95Mo and 15N NMR studies. Inorg Chim Acta 224:81–95CrossRefGoogle Scholar
  45. 45.
    Clegg W, Errington RJ, Fraser KA, Holmes SA, Schäfer A (1995) Functionalisation of [Mo6O19]2− with aromatic amines: synthesis and structure of a hexamolybdate building block with linear difunctionality. J Chem Soc Chem Commun 4:455–456CrossRefGoogle Scholar
  46. 46.
    Strong JB, Yap GPA, Ostrander R, Liable-Sands LM, Rheingold AL, Thouvenot R, Gouzerh P, Maatta EA (2000) A new class of functionalized polyoxometalates: synthetic, structural, spectroscopic, and electrochemical studies of organoimido derivatives of [Mo6O19]2−. J Am Chem Soc 122:639–649CrossRefGoogle Scholar
  47. 47.
    Zhang J, Xiao F, Hao J, Wei Y (2012) The chemistry of organoimido derivatives of polyoxometalates. Dalton Trans 41:3599–3615CrossRefGoogle Scholar
  48. 48.
    Clegg W, Elsegood MRJ, Errington RJ, Havelock J (1996) Alkoxide hydrolysis as a route to early transition-metal polyoxometalates: synthesis and crystal structures of heteronuclear hexametalate derivatives. J Chem Soc Dalton Trans 5:681–690CrossRefGoogle Scholar
  49. 49.
    Errington RJ, Petkar SS, Middleton PS, McFarlane W, Clegg W, Coxall RA, Harrington RW (2007) Synthesis and reactivity of the methoxozirconium pentatungstate (nBu4N)6[{(μ-MeO)ZrW5O18}2]: insights into proton transfer reactions, solution dynamics and assembly of {ZrW5O18}2− building blocks. J Am Chem Soc 129:12181–12196CrossRefGoogle Scholar
  50. 50.
    Errington RJ, Petkar SS, Middleton PS, McFarlane W, Clegg W, Harrington RW (2007) Non-aqueous synthetic methodology for TiW5 polyoxometalates: protonolysis of [(MeO)TiW5O18]3− with alcohols, water and phenols. Dalton Trans 44:5211–5222CrossRefGoogle Scholar
  51. 51.
    Errington RJ, Harle G, Clegg W, Harrington RW (2009) Extending the Lindqvist family to late 3d transition metals: a rational entry to CoW5 hexametalate chemistry. Eur J Inorg Chem 34:5240–5246CrossRefGoogle Scholar
  52. 52.
    Errington RJ, Coyle L, Middleton PS, Murphy CJ, Clegg W, Harrington RW (2010) Synthesis and structure of the alkoxido-titanium pentamolybdate (nBu4N)3[(iPrO)TiMo5O18]: an entry into systematic TiMo5 reactivity. J Clust Sci 21:503–514CrossRefGoogle Scholar
  53. 53.
    Coyle L, Middleton PS, Murphy CJ, Clegg W, Harrington RW, Errington RJ (2012) Protonolysis of [(iPrO)TiMo5O18]3−: access to a family of TiMo5 Lindqvist type polyoxometalates. Dalton Trans 41:971–981CrossRefGoogle Scholar
  54. 54.
    Kandasamy B, Wills C, McFarlane W, Clegg W, Harrington RW, Rodríguez-Fortea A, Poblet JM, Bruce PG, John Errington R (2012) An alkoxido-tin substituted polyoxometalate [(MeO)SnW5O18]3−: the first member of a new family of reactive {SnW5} Lindqvist-type anions. Chem Eur J 18:59–62CrossRefGoogle Scholar
  55. 55.
    Clegg W, Errington RJ, Kraxner P, Redshaw C (1992) Solid-state and solution studies of tungsten(VI) oxotetraalkoxides. J Chem Soc Dalton Trans 8:1431–1438CrossRefGoogle Scholar
  56. 56.
    Vilà-Nadal L, Rodríguez-Fortea A, Yan L-K, Wilson EF, Cronin L, Poblet JM (2009) Nucleation mechanisms of molecular oxides: a study of the assembly–dissassembly of [W6O19]2− by theory and mass spectrometry. Angew Chem Int Ed 48:5452–5456CrossRefGoogle Scholar
  57. 57.
