Lanthanide Clusters Toward Single-Molecule Magnets

  • Tian Han
  • You-Song Ding
  • Yan-Zhen ZhengEmail author
Part of the Structure and Bonding book series (STRUCTURE, volume 173)


Single-molecule magnets (SMMs) have attracted increasing attention for their potential applications in high-density information storage and quantum computing. Thereinto, polynuclear 4f complexes are excellent candidates to create high-performance SMMs for the advantages of significant single-ion magnetic anisotropy arising from 4f ions and manipulable magnetic exchange couplings via tunable arrangement of the metal ions, which promotes the rapid development of this area in the last decade. In this chapter we present a comprehensive review focusing on cluster-based lanthanide SMMs and their correlations between the molecular structures and magnetic behaviors and further highlight some novel strategies for enhancing SMMs.


Lanthanide Magnetic relaxation Polynuclear 4f complexes Single-molecule magnets 



This work was supported by “973 projects” (2012CB619401 and 2012CB619402), NSFC (21473129, 21201137, 21503155, and IRT13034), China Postdoctoral Science Foundation (2014M552425), “National Young 1000-Plan” program, the open funding of Wuhan National High Magnetic Field Center (2015KF06), and the Fundamental Research Funds for Central Universities.


  1. 1.
    Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomagnets. Oxford University Press, OxfordCrossRefGoogle Scholar
  2. 2.
    Sessoli R, Gatteschi D, Caneschi A, Novak M (1993) Magnetic bistability in a metal-ion cluster. Nature 365:141–143CrossRefGoogle Scholar
  3. 3.
    Sessoli R, Tsai HL, Schake AR, Wang S, Vincent JB, Folting K, Gatteschi D, Christou G, Hendrickson DN (1993) High-spin molecules: [Mn12O12(O2CR)16(H2O)4]. J Am Chem Soc 115:1804–1816CrossRefGoogle Scholar
  4. 4.
    Yamanouchi M, Chiba D, Matsukura F, Ohno H (2004) Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature 428:539–542CrossRefGoogle Scholar
  5. 5.
    Saitoh E, Miyajima H, Yamaoka T, Tatara G (2004) Current-induced resonance and mass determination of a single magnetic domain wall. Nature 432:203–206CrossRefGoogle Scholar
  6. 6.
    Leuenberger MN, Loss D (2001) Quantum computing in molecular magnets. Nature 410:789–793CrossRefGoogle Scholar
  7. 7.
    Aromí G, Brechin EK (2006) Synthesis of 3d metallic single-molecule magnets. Struct Bond 122:1–67CrossRefGoogle Scholar
  8. 8.
    Winpenny REP (2012) Molecular cluster magnets. World Scientific Publishing Company, SingaporeGoogle Scholar
  9. 9.
    Ako AM, Hewitt IJ, Mereacre V, Clérac R, Wernsdorfer W, Anson CE, Powell AK (2006) A ferromagnetically coupled Mn19 aggregate with a record S = 83/2 ground spin state. Angew Chem Int Ed 118:5048–5051CrossRefGoogle Scholar
  10. 10.
    Ruiz E, Cirera J, Cano J, Alvarez S, Loose C, Kortus J (2008) Can large magnetic anisotropy and high spin really coexist? Chem Commun 2008:52–54CrossRefGoogle Scholar
  11. 11.
    Waldmann O (2007) A criterion for the anisotropy barrier in single-molecule magnets. Inorg Chem 46:10035–10037CrossRefGoogle Scholar
  12. 12.
    Neese F, Pantazis DA (2011) What is not required to make a single molecule magnet. Faraday Discuss 148:229–238CrossRefGoogle Scholar
  13. 13.
    Wang B, Jiang S, Wang X, Gao S (2009) Magnetic molecular materials with paramagnetic lanthanide ions. Sci China Ser B Chem 52:1739–1758CrossRefGoogle Scholar
  14. 14.
    Sorace L, Benelli C, Gatteschi D (2011) Lanthanides in molecular magnetism: old tools in a new field. Chem Soc Rev 40:3092–3104CrossRefGoogle Scholar
  15. 15.
    Guo Y-N, Xu G-F, Guo Y, Tang J (2011) Relaxation dynamics of dysprosium (III) single molecule magnets. Dalton Trans 40:9953–9963CrossRefGoogle Scholar
  16. 16.
    Luzon J, Sessoli R (2012) Lanthanides in molecular magnetism: so fascinating, so challenging. Dalton Trans 41:13556–13567CrossRefGoogle Scholar
  17. 17.
    Zhang P, Guo Y-N, Tang J (2013) Recent advances in dysprosium-based single molecule magnets: structural overview and synthetic strategies. Coord Chem Rev 257:1728–1763CrossRefGoogle Scholar
  18. 18.
    Habib F, Murugesu M (2013) Lessons learned from dinuclear lanthanide nano-magnets. Chem Soc Rev 42:3278–3288CrossRefGoogle Scholar
  19. 19.
    Woodruff DN, Winpenny REP, Layfield RA (2013) Lanthanide single-molecule magnets. Chem Rev 113:5110–5148CrossRefGoogle Scholar
  20. 20.
    Zhang P, Zhang L, Tang J (2015) Lanthanide single molecule magnets: progress and perspective. Dalton Trans 44:3923–3929CrossRefGoogle Scholar
  21. 21.
    Ishikawa N, Sugita M, Ishikawa T, Koshihara S, Kaizu Y (2003) Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J Am Chem Soc 125:8694–8695CrossRefGoogle Scholar
  22. 22.
    Ishikawa N, Sugita M, Wernsdorfer W (2005) Quantum tunneling of magnetization in lanthanide single-molecule magnets: bis (phthalocyaninato) terbium and bis (phthalocyaninato) dysprosium anions. Angew Chem Int Ed 44:2931–2935CrossRefGoogle Scholar
  23. 23.
    Ishikawa N, Sugita M, Ishikawa T, Koshihara S, Kaizu Y (2004) Mononuclear lanthanide complexes with a long magnetization relaxation time at high temperatures: a new category of magnets at the single-molecular level. J Phys Chem B 108:11265–11271CrossRefGoogle Scholar
  24. 24.
    Tang J, Hewitt I, Madhu NT, Chastanet G, Wernsdorfer W, Anson CE, Benelli C, Sessoli R, Powell AK (2006) Dysprosium triangles showing single-molecule magnet behavior of thermally excited spin states. Angew Chem Int Ed 45:1729–1733CrossRefGoogle Scholar
  25. 25.
    Wernsdorfer W, Aliaga-Alcalde N, Hendrickson DN, Christou G (2002) Exchange-biased quantum tunnelling in a supramolecular dimer of single-molecule magnets. Nature 416:406–409CrossRefGoogle Scholar
  26. 26.
    Tang J, Zhang P (2015) Lanthanide single molecule magnets. Springer, HeidelbergCrossRefGoogle Scholar
  27. 27.
    Tang J, Zhang P (2015) Polynuclear lanthanide single molecule magnets. In: Layfield RA, Murugesu M (eds) Lanthanides and actinides in molecular magnetism. Wiley, New York, pp 61–88Google Scholar
  28. 28.
    Benelli C, Gatteschi D (2015) SMM with lanthanides in introduction to molecular magnetism. Wiley, New York, pp 239–249Google Scholar
  29. 29.
    Venugopal A, Tuna F, Spaniol TP, Ungur L, Chibotaru LF, Okuda J, Layfield RA (2013) A hydride-ligated dysprosium single-molecule magnet. Chem Commun 49:901–903CrossRefGoogle Scholar
  30. 30.
    Le Roy JJ, Jeletic M, Gorelsky SI, Korobkov I, Ungur L, Chibotaru LF, Murugesu M (2013) An organometallic building block approach to produce a multidecker 4f single-molecule magnet. J Am Chem Soc 135:3502–3510CrossRefGoogle Scholar
  31. 31.
    Le Roy JJ, Ungur L, Korobkov I, Chibotaru LF, Murugesu M (2014) Coupling strategies to enhance single-molecule magnet properties of erbium-cyclooctatetraenyl complexes. J Am Chem Soc 136:8003–8010CrossRefGoogle Scholar
  32. 32.
    Le Roy JJ, Korobkov I, Murugesu M (2014) A sandwich complex with axial symmetry for harnessing the anisotropy in a prolate erbium (III) ion. Chem Commun 2014:1602–1604CrossRefGoogle Scholar
  33. 33.
    Huang W, Le Roy JJ, Khan SI, Ungur L, Murugesu M, Diaconescu PL (2015) Tetraanionic biphenyl lanthanide complexes as single-molecule magnets. Inorg Chem 54:2374–2382CrossRefGoogle Scholar
  34. 34.
    Ishikawa N, Otsuka S, Kaizu Y (2005) The effect of the f–f interaction on the dynamic magnetism of a coupled 4f8 system in a dinuclear terbium complex with phthalocyanines. Angew Chem Int Ed 44:731–733CrossRefGoogle Scholar
  35. 35.
    Ishikawa N, Iino T, Kaizu Y (2002) Interaction between f-electronic systems in dinuclear lanthanide complexes with phthalocyanines. J Am Chem Soc 124:11440–11447CrossRefGoogle Scholar
  36. 36.
    Ishikawa N, Iino T, Kaizu Y (2002) Determination of ligand-field parameters and f-electronic structures of hetero-dinuclear phthalocyanine complexes with a diamagnetic yttrium (III) and a paramagnetic trivalent lanthanide ion. J Phys Chem A 106:9543–9550CrossRefGoogle Scholar
  37. 37.
    Katoh K, Kajiwara T, Nakano M, Nakazawa Y, Wernsdorfer W, Ishikawa N, Breedlove BK, Yamashita M (2011) Magnetic relaxation of single-molecule magnets in an external magnetic field: an Ising dimer of a terbium(III)-phthalocyaninate triple-decker complex. Chemistry 17:117–122CrossRefGoogle Scholar
  38. 38.
    Katoh K, Yamamoto K, Kajiwara T, Takeya J, Breedlove BK, Yamashita M (2011) Magnetic properties of lanthanoid(III) phthalocyaninato triple-decker complexes in an external magnetic field and electronic transport properties for molecular spintronics. J Phys Conf Ser 303:012035/012031-012035/012010Google Scholar
  39. 39.
    Katoh K, Asano R, Miura A, Horii Y, Morita T, Breedlove BK, Yamashita M (2014) Effect of f-f interactions on quantum tunnelling of the magnetization: mono- and dinuclear Dy(III) phthalocyaninato triple-decker single-molecule magnets with the same octacoordination environment. Dalton Trans 43:7716–7725CrossRefGoogle Scholar
  40. 40.
    Sakaue S, Fuyuhiro A, Fukuda T, Ishikawa N (2012) Dinuclear single-molecule magnets with porphyrin-phthalocyanine mixed triple-decker ligand systems giving SAP and SP coordination polyhedra. Chem Commun 48:5337–5339CrossRefGoogle Scholar
  41. 41.
    Kan J, Wang H, Sun W, Cao W, Tao J, Jiang J (2013) Sandwich-type mixed tetrapyrrole rare-earth triple-decker compounds. Effect of the coordination geometry on the single-molecule-magnet nature. Inorg Chem 52:8505–8510CrossRefGoogle Scholar
  42. 42.
    Wang H, Liu C, Liu T, Zeng S, Cao W, Ma Q, Duan C, Dou J, Jiang J (2013) Mixed (phthalocyaninato)(Schiff-base) di-dysprosium sandwich complexes. Effect of magnetic coupling on the SMM behavior. Dalton Trans 42(43):15355–15360CrossRefGoogle Scholar
  43. 43.
    Zhu J, Song H-F, Yan P-F, Hou G-F, Li G-M (2013) Slow relaxation processes of salen type Dy2 complex and 1D ionic spiral Dyn coordination polymer. CrystEngComm 15(9):1747–1752CrossRefGoogle Scholar
  44. 44.
    Yi X, Bernot K, Cador O, Luzon J, Calvez G, Daiguebonne C, Guillou O (2013) Influence of ferromagnetic connection of Ising-type DyIII-based single ion magnets on their magnetic slow relaxation. Dalton Trans 42:6728–6731CrossRefGoogle Scholar
  45. 45.
    Sato R, Suzuki K, Sugawa M, Mizuno N (2013) Heterodinuclear lanthanoid-containing polyoxometalates: stepwise synthesis and single-molecule magnet behavior. Chemistry 19:12982–12990CrossRefGoogle Scholar
  46. 46.
    Suzuki K, Sato R, Mizuno N (2013) Reversible switching of single-molecule magnet behaviors by transformation of dinuclear dysprosium cores in polyoxometalates. Chem Sci 4:596–600CrossRefGoogle Scholar
  47. 47.
    Guo Y-N, Xu G-F, Wernsdorfer W, Ungur L, Guo Y, Tang J, Zhang H-J, Chibotaru LF, Powell AK (2011) Strong axiality and Ising exchange interaction suppress zero-field tunneling of magnetization of an asymmetric Dy2 single-molecule magnet. J Am Chem Soc 133:11948–11951CrossRefGoogle Scholar
  48. 48.
    Guo Y-N, Chen X-H, Xue S, Tang J (2011) Modulating magnetic dynamics of three Dy2 complexes through Keto-Enol tautomerism of the o-vanillin picolinoylhydrazone ligand. Inorg Chem 50:9705–9713CrossRefGoogle Scholar
  49. 49.
    Zou L, Zhao L, Chen P, Guo Y-N, Guo Y, Li Y-H, Tang J (2012) Phenoxido and alkoxido-bridged dinuclear dysprosium complexes showing single-molecule magnet behaviour. Dalton Trans 41:2966–2971CrossRefGoogle Scholar
  50. 50.
    Hutchings A-J, Habib F, Holmberg RJ, Korobkov I, Murugesu M (2014) Structural rearrangement through lanthanide contraction in dinuclear complexes. Inorg Chem 53:2102–2112CrossRefGoogle Scholar
  51. 51.
    Lin P-H, Burchell TJ, Clerac R, Murugesu M (2008) Dinuclear dysprosium(III) single-molecule magnets with a large anisotropic barrier. Angew Chem Int Ed 47:8848–8851CrossRefGoogle Scholar
  52. 52.
    Kahn ML, Ballou R, Porcher P, Kahn O, Sutter JP (2002) Analytical determination of the {Ln-aminoxyl radical} exchange interaction taking into account both the ligand-field effect and the spin-orbit coupling of the lanthanide ion (Ln = DyIII and HoIII). Chemistry 8:525–531CrossRefGoogle Scholar
  53. 53.
    Zhang P, Zhang L, Lin S-Y, Xue S, Tang J (2013) Modulating magnetic dynamics of Dy2 system through the coordination geometry and magnetic interaction. Inorg Chem 52:4587–4592CrossRefGoogle Scholar
  54. 54.
    Long J, Habib F, Lin P-H, Korobkov I, Enright G, Ungur L, Wernsdorfer W, Chibotaru LF, Murugesu M (2011) Single-molecule magnet behavior for an antiferromagnetically superexchange-coupled dinuclear dysprosium(III) complex. J Am Chem Soc 133:5319–5328CrossRefGoogle Scholar
  55. 55.
    Habib F, Lin P-H, Long J, Korobkov I, Wernsdorfer W, Murugesu M (2011) The use of magnetic dilution to elucidate the slow magnetic relaxation effects of a Dy2 single-molecule magnet. J Am Chem Soc 133:8830–8833CrossRefGoogle Scholar
  56. 56.
    Habib F, Brunet G, Vieru V, Korobkov I, Chibotaru LF, Murugesu M (2013) Significant enhancement of energy barriers in dinuclear dysprosium single-molecule magnets through electron-withdrawing effects. J Am Chem Soc 135:13242–13245CrossRefGoogle Scholar
  57. 57.
    Lin P-H, Sun W-B, Yu M-F, Li G-M, Yan P-F, Murugesu M (2011) An unsymmetrical coordination environment leading to two slow relaxation modes in a Dy2 single-molecule magnet. Chem Commun 47:10993–10995CrossRefGoogle Scholar
  58. 58.
    Lin P-H, Sun W-B, Tian Y-M, Yan P-F, Ungur L, Chibotaru LF, Murugesu M (2012) Ytterbium can relax slowly too. A field-induced Yb2 single-molecule magnet. Dalton Trans 41:12349–12352CrossRefGoogle Scholar
  59. 59.
    Liu T-Q, Yan P-F, Luan F, Li Y-X, Sun J-W, Chen C, Yang F, Chen H, Zou X-Y, Li G-M (2015) Near-IR luminescence and field-induced single molecule magnet of four salen-type ytterbium complexes. Inorg Chem 54:221–228CrossRefGoogle Scholar
  60. 60.
    Nematirad M, Gee WJ, Langley SK, Chilton NF, Moubaraki B, Murray KS, Batten SR (2012) Single molecule magnetism in a μ-phenolato dinuclear lanthanide motif ligated by heptadentate Schiff base ligands. Dalton Trans 41:13711–13715CrossRefGoogle Scholar
  61. 61.
    Zhao L, Wu J, Ke H, Tang J (2013) Three dinuclear lanthanide(III) compounds of a polydentate Schiff base ligand: slow magnetic relaxation behavior of the DyIII derivative. CrystEngComm 15:5301–5306CrossRefGoogle Scholar
  62. 62.
    Pointillart F, Le Gal Y, Golhen S, Cador O, Ouahab L (2011) Single-molecule magnet behaviour in a tetrathiafulvalene-based electroactive antiferromagnetically coupled dinuclear dysprosium(III) complex. Chemistry 17:10397–10404CrossRefGoogle Scholar
  63. 63.
    Yi X, Bernot K, Pointillart F, Poneti G, Calvez G, Daiguebonne C, Guillou O, Sessoli R (2012) A luminescent and sublimable DyIII-based single-molecule magnet. Chemistry 18:11379–11387CrossRefGoogle Scholar
  64. 64.
    Langley SK, Chilton NF, Ungur L, Moubaraki B, Chibotaru LF, Murray KS (2012) Heterometallic tetranuclear [LnIII 2CoIII 2] complexes including suppression of quantum tunneling of magnetization in the [DyIII 2CoIII 2] single molecule magnet. Inorg Chem 51:11873–11881CrossRefGoogle Scholar
  65. 65.
    Langley SK, Ungur L, Chilton NF, Moubaraki B, Chibotaru LF, Murray KS (2014) Single-molecule magnetism in a family of {CoIII 2DyIII 2} butterfly complexes: effects of ligand replacement on the dynamics of magnetic relaxation. Inorg Chem 53:4303–4315CrossRefGoogle Scholar
  66. 66.
    Langley SK, Le C, Ungur L, Moubaraki B, Abrahams BF, Chibotaru LF, Murray KS (2015) Heterometallic 3d-4f single-molecule magnets: ligand and metal ion influences on the magnetic relaxation. Inorg Chem 54(7):3631–3642CrossRefGoogle Scholar
  67. 67.
    Funes AV, Carrella L, Rentschler E, Alborés P (2014) {CoIII 2DyIII 2} single molecule magnet with two resolved thermal activated magnetization relaxation pathways at zero field. Dalton Trans 43:2361–2364CrossRefGoogle Scholar
  68. 68.
    Langley SK, Chilton NF, Moubaraki B, Murray KS (2013) Single-molecule magnetism in three related {CoIII 2DyIII 2}-acetylacetonate complexes with multiple relaxation mechanisms. Inorg Chem 52:7183–7192CrossRefGoogle Scholar
  69. 69.
    Langley SK, Chilton NF, Moubaraki B, Murray KS (2013) Anisotropy barrier enhancement via ligand substitution in tetranuclear {CoIII 2LnIII 2} single molecule magnets. Chem Commun 49:6965–6967CrossRefGoogle Scholar
  70. 70.
    Leng J-D, Liu J-L, Zheng Y-Z, Ungur L, Chibotaru LF, Guo F-S, Tong M-L (2013) Relaxations in heterolanthanide dinuclear single-molecule magnets. Chem Commun 49:158–160CrossRefGoogle Scholar
  71. 71.
    Yang F, Zhou Q, Zeng G, Li G, Gao L, Shi Z, Feng S (2014) Anion effects on the structures and magnetic properties of binuclear lanthanide single-molecule magnets. Dalton Trans 43:1238–1245CrossRefGoogle Scholar
  72. 72.
    Moreno Pineda E, Chilton NF, Marx R, Dörfel M, Sells DO, Neugebauer P, Jiang S-D, Collison D, van Slageren J, McInnes EJL, Winpenny REP (2014) Direct measurement of dysprosium(III) dysprosium(III) interactions in a single-molecule magnet. Nat Commun 5:5243CrossRefGoogle Scholar
  73. 73.
    Wang C, Lin S-Y, Wu J, Yuan S-W, Tang J (2015) Employment of triketones to construct a dysprosium(III) single-molecule magnet. Dalton Trans 44:4648–4654CrossRefGoogle Scholar
  74. 74.
    Ehama K, Ohmichi Y, Sakamoto S, Fujinami T, Matsumoto N, Mochida N, Ishida T, Sunatsuki Y, Tsuchimoto M, Re N (2013) Synthesis, structure, luminescent, and magnetic properties of carbonato-bridged ZnII 2LnIII 2 complexes [(μ4-CO3)2{ZnIILnLnIII(NO3)}2] (LnIII = GdIII, TbIII, DyIII; L1 = N,N′-Bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, L2 = N,N′-Bis(3-ethoxy-2-oxybenzylidene)-1,3-propanediaminato). Inorg Chem 52:12828–12841CrossRefGoogle Scholar
  75. 75.
    Titos-Padilla S, Ruiz J, Herrera JM, Brechin EK, Wersndorfer W, Lloret F, Colacio E (2013) Dilution-triggered SMM behavior under zero field in a luminescent Zn2Dy2 tetranuclear complex incorporating carbonato-bridging ligands derived from atmospheric CO2 fixation. Inorg Chem 52:9620–9626CrossRefGoogle Scholar
  76. 76.
    Zhang P, Zhang L, Lin S-Y, Tang J (2013) Tetranuclear [MDy]2 compounds and their dinuclear [MDy] (M = Zn/Cu) building units: their assembly, structures, and magnetic properties. Inorg Chem 52:6595–6602CrossRefGoogle Scholar
  77. 77.
    Ruiz J, Lorusso G, Evangelisti M, Brechin EK, Pope SJA, Colacio E (2014) Closely-related ZnII 2LnIII 2 complexes (LnIII = Gd, Yb) with either magnetic refrigerant or luminescent single-molecule magnet properties. Inorg Chem 53:3586–3594CrossRefGoogle Scholar
  78. 78.
    Vallejo J, Cano J, Castro I, Julve M, Lloret F, Fabelo O, Canadillas-Delgado L, Pardo E (2012) Slow magnetic relaxation in carbonato-bridged dinuclear lanthanide(III) complexes with 2,3-quinoxalinediolate ligands. Chem Commun 48:7726–7728CrossRefGoogle Scholar
  79. 79.
    Ren M, Bao S-S, Hoshino N, Akutagawa T, Wang B, Ding Y-C, Wei S, Zheng L-M (2013) Solvent responsive magnetic dynamics of a dinuclear dysprosium single molecule magnet. Chemistry 19:9619–9628CrossRefGoogle Scholar
  80. 80.
    Bag P, Rastogi CK, Biswas S, Sivakumar S, Mereacre V, Chandrasekhar V (2015) Homodinuclear lanthanide {Ln2} (Ln = Gd, Tb, Dy, Eu) complexes prepared from an o-vanillin based ligand: luminescence and single-molecule magnetism behavior. Dalton Trans 44:4328–4340CrossRefGoogle Scholar
  81. 81.
    Zhang H, Lin S-Y, Xue S, Wang C, Tang J (2014) Acetato-bridged dinuclear lanthanide complexes with single molecule magnet behaviour for the Dy2 species. Dalton Trans 43:6262–6268CrossRefGoogle Scholar
  82. 82.
    Tuna F, Smith CA, Bodensteiner M, Ungur L, Chibotaru LF, McInnes EJL, Winpenny REP, Collison D, Layfield RA (2012) A high anisotropy barrier in a sulfur-bridged organodysprosium single-molecule magnet. Angew Chem Int Ed 51:6976–6980CrossRefGoogle Scholar
  83. 83.
    Sulway SA, Layfield RA, Tuna F, Wernsdorfer W, Winpenny REP (2012) Single-molecule magnetism in cyclopentadienyl-dysprosium chlorides. Chem Commun 48:1508–1510CrossRefGoogle Scholar
  84. 84.
    Layfield RA, McDouall JJW, Sulway SA, Tuna F, Collison D, Winpenny REP (2010) Influence of the N-bridging ligand on magnetic relaxation in an organometallic dysprosium single-molecule magnet. Chemistry 16:4442–4446CrossRefGoogle Scholar
  85. 85.
    Ma Y, Xu G-F, Yang X, Li L-C, Tang J, Yan S-P, Cheng P, Liao D-Z (2010) Pyrazine-bridged Dy2 single-molecule magnet with a large anisotropic barrier. Chem Commun 46:8264–8266CrossRefGoogle Scholar
  86. 86.
    Li X-L, Chen C-L, Gao Y-L, Liu C-M, Feng X-L, Gui Y-H, Fang S-M (2012) Modulation of homochiral DyIII complexes: single-molecule magnets with ferroelectric properties. Chemistry 18:14632–14637CrossRefGoogle Scholar
  87. 87.
    Liang L, Peng G, Li G, Lan Y, Powell AK, Deng H (2012) In situ hydrothermal synthesis of dysprosium(III) single-molecule magnet with lanthanide salt as catalyst. Dalton Trans 41:5816–5823CrossRefGoogle Scholar
  88. 88.
    Song Y-M, Luo F, Luo M-B, Liao Z-W, Sun G-M, Tian X-Z, Zhu Y, Yuan Z-J, Liu S-J, Xu W-Y, Feng X-F (2012) The application of single-crystal-to-single-crystal transformation towards adjustable SMM properties. Chem Commun 48:1006–1008CrossRefGoogle Scholar
  89. 89.
    Liu S-J, Zhao J-P, Song W-C, Han S-D, Liu Z-Y, Bu X-H (2013) Slow magnetic relaxation in two new 1D/0D DyIII complexes with a sterically hindered carboxylate ligand. Inorg Chem 52:2103–2109CrossRefGoogle Scholar
  90. 90.
    Song Y-M, Luo F, Zhu Y, Tian X-Z, Sun G-M (2013) Carboxylate-bridged dinuclear Dy2 single-molecule magnets: synthesis, structure, and magnetic studies. Aust J Chem 66:98–104CrossRefGoogle Scholar
  91. 91.
    Xu G-F, Wang Q-L, Gamez P, Ma Y, Clerac R, Tang J, Yan S-P, Cheng P, Liao D-Z (2010) A promising new route towards single-molecule magnets based on the oxalate ligand. Chem Commun 46:1506–1508CrossRefGoogle Scholar
  92. 92.
    Habib F, Long J, Lin P-H, Korobkov I, Ungur L, Wernsdorfer W, Chibotaru LF, Murugesu M (2012) Supramolecular architectures for controlling slow magnetic relaxation in field-induced single-molecule magnets. Chem Sci 3:2158–2164CrossRefGoogle Scholar
  93. 93.
    Pointillart F, Klementieva S, Kuropatov V, Le Gal Y, Golhen S, Cador O, Cherkasov V, Ouahab L (2012) A single molecule magnet behaviour in a D3h symmetry Dy(III) complex involving a quinone-tetrathiafulvalene-quinone bridge. Chem Commun 48:714–716CrossRefGoogle Scholar
  94. 94.
    Pointillart F, Le Guennic B, Cauchy T, Golhen S, Cador O, Maury O, Ouahab L (2013) A series of tetrathiafulvalene-based lanthanide complexes displaying either single molecule magnet or luminescence-direct magnetic and photo-physical correlations in the ytterbium analogue. Inorg Chem 52:5978–5990CrossRefGoogle Scholar
  95. 95.
    Feng M, Pointillart F, Lefeuvre B, Dorcet V, Golhen S, Cador O, Ouahab L (2015) Multiple single-molecule magnet behaviors in dysprosium dinuclear complexes involving a multiple functionalized tetrathiafulvalene-based ligand. Inorg Chem 54:4021–4028CrossRefGoogle Scholar
  96. 96.
    Wang H, Qian K, Wang K, Bian Y, Jiang J, Gao S (2011) Sandwich-type tetrakis(phthalocyaninato) dysprosium-cadmium quadruple-decker SMM. Chem Commun 47:9624–9626CrossRefGoogle Scholar
  97. 97.
    Wang H, Liu T, Wang K, Duan C, Jiang J (2012) Tetrakis(phthalocyaninato) rare-earth-cadmium-rare-earth quadruple-decker sandwich SMMs: suppression of QTM by long-distance f-f interactions. Chemistry 18:7691–7694CrossRefGoogle Scholar
  98. 98.
    Katoh K, Horii Y, Yasuda N, Wernsdorfer W, Toriumi K, Breedlove BK, Yamashita M (2012) Multiple-decker phthalocyaninato dinuclear lanthanoid(III) single-molecule magnets with dual-magnetic relaxation processes. Dalton Trans 41:13582–13600CrossRefGoogle Scholar
  99. 99.
    Horii Y, Katoh K, Yasuda N, Breedlove BK, Yamashita M (2015) Effects of f-f interactions on the single-molecule magnet properties of terbium(III)-phthalocyaninato quintuple-decker complexes. Inorg Chem 54:3297–3305CrossRefGoogle Scholar
  100. 100.
    Wang H, Cao W, Liu T, Duan C, Jiang J (2013) Synthesis, structure, and single-molecule magnetic properties of rare-earth sandwich complexes with mixed phthalocyanine and Schiff base ligands. Chemistry 19:2266–2270CrossRefGoogle Scholar
  101. 101.
    Rinehart JD, Fang M, Evans WJ, Long JR (2011) Strong exchange and magnetic blocking in N2 3−•-radical-bridged lanthanide complexes. Nat Chem 3:538–542CrossRefGoogle Scholar
  102. 102.
    Rinehart JD, Fang M, Evans WJ, Long JR (2011) A N2 3−• radical-bridged terbium complex exhibiting magnetic hysteresis at 14 K. J Am Chem Soc 133:14236–14239CrossRefGoogle Scholar
  103. 103.
    Meihaus KR, Corbey JF, Fang M, Ziller JW, Long JR, Evans WJ (2014) Influence of an inner-sphere K+ ion on the magnetic behavior of N2 3−• radical-bridged dilanthanide complexes isolated using an external magnetic field. Inorg Chem 53:3099–3107CrossRefGoogle Scholar
  104. 104.
    Demir S, Zadrozny JM, Nippe M, Long JR (2012) Exchange coupling and magnetic blocking in bipyrimidyl radical-bridged dilanthanide complexes. J Am Chem Soc 134:18546–18549CrossRefGoogle Scholar
  105. 105.
    Demir S, Nippe M, Gonzalez MI, Long JR (2014) Exchange coupling and magnetic blocking in dilanthanide complexes bridged by the multi-electron redox-active ligand 2,3,5,6-tetra(2-pyridyl)pyrazine. Chem Sci 5:4701–4711CrossRefGoogle Scholar
  106. 106.
    Poneti G, Bernot K, Bogani L, Caneschi A, Sessoli R, Wernsdorfer W, Gatteschi D (2007) A rational approach to the modulation of the dynamics of the magnetisation in a dysprosium-nitronyl-nitroxide radical complex. Chem Commun 2007:1807–1809CrossRefGoogle Scholar
  107. 107.
    Mei X-L, Liu R-N, Wang C, Yang P-P, Li L-C, Liao D-Z (2012) Modulating spin dynamics of cyclic LnIII-radical complexes (LnIII = Tb, Dy) by using phenyltrifluoroacetylacetonate coligand. Dalton Trans 41:2904–2909CrossRefGoogle Scholar
  108. 108.
    Tian H, Liu R, Wang X, Yang P, Li Z, Li L, Liao D (2009) Magnetic slow relaxation in cyclic TbIII-nitronyl nitroxide radical complexes. Eur J Inorg Chem 2009:4498–4502CrossRefGoogle Scholar
  109. 109.
    Xu J-X, Ma Y, Xu G-F, Liao D-Z, Tang J, Wang C, Zhou N, Yan S-P, Cheng P, Li L-C (2009) Four new lanthanide-nitronyl nitroxide (LnIII = PrIII, SmIII, EuIII, TmIII) complexes and a TbIII complex exhibiting single-molecule magnet behavior. Inorg Chem 48:8890–8896CrossRefGoogle Scholar
  110. 110.
    Pointillart F, Bernot K, Poneti G, Sessoli R (2012) Crystal packing effects on the magnetic slow relaxation of Tb(III)-nitronyl nitroxide radical cyclic dinuclear clusters. Inorg Chem 51:12218–12229CrossRefGoogle Scholar
  111. 111.
    Liu R, Zhang C, Li L, Liao D, Sutter J-P (2012) Ligand substitution effect on single-molecule magnet behavior in dinuclear dysprosium complexes with radical functionalized phenol as bridging ligands. Dalton Trans 41:12139–12144CrossRefGoogle Scholar
  112. 112.
    Wang K, Qi D, Wang H, Cao W, Li W, Liu T, Duan C, Jiang J (2013) Binuclear phthalocyanine-based sandwich-type rare earth complexes: unprecedented two π-bridged biradical-metal integrated SMMs. Chemistry 19:11162–11166CrossRefGoogle Scholar
  113. 113.
    Ungur L, Van den Heuvel W, Chibotaru LF (2009) Ab initio investigation of the non-collinear magnetic structure and the lowest magnetic excitations in dysprosium triangles. New J Chem 33:1224–1230CrossRefGoogle Scholar
  114. 114.
    Ungur L, Lin S-Y, Tang J, Chibotaru LF (2014) Single-molecule toroics in Ising-type lanthanide molecular clusters. Chem Soc Rev 43:6894–6905CrossRefGoogle Scholar
  115. 115.
    Xue S, Chen X-H, Zhao L, Guo Y-N, Tang J (2012) Two bulky-decorated triangular dysprosium aggregates conserving vortex-spin structure. Inorg Chem 51:13264–13270CrossRefGoogle Scholar
  116. 116.
    Lin S-Y, Zhao L, Guo Y-N, Zhang P, Guo Y, Tang J (2012) Two new Dy3 triangles with trinuclear circular helicates and their single-molecule magnet behavior. Inorg Chem 51:10522–10528CrossRefGoogle Scholar
  117. 117.
    Hänninen MM, Mota AJ, Aravena D, Ruiz E, Sillanpää R, Camón A, Evangelisti M, Colacio E (2014) Two C3-symmetric Dy3 III complexes with triple Di-μ-methoxo-μ-phenoxo bridges, magnetic ground state, and single-molecule magnetic behavior. Chemistry 20:8410–8420CrossRefGoogle Scholar
  118. 118.
    Shen S, Xue S, Lin S-Y, Zhao L, Tang J (2013) A triangular dysprosium with asymmetric central caps featuring ferromagnetic coupling and single-molecule magnet behaviour. Dalton Trans 42:10413–10416CrossRefGoogle Scholar
  119. 119.
    Lin S-Y, Wang C, Zhao L, Tang J (2014) Enantioselective self-assembly of triangular Dy3 clusters with single-molecule magnet behavior. Chem Asian J 9:3558–3564CrossRefGoogle Scholar
  120. 120.
    Wang Y-X, Shi W, Li H, Song Y, Fang L, Lan Y, Powell AK, Wernsdorfer W, Ungur L, Chibotaru LF, Shen M, Cheng P (2012) A single-molecule magnet assembly exhibiting a dielectric transition at 470 K. Chem Sci 3:3366–3370CrossRefGoogle Scholar
  121. 121.
    Hewitt IJ, Lan Y, Anson CE, Luzon J, Sessoli R, Powell AK (2009) Opening up a dysprosium triangle by ligand oximation. Chem Commun 2009:6765–6767CrossRefGoogle Scholar
  122. 122.
    Guo F-S, Liu J-L, Leng J-D, Meng Z-S, Lin Z-J, Tong M-L, Gao S, Ungur L, Chibotaru LF (2011) Pure trinuclear 4f single-molecule magnets: synthesis, structures, magnetism and ab initio investigation. Chemistry 17:2458–2466CrossRefGoogle Scholar
  123. 123.
    Anwar MU, Tandon SS, Dawe LN, Habib F, Murugesu M, Thompson LK (2012) Lanthanide complexes of tritopic bis(hydrazone) ligands: single-molecule magnet behavior in a linear DyIII 3 complex. Inorg Chem 51:1028–1034CrossRefGoogle Scholar
  124. 124.
    Adhikary A, Sheikh JA, Biswas S, Konar S (2014) Synthesis, crystal structure and study of magnetocaloric effect and single molecular magnetic behaviour in discrete lanthanide complexes. Dalton Trans 43:9334–9343CrossRefGoogle Scholar
  125. 125.
    Yang F, Yan P, Li Q, Chen P, Li G (2012) Salen-type triple-decker trinuclear Dy3 complexes showing slow magnetic relaxation behavior. Eur J Inorg Chem 2012:4287–4293CrossRefGoogle Scholar
  126. 126.
    Liu C-S, Du M, Sañudo EC, Echeverria J, Hu M, Zhang Q, Zhou L-M, Fang S-M (2011) A luminescent linear trinuclear DyIII complex exhibiting slow magnetic relaxation of single ion origin. Dalton Trans 40:9366–9369CrossRefGoogle Scholar
  127. 127.
    Chilton NF, Deacon GB, Gazukin O, Junk PC, Kersting B, Langley SK, Moubaraki B, Murray KS, Schleife F, Shome M, Turner DR, Walker JA (2014) Structure, magnetic behavior, and anisotropy of homoleptic trinuclear lanthanoid 8-quinolinolate complexes. Inorg Chem 53:2528–2534CrossRefGoogle Scholar
  128. 128.
    Lin P-H, Burchell TJ, Ungur L, Chibotaru LF, Wernsdorfer W, Murugesu M (2009) A polynuclear lanthanide single-molecule magnet with a record anisotropic barrier. Angew Chem Int Ed 48:9489–9492CrossRefGoogle Scholar
  129. 129.
    Langley SK, Chilton NF, Gass IA, Moubaraki B, Murray KS (2011) Planar tetranuclear lanthanide clusters with the Dy4 analogue displaying slow magnetic relaxation. Dalton Trans 40:12656–12659CrossRefGoogle Scholar
  130. 130.
    Zheng Y-Z, Lan Y, Anson CE, Powell AK (2008) Anion-perturbed magnetic slow relaxation in planar {Dy4} clusters. Inorg Chem 47:10813–10815CrossRefGoogle Scholar
  131. 131.
    Yadav M, Mereacre V, Lebedkin S, Kappes MM, Powell AK, Roesky PW (2015) Mononuclear and tetranuclear compounds of yttrium and dysprosium ligated by a salicylic Schiff-base derivative: synthesis, photoluminescence, and magnetism. Inorg Chem 54:773–781CrossRefGoogle Scholar
  132. 132.
    Mondal KC, Kostakis GE, Lan Y, Powell AK (2013) Magnetic properties of five planar defect dicubanes of [LnIII 43-OH)2(L)4(HL)2]·2THF (Ln = Gd, Tb, Dy, Ho and Er). Polyhedron 66:268–273CrossRefGoogle Scholar
  133. 133.
    Yan P-F, Lin P-H, Habib F, Aharen T, Murugesu M, Deng Z-P, Li G-M, Sun W-B (2011) Planar tetranuclear Dy(III) single-molecule magnet and its Sm(III), Gd(III), and Tb(III) analogues encapsulated by salen-type and β-diketonate ligands. Inorg Chem 50:7059–7065CrossRefGoogle Scholar
  134. 134.
    Sun W-B, Han B-L, Lin P-H, Li H-F, Chen P, Tian Y-M, Murugesu M, Yan P-F (2013) Series of dinuclear and tetranuclear lanthanide clusters encapsulated by salen-type and β-diketonate ligands: single-molecule magnet and fluorescence properties. Dalton Trans 42:13397–13403CrossRefGoogle Scholar
  135. 135.
    Luan F, Liu T, Yan P, Zou X, Li Y, Li G (2015) Single-molecule magnet of a tetranuclear dysprosium complex disturbed by a salen-type ligand and chloride counterions. Inorg Chem 54:3485–3490CrossRefGoogle Scholar
  136. 136.
    Abbas G, Lan Y, Kostakis GE, Wernsdorfer W, Anson CE, Powell AK (2010) Series of isostructural planar lanthanide complexes [LnIII 43-OH)2(mdeaH)2(piv)8] with single molecule magnet behavior for the Dy4 analogue. Inorg Chem 49:8067–8072CrossRefGoogle Scholar
  137. 137.
    Abbas G, Kostakis GE, Lan Y, Powell AK (2012) Synthesis and characterization of isostructural tetranuclear lanthanide complexes [Ln43-OH)2(ampdH4)2(piv)10]·4CH3CN (Ln = Sm, Eu, Gd, Tb, Dy, Ho, Er). Polyhedron 41:1–6CrossRefGoogle Scholar
  138. 138.
    Liu C-M, Zhang D-Q, Zhu D-B (2013) A single-molecule magnet featuring a parallelogram [Dy4(OCH2 -)4] core and two magnetic relaxation processes. Dalton Trans 42:14813–14818CrossRefGoogle Scholar
  139. 139.
    Guo P-H, Liu J-L, Zhang Z-M, Ungur L, Chibotaru LF, Leng J-D, Guo F-S, Tong M-L (2012) The first {Dy4} single-molecule magnet with a toroidal magnetic moment in the ground state. Inorg Chem 51:1233–1235CrossRefGoogle Scholar
  140. 140.
    Guo P-H, Liu J-L, Jia J-H, Wang J, Guo F-S, Chen Y-C, Lin W-Q, Leng J-D, Bao D-H, Zhang X-D, Luo J-H, Tong M-L (2013) Multifunctional DyIII 4 cluster exhibiting white-emitting, ferroelectric and single-molecule magnet behavior. Chemistry 19:8769–8773CrossRefGoogle Scholar
  141. 141.
    Liu J, Chen Y-C, Jiang Z-X, Liu J-L, Jia J-H, Wang L-F, Li Q-W, Tong M-L (2015) Efficient enhancement of magnetic anisotropy by optimizing the ligand-field in a typically tetranuclear dysprosium cluster. Dalton Trans 44:8150–8155CrossRefGoogle Scholar
  142. 142.
    Chandrasekhar V, Hossain S, Das S, Biswas S, Sutter J-P (2013) Rhombus-shaped tetranuclear [Ln4] complexes [Ln = Dy(III) and Ho(III)]: synthesis, structure, and SMM behavior. Inorg Chem 52:6346–6353CrossRefGoogle Scholar
  143. 143.
    Bi Y, Wang X-T, Liao W, Wang X, Deng R, Zhang H, Gao S (2009) Thiacalix[4]arene-supported planar Ln4 (Ln = TbIII, DyIII) clusters: toward luminescent and magnetic bifunctional materials. Inorg Chem 48:11743–11747CrossRefGoogle Scholar
  144. 144.
    Xue S, Zhao L, Guo Y-N, Chen X-H, Tang J (2012) Field enhanced thermally activated mechanism in a square Dy4 aggregate. Chem Commun 48:7031–7033CrossRefGoogle Scholar
  145. 145.
    Anwar MU, Thompson LK, Dawe LN, Habib F, Murugesu M (2012) Predictable self-assembled [2 × 2] Ln(III)4 square grids (Ln = Dy,Tb)-SMM behaviour in a new lanthanide cluster motif. Chem Commun 48:4576–4578CrossRefGoogle Scholar
  146. 146.
    Randell NM, Anwar MU, Drover MW, Dawe LN, Thompson LK (2013) Self-assembled Ln(III)4 (Ln = Eu, Gd, Dy, Ho, Yb) [2 × 2] square grids: a new class of lanthanide cluster. Inorg Chem 52:6731–6742CrossRefGoogle Scholar
  147. 147.
    Xue S, Zhao L, Guo Y-N, Tang J (2012) A novel windmill-type Dyiii [2 × 2] grid exhibiting slow magnetic relaxation. Dalton Trans 41:351–353CrossRefGoogle Scholar
  148. 148.
    Woodruff DN, Tuna F, Bodensteiner M, Winpenny REP, Layfield RA (2013) Single-molecule magnetism in tetrametallic terbium and dysprosium thiolate cages. Organometallics 32:1224–1229CrossRefGoogle Scholar
  149. 149.
    Guo Y-N, Xu G-F, Gamez P, Zhao L, Lin S-Y, Deng R, Tang J, Zhang H-J (2010) Two-step relaxation in a linear tetranuclear dysprosium(III) aggregate showing single-molecule magnet behavior. J Am Chem Soc 132:8538–8539CrossRefGoogle Scholar
  150. 150.
    Ke H, Xu G-F, Guo Y-N, Gamez P, Beavers CM, Teat SJ, Tang J (2010) A linear tetranuclear dysprosium(III) compound showing single-molecule magnet behavior. Chem Commun 46:6057–6059CrossRefGoogle Scholar
  151. 151.
    Lin S-Y, Zhao L, Ke H, Guo Y-N, Tang J, Guo Y, Dou J (2012) Steric hindrances create a discrete linear Dy4 complex exhibiting SMM behaviour. Dalton Trans 41:3248–3252CrossRefGoogle Scholar
  152. 152.
    Yang P-P, Gao X-F, Song H-B, Zhang S, Mei X-L, Li L-C, Liao D-Z (2011) Slow magnetic relaxation in novel Dy4 and Dy8 compounds. Inorg Chem 50:720–722CrossRefGoogle Scholar
  153. 153.
    Alexandropoulos DI, Cunha-Silva L, Pham L, Bekiari V, Christou G, Stamatatos TC (2014) Tetranuclear lanthanide(III) complexes with a zigzag topology from the use of pyridine-2,6-dimethanol: synthetic, structural, spectroscopic, magnetic and photoluminescence studies. Inorg Chem 53:3220–3229CrossRefGoogle Scholar
  154. 154.
    Koo BH, Lim KS, Ryu DW, Lee WR, Koh EK, Hong CS (2012) A unique tetranuclear ErIII 4 cluster exhibiting field-induced single-molecule magnetism. Chem Commun 48:2519–2521CrossRefGoogle Scholar
  155. 155.
    Koo BH, Lim KS, Ryu DW, Lee WR, Koh EK, Hong CS (2013) Synthesis, structures and magnetic characterizations of isostructural tetranuclear Ln4 clusters (Ln = Dy, Ho, and Eu). Dalton Trans 42:7204–7209CrossRefGoogle Scholar
  156. 156.
    Guo P-H, Meng Y, Chen Y-C, Li Q-W, Wang B-Y, Leng J-D, Bao D-H, Jia J-H, Tong M-L (2014) A zigzag DyIII4 cluster exhibiting single-molecule magnet, ferroelectric and white-light emitting properties. J Mater Chem C 2:8858–8864CrossRefGoogle Scholar
  157. 157.
    Gao Y, Xu G-F, Zhao L, Tang J, Liu Z (2009) Observation of slow magnetic relaxation in discrete dysprosium cubane. Inorg Chem 48:11495–11497CrossRefGoogle Scholar
  158. 158.
    Liu C-M, Zhang D-Q, Hao X, Zhu D-B (2012) Syntheses, crystal structures, and magnetic properties of two p-tert-butylsulfonylcalix[4]arene supported cluster complexes with a totally disordered Ln4(OH)4 cubane core. Cryst Growth Des 12:2948–2954CrossRefGoogle Scholar
  159. 159.
    Das S, Dey A, Biswas S, Colacio E, Chandrasekhar V (2014) Hydroxide-free cubane-shaped tetranuclear [Ln4] complexes. Inorg Chem 53:3417–3426CrossRefGoogle Scholar
  160. 160.
    Lin P-H, Korobkov I, Wernsdorfer W, Ungur L, Chibotaru LF, Murugesu M (2011) A rare μ4-O centered Dy4 tetrahedron with coordination-induced local chirality and single-molecule magnet behaviour. Eur J Inorg Chem 2011:1535–1539CrossRefGoogle Scholar
  161. 161.
    Zhang L, Zhang P, Zhao L, Lin S-Y, Xue S, Tang J, Liu Z (2013) Two locally chiral dysprosium compounds with salen-type ligands that show slow magnetic relaxation behavior. Eur J Inorg Chem 2013:1351–1357CrossRefGoogle Scholar
  162. 162.
    Gass IA, Moubaraki B, Langley SK, Batten SR, Murray KS (2012) A π-π 3D network of tetranuclear μ23-carbonato Dy(III) bis-pyrazolylpyridine clusters showing single molecule magnetism features. Chem Commun 48:2089–2091CrossRefGoogle Scholar
  163. 163.
    Blagg RJ, Ungur L, Tuna F, Speak J, Comar P, Collison D, Wernsdorfer W, McInnes EJL, Chibotaru LF, Winpenny REP (2013) Magnetic relaxation pathways in lanthanide single-molecule magnets. Nat Chem 5:673–678CrossRefGoogle Scholar
  164. 164.
    Zou H-H, Wang R, Chen Z-L, Liu D-C, Liang F-P (2014) Series of edge-sharing bi-triangle Ln4 clusters with a μ4-NO3- bridge: syntheses, structures, luminescence, and the SMM behavior of the Dy4 analogue. Dalton Trans 43:2581–2587CrossRefGoogle Scholar
  165. 165.
    Xue S, Guo Y-N, Zhao L, Zhang P, Tang J (2014) Unique Y-shaped lanthanide aggregates and single-molecule magnet behaviour for the Dy4 analogue. Dalton Trans 43:1564–1570CrossRefGoogle Scholar
  166. 166.
    Chandrasekhar V, Das S, Dey A, Hossain S, Sutter J-P (2013) Tetranuclear lanthanide (III) complexes containing dimeric subunits: single-molecule magnet behavior for the Dy4 analogue. Inorg Chem 52:11956–11965CrossRefGoogle Scholar
  167. 167.
    Morita T, Katoh K, Breedlove BK, Yamashita M (2013) Controlling the dipole-dipole interactions between terbium(III) phthalocyaninato triple-decker moieties through spatial control using a fused phthalocyaninato ligand. Inorg Chem 52:13555–13561CrossRefGoogle Scholar
  168. 168.
    Blagg RJ, Muryn CA, McInnes EJL, Tuna F, Winpenny REP (2011) Single pyramid magnets: Dy5 pyramids with slow magnetic relaxation to 40 K. Angew Chem Int Ed 50:6530–6533CrossRefGoogle Scholar
  169. 169.
    Blagg RJ, Tuna F, McInnes EJL, Winpenny REP (2011) Pentametallic lanthanide-alkoxide square-based pyramids: high energy barrier for thermal relaxation in a holmium single molecule magnet. Chem Commun 47:10587–10589CrossRefGoogle Scholar
  170. 170.
    Gamer MT, Lan Y, Roesky PW, Powell AK, Clérac R (2008) Pentanuclear dysprosium hydroxy cluster showing single-molecule-magnet behavior. Inorg Chem 47:6581–6583CrossRefGoogle Scholar
  171. 171.
    Thielemann DT, Wagner AT, Lan Y, Anson CE, Gamer MT, Powell AK, Roesky PW (2013) Slow magnetic relaxation in four square-based pyramidal dysprosium hydroxo clusters ligated by chiral amino acid anions - a comparative study. Dalton Trans 42:14794–14800CrossRefGoogle Scholar
  172. 172.
    Peng J-B, Kong X-J, Ren Y-P, Long L-S, Huang R-B, Zheng L-S (2012) Trigonal bipyramidal Dy5 cluster exhibiting slow magnetic relaxation. Inorg Chem 51:2186–2190CrossRefGoogle Scholar
  173. 173.
    Tian H, Zhao L, Lin H, Tang J, Li G (2013) Butterfly-shaped pentanuclear dysprosium single-molecule magnets. Chemistry 19:13235–13241CrossRefGoogle Scholar
  174. 174.
    Hussain B, Savard D, Burchell TJ, Wernsdorfer W, Murugesu M (2009) Linking high anisotropy Dy3 triangles to create a Dy6 single-molecule magnet. Chem Commun 2009:1100–1102CrossRefGoogle Scholar
  175. 175.
    Hewitt IJ, Tang J, Madhu NT, Anson CE, Lan Y, Luzon J, Etienne M, Sessoli R, Powell AK (2010) Coupling Dy3 triangles enhances their slow magnetic relaxation. Angew Chem Int Ed 49:6352–6356CrossRefGoogle Scholar
  176. 176.
    Lin S-Y, Wernsdorfer W, Ungur L, Powell AK, Guo Y-N, Tang J, Zhao L, Chibotaru LF, Zhang H-J (2012) Coupling Dy3 triangles to maximize the toroidal moment. Angew Chem Int Ed 51:12767–12771CrossRefGoogle Scholar
  177. 177.
    Tian H, Guo Y-N, Zhao L, Tang J, Liu Z (2011) Hexanuclear dysprosium(III) compound incorporating vertex- and edge-sharing Dy3 triangles exhibiting single-molecule-magnet behavior. Inorg Chem 50:8688–8690CrossRefGoogle Scholar
  178. 178.
    Tian H, Wang M, Zhao L, Guo Y-N, Guo Y, Tang J, Liu Z (2012) A discrete dysprosium trigonal prism showing single-molecule magnet behaviour. Chemistry 18:442–445CrossRefGoogle Scholar
  179. 179.
    Guo Y-N, Chen X-H, Xue S, Tang J (2012) Molecular assembly and magnetic dynamics of two novel Dy6 and Dy8 aggregates. Inorg Chem 51:4035–4042CrossRefGoogle Scholar
  180. 180.
    Das S, Hossain S, Dey A, Biswas S, Sutter J-P, Chandrasekhar V (2014) Molecular magnets based on homometallic hexanuclear lanthanide(III) complexes. Inorg Chem 53:5020–5028CrossRefGoogle Scholar
  181. 181.
    Ke H, Zhao L, Guo Y, Tang J (2011) A Dy6 cluster displays slow magnetic relaxation with an edge-to-edge arrangement of two Dy3 triangles. Eur J Inorg Chem 2011:4153–4156CrossRefGoogle Scholar
  182. 182.
    Bi YF, Xu GC, Liao WP, Du SC, Deng RP, Wang BW (2012) Calixarene-supported hexadysprosium cluster showing single molecule magnet behavior. Sci China Chem 55:967–972CrossRefGoogle Scholar
  183. 183.
    Langley SK, Moubaraki B, Murray KS (2012) Magnetic properties of hexanuclear lanthanide(III) clusters incorporating a central μ6-carbonate ligand derived from atmospheric CO2 fixation. Inorg Chem 51:3947–3949CrossRefGoogle Scholar
  184. 184.
    She S, Chen Y, Zaworotko MJ, Liu W, Cao Y, Wu J, Li Y (2013) Synthesis, structures and magnetic properties of a family of nitrate-bridged octanuclear [Na2Ln6] (Ln = Dy, Tb, Gd, Sm) complexes. Dalton Trans 42:10433–10438CrossRefGoogle Scholar
  185. 185.
    Sharples JW, Zheng Y-Z, Tuna F, McInnes EJL, Collison D (2011) Lanthanide discs chill well and relax slowly. Chem Commun 47:7650–7652CrossRefGoogle Scholar
  186. 186.
    Guo F-S, Guo P-H, Meng Z-S, Tong M-L (2011) Slow magnetic relaxation in a novel heptanuclear Dy7 cluster with five edge-sharing Dy3 triangles. Polyhedron 30:3079–3082CrossRefGoogle Scholar
  187. 187.
    Canaj AB, Tzimopoulos DI, Philippidis A, Kostakis GE, Milios CJ (2012) A strongly blue-emitting heptametallic [DyIII 7] centered-octahedral single-molecule magnet. Inorg Chem 51:7451–7453CrossRefGoogle Scholar
  188. 188.
    Canaj AB, Tsikalas GK, Philippidis A, Spyros A, Milios CJ (2014) Heptanuclear lanthanide [Ln7] clusters: from blue-emitting solution-stable complexes to hybrid clusters. Dalton Trans 43:12486–12494CrossRefGoogle Scholar
  189. 189.
    Mazarakioti EC, Poole KM, Cunha-Silva L, Christou G, Stamatatos TC (2014) A new family of Ln7 clusters with an ideal D 3h metal-centered trigonal prismatic geometry, and SMM and photoluminescence behaviors. Dalton Trans 43:11456–11460CrossRefGoogle Scholar
  190. 190.
    Savard D, Lin P-H, Burchell TJ, Korobkov I, Wernsdorfer W, Clerac R, Murugesu M (2009) Two-dimensional networks of lanthanide cubane-shaped dumbbells. Inorg Chem 48:11748–11754CrossRefGoogle Scholar
  191. 191.
    Ke H, Gamez P, Zhao L, Xu G-F, Xue S, Tang J (2010) Magnetic properties of dysprosium cubanes dictated by the M–O–M angles of the [Dy43-OH)4] core. Inorg Chem 49:7549–7557CrossRefGoogle Scholar
  192. 192.
    Miao Y-L, Liu J-L, Li J-Y, Leng J-D, Ou Y-C, Tong M-L (2011) Two novel Dy8 and Dy11 clusters with cubane [Dy43-OH)4]8+ units exhibiting slow magnetic relaxation behaviour. Dalton Trans 40:10229–10236CrossRefGoogle Scholar
  193. 193.
    Chesman ASR, Turner DR, Moubaraki B, Murray KS, Deacon GB, Batten SR (2012) In situ ligand formation in the synthesis of an octanuclear dysprosium ‘double cubane’ cluster displaying single molecule magnet features. Dalton Trans 41:3751–3757CrossRefGoogle Scholar
  194. 194.
    Guo P, Liao X, Leng J, Tong M (2013) Synthesis, structures and single-molecule magnet behavior of octanuclear and decanuclear dysprosium clusters based on [Dy44-O)] tetrahedral subunits. Huaxue Xuebao 71:173–178Google Scholar
  195. 195.
    Tian H, Zhao L, Guo Y-N, Guo Y, Tang J, Liu Z (2012) Quadruple-CO32- bridged octanuclear dysprosium(III) compound showing single-molecule magnet behaviour. Chem Commun 48:708–710CrossRefGoogle Scholar
  196. 196.
    Fang M, Zhao H, Prosvirin AV, Pinkowicz D, Zhao B, Cheng P, Wernsdorfer W, Brechin EK, Dunbar KR (2013) Squaring the cube: a family of octametallic lanthanide complexes including a Dy8 single-molecule magnet. Dalton Trans 42:14693–14701CrossRefGoogle Scholar
  197. 197.
    Alexandropoulos DI, Fournet A, Cunha-Silva L, Mowson AM, Bekiari V, Christou G, Stamatatos TC (2014) Fluorescent naphthalene diols as bridging ligands in LnIII cluster chemistry: synthetic, structural, magnetic, and photophysical characterization of LnIII 8 “Christmas stars”. Inorg Chem 53:5420–5422CrossRefGoogle Scholar
  198. 198.
    Langley SK, Moubaraki B, Murray KS (2013) Trinuclear, octanuclear and decanuclear dysprosium(III) complexes: synthesis, structural and magnetic studies. Polyhedron 64:255–261CrossRefGoogle Scholar
  199. 199.
    Alexandropoulos DI, Mukherjee S, Papatriantafyllopoulou C, Raptopoulou CP, Psycharis V, Bekiari V, Christou G, Stamatatos TC (2011) A new family of nonanuclear lanthanide clusters displaying magnetic and optical properties. Inorg Chem 50:11276–11278CrossRefGoogle Scholar
  200. 200.
    Zou H-H, Sheng L-B, Chen Z-L, Liang F-P (2015) Lanthanide nonanuclear clusters with sandglass-like topology and the SMM behavior of dysprosium analogue. Polyhedron 88:110–115CrossRefGoogle Scholar
  201. 201.
    Ke H, Xu G-F, Zhao L, Tang J, Zhang X-Y, Zhang H-J (2009) A Dy10 cluster incorporates two sets of vertex-sharing Dy3 triangles. Chemistry 15:10335–10338CrossRefGoogle Scholar
  202. 202.
    Adhikary A, Jena HS, Khatua S, Konar S (2014) Synthesis and characterization of two discrete Ln10 nanoscopic ladder-type cages: magnetic studies reveal a significant cryogenic magnetocaloric effect and slow magnetic relaxation. Chem Asian J 9:1083–1090CrossRefGoogle Scholar
  203. 203.
    Miao Y-L, Liu J-L, Leng J-D, Lin Z-J, Tong M-L (2011) Chloride templated formation of {Dy12(OH)16}20+ cluster core incorporating 1,10-phenanthroline-2,9-dicarboxylate. CrystEngComm 13:3345–3348CrossRefGoogle Scholar
  204. 204.
    Zhao L, Xue S, Tang J (2012) A dodecanuclear dysprosium wheel assembled by six vertex-sharing Dy3 triangles exhibiting slow magnetic relaxation. Inorg Chem 51:5994–5996CrossRefGoogle Scholar
  205. 205.
    Thielemann DT, Wagner AT, Lan Y, Oña-Burgos P, Fernández I, Rösch ES, Kölmel DK, Powell AK, Bräse S, Roesky PW (2015) Peptoid-ligated pentadecanuclear yttrium and dysprosium hydroxy clusters. Chemistry 21:2813–2820CrossRefGoogle Scholar
  206. 206.
    Gu X, Clérac R, Houri A, Xue D (2008) Slow relaxation of the magnetization in high-nuclearity Ln-complexes. Inorg Chim Acta 361(14):3873–3876CrossRefGoogle Scholar
  207. 207.
    Rinehart JD, Long JR (2011) Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem Sci 2:2078–2085CrossRefGoogle Scholar
  208. 208.
    Brown AJ, Pinkowicz D, Saber MR, Dunbar KR (2015) A trigonal-pyramidal erbium (III) single-molecule magnet. Angew Chem Int Ed 127:5962–5966CrossRefGoogle Scholar
  209. 209.
    Pugh T, Tuna F, Ungur L, Collison D, McInnes EJ, Chibotaru LF, Layfield RA (2015) Influencing the properties of dysprosium single-molecule magnets with phosphorus donor ligands. Nat Commun 6:7492CrossRefGoogle Scholar
  210. 210.
    Pugh T, Vieru V, Chibotaru LF, Layfield RA (2016) Magneto-structural correlations in arsenic-and selenium-ligated dysprosium single-molecule magnets. Chem Sci 7:2128–2137CrossRefGoogle Scholar
  211. 211.
    Zhang L, Jung J, Zhang P, Guo M, Zhao L, Tang J, Le Guennic B (2016) Site-resolved two-step relaxation process in an asymmetric Dy2 single-molecule magnet. Chemistry 22(4):1392–1398CrossRefGoogle Scholar
  212. 212.
    Chow CY, Bolvin H, Campbell VE, Guillot R, Kampf JW, Wernsdorfer W, Gendron F, Autschbach J, Pecoraro VL, Mallah T (2015) Assessing the exchange coupling in binuclear lanthanide (iii) complexes and the slow relaxation of the magnetization in the antiferromagnetically coupled Dy2 derivative. Chem Sci 6(7):4148–4159CrossRefGoogle Scholar
  213. 213.
    Xue S, Guo YN, Ungur L, Tang J, Chibotaru LF (2015) Tuning the magnetic interactions and relaxation dynamics of Dy2 single-molecule magnets. Chemistry 21(40):14099–14106CrossRefGoogle Scholar
  214. 214.
    Tian H, Bao S-S, Zheng L-M (2016) Cyclic single-molecule magnets: from the odd-numbered heptanuclear to a dimer of heptanuclear dysprosium clusters. Chem Commun 52:2314–2317CrossRefGoogle Scholar
  215. 215.
    Das S, Dey A, Kundu S, Biswas S, Narayanan RS, Titos-Padilla S, Lorusso G, Evangelisti M, Colacio E, Chandrasekhar V (2015) Decanuclear Ln10 wheels and vertex-shared spirocyclic Ln5 cores: synthesis, structure, SMM behavior, and MCE properties. Chemistry 21(47):16955–16967CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Frontier Institute of Science and Technology (FIST), State Key Laboratory for Mechanical Behavior of Materials and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi’an Jiaotong UniversityXi’anP. R. China

Personalised recommendations