    Vilà-Nadal L, Rodríguez-Fortea A, Poblet JM (2009) Theoretical analysis of the possible intermediates in the formation of [W6O19]2−. Eur J Inorg Chem 34:5125–5133CrossRefGoogle Scholar
  58. 58.
    Lang Z-L, Guan W, Yan L-K, Wen S-Z, Su Z-M, Hao L-Z (2012) The self-assembly mechanism of the Lindqvist anion [W6O19]2− in aqueous solution: a density functional theory study. Dalton Trans 41:11361–11368CrossRefGoogle Scholar
  59. 59.
    Maksimovskaya RI, Burtseva KG (1985) 17O and 183W NMR studies of the paratungstate anions in aqueous solutions. Polyhedron 4:1559–1562CrossRefGoogle Scholar
  60. 60.
    Hastings J, Howarth OW (1992) A 183W, 1H and 17O nuclear magnetic resonance study of aqueous isoplytungstates. J Chem Soc Dalton Trans 2:209–215CrossRefGoogle Scholar
  61. 61.
    Clegg W, Errington RJ, Fraser KA, Richards DG (1993) Evidence for rapid ligand redistribution in non-aqueous tungstate chemistry: rational synthesis of the binuclear tungsten oxoalkoxide [W2O5(OMe)5]2−. J Chem Soc Chem Commun 13:1105CrossRefGoogle Scholar
  62. 62.
    Errington RJ, Kerlogue MD, Richards DG (1993) Non-aqueous routes to a new polyoxotungstate. J Chem Soc Chem Commun 7:649CrossRefGoogle Scholar
  63. 63.
    Filowitz M, Klemperer WG, Shum W (1978) Synthesis and characterization of the pentamolybdate ion Mo5O17H3−. J Am Chem Soc 100:2580–2581CrossRefGoogle Scholar
  64. 64.
    Seisenbaeva GA, Gohil S, Kessler VG (2004) Influence of heteroligands on the composition, structures and properties of homo- and heterometallic zirconium alkoxides. Decisive role of thermodynamic factors in their self-assembly. J Mater Chem 14:3177–3190CrossRefGoogle Scholar
  65. 65.
    Caruso J, Alam TM, Hampden-Smith MJ, Rheingold AL, Yap GAP (1996) Alcohol-alkoxide exchange between Sn(OBut)4 and HOBut in co-ordinating and non-co-ordinating solvents. J Chem Soc Dalton Trans 13:2659–2664CrossRefGoogle Scholar
  66. 66.
    Flynn CM, Pope MT (1971) Tungstovanadate heteroploy complexes. I. Vanadium(V) complexes with the constitution M6O19 n− and V:W ≥ 1:2. Inorg Chem 10:2524–2529CrossRefGoogle Scholar
  67. 67.
    Domaille P (1984) 1- and 2-dimensional tungsten-183 and vanadium-51 NMR characterization of isopolymetalates and heteroploymetalates. J Am Chem Soc 106:7677–7687CrossRefGoogle Scholar
  68. 68.
    Nugent WA, Mayer JM (1988) Metal-ligand multiple bonds. Wiley, New YorkGoogle Scholar
  69. 69.
    Kessler VG, Mironov AV, Turova NY, Yanovsky AI, Struchkov YT (1993) The synthesis and X-ray crystal structure of molybdenum oxomethoxide [Mo(OMe)4]2. Polyhedron 12:1573–1576CrossRefGoogle Scholar
  70. 70.
    Smith GD, Fanwick PE, Rothwell IP (1990) Synthesis, structure, and spectroscopic properties of germanium and tin compounds containing aryloxide ligation: comparison of aryloxide bonding to group 4 and group 14 metal centers. Inorg Chem 29:322–3226Google Scholar
  71. 71.
    Kandasamy B (2011) PhD thesis, University of St. Andrews, St. AndrewsGoogle Scholar
  72. 72.
    Zhuang J, Yan L, Liu C, Su Z (2009) A quantum chemical study of the structure, bonding characteristics and nonlinear optical properties of aryloxido and salicylaldehydo derivatives of [XW5O10]3− (X = Zr or Ti). Eur J Inorg Chem 17:2529–2535CrossRefGoogle Scholar
  73. 73.
    Carabineiro H, Villanneau R, Carrier X, Herson P, Lemos F, Ribeiro FR, Proust A, Che M (2006) Zirconium-substituted isopolytungstates: structural models for zirconia-supported tungsten catalysts. Inorg Chem 45:1915–1923CrossRefGoogle Scholar
  74. 74.
    Strauss SH (1993) The search for larger and more weakly coordinating anions. Chem Rev 93:927–942CrossRefGoogle Scholar
  75. 75.
    Scott SL, Basset J-M, Niccolai GP, Santini CC, Candy J-P, Lecuyer C, Quignard F, Choplin A (1994) Surface organometallic chemistry: a molecular approach to surface catalysis. New J Chem 18:115–122Google Scholar
  76. 76.
    Copéret C, Comas-Vives A, Conley MP, Estes DP, Fedorov A, Mougel V, Nagae H, Núnez-Zarur F, Zhizhko PA (2016) Surface organometallic and coordination chemistry toward single-site heterogeneous catalysts: strategies, methods, structures, and activities. Chem Rev 116:323–421CrossRefGoogle Scholar
  77. 77.
    Pascual-Borras M, López X, Rodriguez-Fortea A, Errington RJ, Poblet JM (2014) 17O NMR chemical shifts in oxometalates: from the simplest monometallic species to mixed-metal polyoxometalates. Chem Sci 5:2031–2042CrossRefGoogle Scholar
  78. 78.
    Wingad RL (1999) PhD thesis, Newcastle University, Newcastle upon TyneGoogle Scholar
  79. 79.
    Izuagie T (2017) PhD thesis, Newcastle University, Newcastle upon TyneGoogle Scholar
  80. 80.
    Knoth WH, Domaille PJ, Roe DC (1983) Halometal derivatives of W12PO40 and related 183W NMR studies. Inorg Chem 22:198–201CrossRefGoogle Scholar
  81. 81.
    Kholdeeva OA, Maksimov GM, Maksimovskaya RI, Kovaleva LA, Fedotov MA, Grigoriev VA, Hill CL (2000) A dimeric titanium-containing polyoxometalate. Synthesis, characterization, and catalysis of H2O2-based thioether oxidation. Inorg Chem 39:3828–3837CrossRefGoogle Scholar
  82. 82.
    Kholdeeva OA, Trubitsina TA, Maksimov GM, Golovin AV, Maksimovskaya RI (2005) Synthesis, characterization, and reactivity of Ti(IV)-monosubstituted keggin polyoxometalates. Inorg Chem 44:1635–1642CrossRefGoogle Scholar
  83. 83.
    Maksimov GM, Maksimovskaya RI, Kholdeeva OA, Fedotov MA, Zaikovskii VI, Vasil’ev VG, Arzumanov SS (2009) Structure and properties of H8(PW11TiO39)2O heteropolyacid. J Struct Chem 50:618–627CrossRefGoogle Scholar
  84. 84.
    Jiménez-Lozano P, Skobelev IY, Kholdeeva OA, Poblet JM, Carbó JJ (2016) Alkene epoxidation catalyzed by Ti-containing polyoxometalates: unprecedented β–oxygen transfer mechanism. Inorg Chem 55:6080–6084CrossRefGoogle Scholar
  85. 85.
    Fernández JA, López X, Poblet JM (2007) A DFT study on the effect of metal, anion charge, heteroatom and structure upon the relative basicities of polyoxoanions. J Mol Catal A Chem 262:236–242CrossRefGoogle Scholar
  86. 86.
    Pascual-Borras M (2017) PhD thesis, Universitat Rovira I Virgili, TarragonaGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • R. John Errington
    • 1
    Email author
  • Balamurugan Kandasamy
    • 1
  • Daniel Lebbie
    • 1
  • Thompson Izuagie
    • 1
  1. 1.School of ChemistryNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations