Large Metal Chalcogenide Clusters and Their Ordered Superstructures via Solvothermal and Ionothermal Syntheses

Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 174)

Abstract

Nanometre-scale metal chalcogenide clusters and materials derived from their regular spatial organization via covalent or other bonding interactions represent an important area of research, encompassing intricate structures and unique size-related electronic and physical properties. This chapter will summarize the structure and bonding principles in these systems, focusing on high nuclearity and discrete metal chalcogenide clusters, and will review the recent progress in their preparation using solvothermal and ionothermal approaches.

Keywords

Discrete clusters Ionothermal Metal chalcogenides Molecular clusters Non-covalent bonding Non-tetrahedral clusters Solvothermal Superlattice Superstructure Tetrahedral clusters 

Notes

Acknowledgements

The authors YH and JFC thank the Natural Sciences and Engineering Research Council (NSERC) of Canada for its continued support of their research programmes. TIL is most grateful to NSERC for a Canada Graduate Scholarship.

References

  1. 1.
    Dance IG (1986) Polyhedron 5:1037–1104. doi: 10.1016/S0277-5387(00)84307-7 CrossRefGoogle Scholar
  2. 2.
    Müller A, Diemann E (1987) Adv Inorg Chem 31:89–122. doi: 10.1016/S0898-8838(08)60222-6 CrossRefGoogle Scholar
  3. 3.
    Ansari M, Ibers J (1990) Coord Chem Rev 100:223–266. doi: 10.1016/0010-8545(90)85011-G CrossRefGoogle Scholar
  4. 4.
    Krebs B, Henkel G (1991) Angew Chem Int Ed Engl 30:769–788. doi: 10.1002/anie.199107691 CrossRefGoogle Scholar
  5. 5.
    Roof L, Kolis J (1993) Chem Rev 93:1037–1080. doi: 10.1021/cr00019a010 CrossRefGoogle Scholar
  6. 6.
    Dance I, Fisher K (1994) Prog Inorg Chem Vol 41 41:637–803. doi: 10.1002/9780470166420.ch9
  7. 7.
    Arnold J (1995) In: Karlin KD (ed) Prog Inorg Chem, vol 43. Wiley, Hoboken, pp 353–417Google Scholar
  8. 8.
    Alivisatos AP (1996) Science 271:933–937. doi: 10.1126/science.271.5251.933 CrossRefGoogle Scholar
  9. 9.
    DeGroot MW, Corrigan JF (2004) In: Fujita M, Creutz PC (eds) Compr Coord Chem II. Elsevier, Amsterdam pp 57–123Google Scholar
  10. 10.
    Corrigan JF, DeGroot MW (2004) In: Rao CNR, Müller A, Cheetham K (eds) The chemistry of nanomaterials: synthesis, properties and applications. Wiley-VCH, Weinheim/Wiley, Chichester, pp 418–451Google Scholar
  11. 11.
    Corrigan JF, Fuhr O, Fenske D (2009) Adv Mater 21:1867–1871. doi: 10.1002/adma.200802897 CrossRefGoogle Scholar
  12. 12.
    Kübel C, Voigt A, Schoenmakers R, Otten M, Su D, Lee T-C, Carlsson A, Bradley J (2005) Microsc Microanal 11:378–400. doi: 10.1017/S1431927605050361 CrossRefGoogle Scholar
  13. 13.
    Friedrich H, Gommes CJ, Overgaag K, Meeldijk JD, Evers WH, de Nijs B, Boneschanscher MP, de Jongh PE, Verkleij AJ, de Jong KP, van Blaaderen A, Vanmaekelbergh D (2009) Nano Lett 9:2719–2724. doi: 10.1021/nl901212m CrossRefGoogle Scholar
  14. 14.
    Evers WH, Friedrich H, Filion L, Dijkstra M, Vanmaekelbergh D (2009) Angew Chem Int Ed 48:9655–9657. doi: 10.1002/anie.200904821 CrossRefGoogle Scholar
  15. 15.
    Boneschanscher MP, Evers WH, Qi W, Meeldijk JD, Dijkstra M, Vanmaekelbergh D (2013) Nano Lett 13:1312–1316. doi: 10.1021/nl400100c CrossRefGoogle Scholar
  16. 16.
    Alivisatos AP (1996) J Phys Chem 100:13226–13239. doi: 10.1021/jp9535506 CrossRefGoogle Scholar
  17. 17.
    Nirmal M, Brus L (1999) Acc Chem Res 32:407–414. doi: 10.1021/ar9700320 CrossRefGoogle Scholar
  18. 18.
    Wang Y, Herron N (1990) Phys Rev B 42:7253–7255. doi: 10.1103/PhysRevB.42.7253 CrossRefGoogle Scholar
  19. 19.
    Soloviev VN, Eichhöfer A, Fenske D, Banin U (2000) J Am Chem Soc 122:2673–2674. doi: 10.1021/ja9940367 CrossRefGoogle Scholar
  20. 20.
    Soloviev VN, Eichhöfer A, Fenske D, Banin U (2001) J Am Chem Soc 123:2354–2364. doi: 10.1021/ja003598j CrossRefGoogle Scholar
  21. 21.
    Collier CP, Vossmeyer T, Heath JR (1998) Annu Rev Phys Chem 49:371–404. doi: 10.1146/annurev.physchem.49.1.371 CrossRefGoogle Scholar
  22. 22.
    Gao Y, Tang Z (2011) Small 7:2133–2146. doi: 10.1002/smll.201100474 CrossRefGoogle Scholar
  23. 23.
    Xie J, Cao S, Good D, Wei M, Ren X (2010) Inorg Chem 49:1319–1321. doi: 10.1021/ic9023629 CrossRefGoogle Scholar
  24. 24.
    Zhang Q, Wu T, Bu X, Tran T, Feng P (2008) Chem Mater 20:4170–4172. doi: 10.1021/cm800904d CrossRefGoogle Scholar
  25. 25.
    Yang H, Tao W, Le W, PingYun F (2013) Sci China Chem 56:423–427. doi: 10.1007/s11426-013-4847-3 CrossRefGoogle Scholar
  26. 26.
    Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2010) Chem Rev 110:389–458. doi: 10.1021/cr900137k CrossRefGoogle Scholar
  27. 27.
    Nozik AJ, Beard MC, Luther JM, Law M, Ellingson RJ, Johnson JC (2010) Chem Rev 110:6873–6890. doi: 10.1021/cr900289f CrossRefGoogle Scholar
  28. 28.
    Konstantatos G, Sargent EH (2010) Nat Nanotechnol 5:391–400. doi: 10.1038/nnano.2010.78 CrossRefGoogle Scholar
  29. 29.
    Wang F, Tan WB, Zhang Y, Fan X, Wang M (2006) Nanotechnology 17:R1–R13. doi: 10.1088/0957-4484/17/1/R01 CrossRefGoogle Scholar
  30. 30.
    Bailey RE, Smith AM, Nie S (2004) Phys E Low Dimens Syst Nanostruct 25:1–12. doi: 10.1016/j.physe.2004.07.013 CrossRefGoogle Scholar
  31. 31.
    Anson CE, Eichhöfer A, Issac I, Fenske D, Fuhr O, Sevillano P, Persau C, Stalke D, Zhang J (2008) Angew Chem Int Ed 47:1326–1331. doi: 10.1002/anie.200704249 CrossRefGoogle Scholar
  32. 32.
    Liu Y, Najafabadi BK, Fard MA, Corrigan JF (2015) Angew Chem Int Ed 54:4832–4835. doi: 10.1002/anie.201411944 CrossRefGoogle Scholar
  33. 33.
    Palchik O, Iyer RG, Liao JH, Kanatzidis MG (2003) Inorg Chem 42:5052–5054. doi: 10.1021/ic034600l CrossRefGoogle Scholar
  34. 34.
    Palchik O, Iyer RG, Canlas CG, Weliky DP, Kanatzidis MG (2004) Z Anorg Allg Chem 630:2237–2247. doi: 10.1002/zaac.200400154 CrossRefGoogle Scholar
  35. 35.
    Qian YT, Gu YL, Lu J (2004) In: Rao CNR, Müller A, Cheethameds AK (eds) Chemistry of nanomaterials: synthesis, properties and application. Wiley-VCH, Weinheim; Wiley, Chichester, pp 170–207Google Scholar
  36. 36.
    Xu B, Wang X (2012) Dalton Trans 41:4719–4725. doi: 10.1039/c2dt11842d CrossRefGoogle Scholar
  37. 37.
    Xiong W-W, Zhang G, Zhang Q (2014) Inorg Chem Front 1:292–301. doi: 10.1039/c4qi00013g CrossRefGoogle Scholar
  38. 38.
    Wu T, Zuo F, Wang L, Bu X, Zheng S-T, Ma R, Feng P (2011) J Am Chem Soc 133:15886–15889. doi: 10.1021/ja2066994 CrossRefGoogle Scholar
  39. 39.
    Wang Y-H, Luo W, Jiang J-B, Bian G-Q, Zhu Q-Y, Dai J (2012) Inorg Chem 51:1219–1221. doi: 10.1021/ic202490q CrossRefGoogle Scholar
  40. 40.
    Lin Y, Massa W, Dehnen S (2012) J Am Chem Soc 134:4497–4500. doi: 10.1021/ja2115635 CrossRefGoogle Scholar
  41. 41.
    Wu T, Zhang Q, Hou Y, Wang L, Mao C, Zheng S-T, Bu X, Feng P (2013) J Am Chem Soc 135:10250–10253. doi: 10.1021/ja404181c CrossRefGoogle Scholar
  42. 42.
    Lin J, Zhang Q, Wang L, Liu X, Yan W, Wu T, Bu X, Feng P (2014) J Am Chem Soc 136:4769–4779. doi: 10.1021/ja501288x CrossRefGoogle Scholar
  43. 43.
    Wu T, Bu X, Liao P, Wang L, Zheng S-T, Ma R, Feng P (2012) J Am Chem Soc 134:3619–3622. doi: 10.1021/ja210039u CrossRefGoogle Scholar
  44. 44.
    Xiong W-W, Li J-R, Hu B, Tan B, Li R-F, Huang X-Y (2012) Chem Sci 3:1200–1204. doi: 10.1039/c2sc00824f CrossRefGoogle Scholar
  45. 45.
    Cheetham AK, Ferey G, Loiseau T (1999) Angew Chem Int Ed 38:3268–3292CrossRefGoogle Scholar
  46. 46.
    Bu X, Zheng N, Feng P (2004) Chem Eur J 10:3356–3362. doi: 10.1002/chem.200306041 CrossRefGoogle Scholar
  47. 47.
    Feng P, Bu X, Zheng N (2005) Acc Chem Res 38:293–303. doi: 10.1021/ar0401754 CrossRefGoogle Scholar
  48. 48.
    Vaqueiro P (2010) Dalton Trans 39:5965–5972. doi: 10.1039/c000130a CrossRefGoogle Scholar
  49. 49.
    Wu T, Wang L, Bu X, Chau V, Feng P (2010) J Am Chem Soc 132:10823–10831. doi: 10.1021/ja102688p CrossRefGoogle Scholar
  50. 50.
    Dehnen S, Eichhöfer A, Fenske D (2002) Eur J Inorg Chem 279–317Google Scholar
  51. 51.
    Dehnen S, Eichhöfer A, Corrigan JF, Fenske D (2004) In: Schmid G (ed) Nanoparticles theory application. Wiley-VCH, Weinheim, pp 107–185Google Scholar
  52. 52.
    Fuhr O, Dehnen S, Fenske D (2013) Chem Soc Rev 42:1871–1906. doi: 10.1039/c2cs35252d CrossRefGoogle Scholar
  53. 53.
    Moller A, Amann P, Kataev V, Schittner N (2004) Z Anorg Allg Chem 630:890–894. doi: 10.1002/zaac.200400034 CrossRefGoogle Scholar
  54. 54.
    Lin W-Q, Liao X-F, Jia J-H, Leng J-D, Liu J-L, Guo F-S, Tong M-L (2013) Chem Eur J 19:12254–12258. doi: 10.1002/chem.201301397 CrossRefGoogle Scholar
  55. 55.
    Eichhöfer A, Fenske D (2000) J Chem Soc Dalton Trans 941–944. doi: 10.1039/a909737f
  56. 56.
    Zheng NF, Bu XH, Lu HW, Zhang QC, Feng PY (2005) J Am Chem Soc 127:11963–11965. doi: 10.1021/ja053588o CrossRefGoogle Scholar
  57. 57.
    Li HL, Laine A, O’Keeffe M, Yaghi OM (1999) Science 283:1145–1147. doi: 10.1126/science.283.5405.1145 CrossRefGoogle Scholar
  58. 58.
    Zhang Q, Bu X, Han L, Feng P (2006) Inorg Chem 45:6684–6687. doi: 10.1021/ic060367q CrossRefGoogle Scholar
  59. 59.
    Wu T, Bu X, Zhao X, Khazhakyan R, Feng P (2011) J Am Chem Soc 133:9616–9625. doi: 10.1021/ja203143q CrossRefGoogle Scholar
  60. 60.
    Wang L, Wu T, Zuo F, Zhao X, Bu X, Wu J, Feng P (2010) J Am Chem Soc 132:3283–3285. doi: 10.1021/ja9100672 CrossRefGoogle Scholar
  61. 61.
    Li H, Kim J, O’Keeffe M, Yaghi OM (2003) Angew Chem-Int Ed 42:1819–1821. doi: 10.1002/anie.200250748 CrossRefGoogle Scholar
  62. 62.
    Han X, Xu J, Wang Z, Liu D, Wang C (2015) Chem Commun 51:3919–3922. doi: 10.1039/c5cc00084j CrossRefGoogle Scholar
  63. 63.
    Du C-F, Li J-R, Zhang B, Shen N-N, Huang X-Y (2015) Inorg Chem 54:5874–5878. doi: 10.1021/acs.inorgchem.5b00652 CrossRefGoogle Scholar
  64. 64.
    Su WP, Huang XY, Li J, Fu HX (2002) J Am Chem Soc 124:12944–12945. doi: 10.1021/ja027830s CrossRefGoogle Scholar
  65. 65.
    Wang C, Bu XH, Zheng NF, Feng PY (2002) J Am Chem Soc 124:10268–10269. doi: 10.1021/ja020735z CrossRefGoogle Scholar
  66. 66.
    Han X, Wang Z, Liu D, Xu J, Liu Y, Wang C (2014) Chem Commun 50:796–798. doi: 10.1039/c3cc45439h CrossRefGoogle Scholar
  67. 67.
    Lin Q, Bu X, Feng P (2014) Chem Commun 50:4044–4046. doi: 10.1039/c4cc00583j CrossRefGoogle Scholar
  68. 68.
    Zheng NF, Bu XH, Feng PY (2004) Angew Chem Int Ed 43:4753–4755. doi: 10.1002/anie.200460386 CrossRefGoogle Scholar
  69. 69.
    Beecher AN, Yang X, Palmer JH, LaGrassa AL, Juhas P, Billinge SJL, Owen JS (2014) J Am Chem Soc 136:10645–10653. doi: 10.1021/ja503590h CrossRefGoogle Scholar
  70. 70.
    Herron N, Calabrese J, Farneth W, Wang Y (1993) Science 259:1426–1428. doi: 10.1126/science.259.5100.1426 CrossRefGoogle Scholar
  71. 71.
    Bendova M, Puchberger M, Schubert U (2010) Eur J Inorg Chem 3299–3306. doi: 10.1002/ejic.201000454
  72. 72.
    Feng M-L, Kong D-N, Xie Z-L, Huang X-Y (2008) Angew Chem Int Ed 47:8623–8626. doi: 10.1002/anie.200803406 CrossRefGoogle Scholar
  73. 73.
    Lei Z-X, Zhu Q-Y, Zhang X, Luo W, Mu W-Q, Dai J (2010) Inorg Chem 49:4385–4387. doi: 10.1021/ic902572m CrossRefGoogle Scholar
  74. 74.
    Zeng X, Yao X, Zhang J, Zhang Q, Wu W, Chai A, Wang J, Zeng Q, Xie J (2015) Inorg Chem Front 2:164–169. doi: 10.1039/c4qi00227j CrossRefGoogle Scholar
  75. 75.
    Liu Y, Lin Q, Zhang Q, Bu X, Feng P (2014) Chem Eur J 20:8297–8301. doi: 10.1002/chem.201402639 CrossRefGoogle Scholar
  76. 76.
    Xie J, Batten SR, Zou Y, Ren X (2011) Cryst Growth Des 11:16–20. doi: 10.1021/cg100926g CrossRefGoogle Scholar
  77. 77.
    Vossmeyer T, Reck G, Schulz B, Katsikas L, Weller H (1995) J Am Chem Soc 117:12881–12882. doi: 10.1021/ja00156a035 CrossRefGoogle Scholar
  78. 78.
    Voggu R, Biswas K, Govindaraj A, Rao CNR (2006) J Phys Chem B 110:20752–20755. doi: 10.1021/jp0653757 CrossRefGoogle Scholar
  79. 79.
    Dass A, Guo R, Tracy JB, Balasubramanian R, Douglas AD, Murray RW (2008) Langmuir 24:310–315. doi: 10.1021/la702651y CrossRefGoogle Scholar
  80. 80.
    Pengo P, Pasquato L (2015) J Fluor Chem 177:2–10. doi: 10.1016/j.jfluchem.2015.03.005 CrossRefGoogle Scholar
  81. 81.
    Zhang Q, Lin Z, Bu X, Wu T, Feng P (2008) Chem Mater 20:3239–3241. doi: 10.1021/cm702874s CrossRefGoogle Scholar
  82. 82.
    Emge TJ, Romanelli MD, Moore BF, Brennan JG (2010) Inorg Chem 49:7304–7312. doi: 10.1021/ic1002989 CrossRefGoogle Scholar
  83. 83.
    Holligan K, Rogler P, Rehe D, Pamula M, Kornienko AY, Emge TJ, Krogh-Jespersen K, Brennan JG (2015) Inorg Chem 54:8896–8904. doi: 10.1021/acs.inorgchem.5b00452 CrossRefGoogle Scholar
  84. 84.
    Adams RD, Zhang B, Murphy CJ, Yeung LK (1999) Chem Commun 383–384. doi: 10.1039/a809443h
  85. 85.
    Løver T, Bowmaker GA, Seakins JM, Cooney RP, Henderson W (1997) J Mater Chem 7:647–651. doi: 10.1039/a607065e CrossRefGoogle Scholar
  86. 86.
    Hiratani T, Konishi K (2004) Angew Chem Int Ed 43:5943–5946. doi: 10.1002/anie.200461190 CrossRefGoogle Scholar
  87. 87.
    Nguyen KA, Pachter R, Day PN, Su H (2015) J Chem Phys 142:234305. doi: 10.1063/1.4922320 CrossRefGoogle Scholar
  88. 88.
    Lebold TP, Stringle DLB, Workentin MS, Corrigan JF (2003) Chem Commun 1398–1399. doi: 10.1039/b302829a
  89. 89.
    Wallbank AI, Borecki A, Taylor NJ, Corrigan JF (2005) Organometallics 24:788–790. doi: 10.1021/om049238c CrossRefGoogle Scholar
  90. 90.
    Ahmar S, MacDonald DG, Vijayaratnam N, Battista TL, Workentin MS, Corrigan JF (2010) Angew Chem Int Ed 49:4422–4424. doi: 10.1002/anie.201000686 CrossRefGoogle Scholar
  91. 91.
    Tsuboi T, Takaguchi Y, Tsuboi S (2008) Chem Commun 76–78. doi: 10.1039/b713680c
  92. 92.
    Fukunaga N, Konishi K (2015) Nanoscale 7:20557–20563. doi: 10.1039/c5nr06307h CrossRefGoogle Scholar
  93. 93.
    Zhou J, Bian G-Q, Zhang Y, Zhu Q-Y, Li C-Y, Dai J (2007) Inorg Chem 46:6347–6352. doi: 10.1021/ic070334q CrossRefGoogle Scholar
  94. 94.
    Ewing SJ, Romero ML, Hutchinson J, Powell AV, Vaqueiro P (2012) Z Anorg Allg Chem 638:2526–2531. doi: 10.1002/zaac.201200255 CrossRefGoogle Scholar
  95. 95.
    Ewing SJ, Vaqueiro P (2015) Dalton Trans 44:1592–1600. doi: 10.1039/c4dt02819h CrossRefGoogle Scholar
  96. 96.
    Wang C, Bu XH, Zheng NF, Feng PY (2002) Angew Chem-Int Ed 41:1959–1961CrossRefGoogle Scholar
  97. 97.
    Vaqueiro P (2008) Inorg Chem 47:20–22. doi: 10.1021/ic701995p CrossRefGoogle Scholar
  98. 98.
    Zheng NF, Bu XG, Wang B, Feng PY (2002) Science 298:2366–2369. doi: 10.1126/science.1078663 CrossRefGoogle Scholar
  99. 99.
    Zheng NF, Bu XH, Feng PY (2003) Nature 426:428–432. doi: 10.1038/nature02159 CrossRefGoogle Scholar
  100. 100.
    Vaqueiro P, Romero ML (2008) J Am Chem Soc 130:9630–9631. doi: 10.1021/ja801619e CrossRefGoogle Scholar
  101. 101.
    Xu C, Han Y-G, Duan T, Zhang Q-F, Leung W-H (2009) Inorg Chem Commun 12:1053–1056. doi: 10.1016/j.inoche.2009.08.018 CrossRefGoogle Scholar
  102. 102.
    Zhang Q, Bu X, Lin Z, Wu T, Feng P (2008) Inorg Chem 47:9724–9726. doi: 10.1021/ic800588q CrossRefGoogle Scholar
  103. 103.
    Vaqueiro P, Romero ML, Rowan BC, Richards BS (2010) Chem Eur J 16:4462–4465. doi: 10.1002/chem.200903425 CrossRefGoogle Scholar
  104. 104.
    Wang Y-H, Zhang M-H, Yan Y-M, Bian G-Q, Zhu Q-Y, Dai J (2010) Inorg Chem 49:9731–9733. doi: 10.1021/ic100088n CrossRefGoogle Scholar
  105. 105.
    Wang Y-H, Jiang J-B, Wang P, Sun X-L, Zhu Q-Y, Dai J (2013) Crystengcomm 15:6040–6045. doi: 10.1039/c3ce40270c CrossRefGoogle Scholar
  106. 106.
    Vaqueiro P, Romero ML (2009) Inorg Chem 48:810–812. doi: 10.1021/ic8020723 CrossRefGoogle Scholar
  107. 107.
    Zheng N, Bu X, Lauda J, Feng P (2006) Chem Mater 18:4307–4311. doi: 10.1021/cm060557z CrossRefGoogle Scholar
  108. 108.
    Dance IG, Choy A, Scudder ML (1984) J Am Chem Soc 106:6285–6295. doi: 10.1021/ja00333a030 CrossRefGoogle Scholar
  109. 109.
    Lee GSH, Fisher KJ, Craig DC, Scudder ML, Dance IG (1990) J Am Chem Soc 112:6435–6437. doi: 10.1021/ja00173a063 CrossRefGoogle Scholar
  110. 110.
    Lee GSH, Craig DC, Ma I, Scudder ML, Bailey TD, Dance IG (1988) J Am Chem Soc 110:4863–4864. doi: 10.1021/ja00222a075 CrossRefGoogle Scholar
  111. 111.
    Vossmeyer T, Reck G, Katsikas L, Haupt E, Schulz B, Weller H (1995) Science 267:1476–1479. doi: 10.1126/science.267.5203.1476 CrossRefGoogle Scholar
  112. 112.
    Gruber F (2012) Z Anorg Allg Chem 638:2467–2469. doi: 10.1002/zaac.201200302 CrossRefGoogle Scholar
  113. 113.
    Yang X-L, Zhang J, Ren S-B, Li Y-Z, Du H-B, You X-Z (2010) Inorg Chem Commun 13:546–549. doi: 10.1016/j.inoche.2010.02.001 CrossRefGoogle Scholar
  114. 114.
    Behrens S, Bettenhausen M, Eichhöfer A, Fenske D (1997) Angew Chem Int Ed 36:2797–2799. doi: 10.1002/anie.199727971 CrossRefGoogle Scholar
  115. 115.
    Behrens S, Fenske D (1997) Berichte Bunsen Ges Phys Chem Chem Phys 101:1588–1592CrossRefGoogle Scholar
  116. 116.
    Behrens S, Bettenhausen M, Deveson AC, Eichhöfer A, Fenske D, Lohde A, Woggon U (1996) Angew Chem Int Ed Engl 35:2215–2218. doi: 10.1002/anie.199622151 CrossRefGoogle Scholar
  117. 117.
    Eichhöfer A, Hampe O (2007) J Clust Sci 18:494–504. doi: 10.1007/s10876-007-0121-1 CrossRefGoogle Scholar
  118. 118.
    Lalatonne Y, Richardi J, Pileni MP (2004) Nat Mater 3:121–125. doi: 10.1038/nmat1054 CrossRefGoogle Scholar
  119. 119.
    Min Y, Akbulut M, Kristiansen K, Golan Y, Israelachvili J (2008) Nat Mater 7:527–538. doi: 10.1038/nmat2206 CrossRefGoogle Scholar
  120. 120.
    Bishop KJM, Wilmer CE, Soh S, Grzybowski BA (2009) Small 5:1600–1630. doi: 10.1002/smll.200900358 CrossRefGoogle Scholar
  121. 121.
    Gamez P (2014) Inorg Chem Front 1:35–43. doi: 10.1039/c3qi00055a CrossRefGoogle Scholar
  122. 122.
    Zhao X-W, Qian L-W, Su H-C, Mo C-J, Que C-J, Zhu Q-Y, Dai J (2015) Cryst Growth Des 15:5749–5753. doi: 10.1021/acs.cgd.5b00960 CrossRefGoogle Scholar
  123. 123.
    Bag S, Trikalitis PN, Chupas PJ, Armatas GS, Kanatzidis MG (2007) Science 317:490–493. doi: 10.1126/science.1142535 CrossRefGoogle Scholar
  124. 124.
    Ferey G (2003) Angew Chem Int Ed 42:2576–2579. doi: 10.1002/anie.20021621 CrossRefGoogle Scholar
  125. 125.
    Bu XH, Zheng NF, Li YQ, Feng PY (2003) J Am Chem Soc 125:6024–6025. doi: 10.1021/ja030103s CrossRefGoogle Scholar
  126. 126.
    Wu T, Khazhakyan R, Wang L, Bu X, Zheng S-T, Chau V, Feng P (2011) Angew Chem Int Ed 50:2536–2539. doi: 10.1002/anie.201006531 CrossRefGoogle Scholar
  127. 127.
    Zheng NF, Bu XH, Feng PY (2003) J Am Chem Soc 125:1138–1139. doi: 10.1021/ja021274k CrossRefGoogle Scholar
  128. 128.
    Wu T, Wang X, Bu X, Zhao X, Wang L, Feng P (2009) Angew Chem Int Ed 48:7204–7207. doi: 10.1002/anie.200903758 CrossRefGoogle Scholar
  129. 129.
    Wang L, Wu T, Bu X, Zhao X, Zuo F, Feng P (2013) Inorg Chem 52:2259–2261. doi: 10.1021/ic301965w CrossRefGoogle Scholar
  130. 130.
    Zhang Q, Zheng S-T, Bu X, Feng P (2012) Z Anorg Allg Chem 638:2470–2472. doi: 10.1002/zaac.201200265 CrossRefGoogle Scholar
  131. 131.
    Xu G, Guo P, Song S, Zhang H, Wang C (2009) Inorg Chem 48:4628–4630. doi: 10.1021/ic900376h CrossRefGoogle Scholar
  132. 132.
    Brown ID, Altermatt D (1985) Acta Crystallogr Sect B Struct Sci 41:244–247. doi: 10.1107/S0108768185002063 CrossRefGoogle Scholar
  133. 133.
    Brese NE, O’Keeffe M (1991) Acta Crystallogr Sect B Struct Sci 47:192–197. doi: 10.1107/S0108768190011041 CrossRefGoogle Scholar
  134. 134.
    Zhang C, Liu J, Ji M, An Y (2014) Inorg Chem Commun 44:169–172. doi: 10.1016/j.inoche.2014.03.028 CrossRefGoogle Scholar
  135. 135.
    Wang C, Li YQ, Bu XH, Zheng NF, Zivkovic O, Yang CS, Feng PY (2001) J Am Chem Soc 123:11506–11507. doi: 10.1021/ja011739r CrossRefGoogle Scholar
  136. 136.
    Xie J (2008) Inorg Chem 47:5564–5566. doi: 10.1021/ic800721r CrossRefGoogle Scholar
  137. 137.
    Zheng NF, Bu XH, Lu HW, Chen L, Feng PY (2005) J Am Chem Soc 127:14990–14991. doi: 10.1021/ja055376x CrossRefGoogle Scholar
  138. 138.
    Santner S, Dehnen S (2015) Inorg Chem 54:1188–1190. doi: 10.1021/ic5026087 CrossRefGoogle Scholar
  139. 139.
    Freudenmann D, Wolf S, Wolff M, Feldmann C (2011) Angew Chem Int Ed 50:11050–11060. doi: 10.1002/anie.201100904 CrossRefGoogle Scholar
  140. 140.
    Stieler R, Bublitz F, Burrow RA, Manzoni de Oliveira GN, Villetti MA, Pereira MB, Piquini P, Lang ES (2010) J Braz Chem Soc 21:2146–2154. doi: 10.1590/S0103-50532010001100017
  141. 141.
    Levchenko TI, Kübel C, Huang Y, Corrigan JF (2011) Chem Eur J 17:14394–14398. doi: 10.1002/chem.201102487 CrossRefGoogle Scholar
  142. 142.
    Levchenko TI, Kübel C, Wang D, Najafabadi BK, Huang Y, Corrigan JF (2015) Chem Mater 27:3666–3682. doi: 10.1021/acs.chemmater.5b00586 CrossRefGoogle Scholar
  143. 143.
    Zhang XJ, Tian YP, Jin F, Wu JY, Xie Y, Tao XT, Jiang MH (2005) Cryst Growth Des 5:565–570. doi: 10.1021/cg049695w CrossRefGoogle Scholar
  144. 144.
    Jiang J-B, Bian G-Q, Zhang Y-P, Luo W, Zhu Q-Y, Dai J (2011) Dalton Trans 40:9551–9556. doi: 10.1039/c1dt10860c CrossRefGoogle Scholar
  145. 145.
    Fu M-L, Adams RD, Cristancho D, Leon-Plata P, Seminario JM (2011) Eur J Inorg Chem 660–665. doi: 10.1002/ejic.201001062
  146. 146.
    Jiang J-B, Huo P, Wang P, Wu Y-Y, Bian G-Q, Zhu Q-Y, Dai J (2014) J Mater Chem C 2:2528–2533. doi: 10.1039/c3tc32093f CrossRefGoogle Scholar
  147. 147.
    Zheng NF, Lu HW, Bu XH, Feng PY (2006) J Am Chem Soc 128:4528–4529. doi: 10.1021/ja060006+ CrossRefGoogle Scholar
  148. 148.
    Li HL, Kim J, Groy TL, O’Keeffe M, Yaghi OM (2001) J Am Chem Soc 123:4867–4868. doi: 10.1021/ja010413f CrossRefGoogle Scholar
  149. 149.
    Vaqueiro P, Romero ML (2007) Chem Commun 3282–3284. doi: 10.1039/b704724j
  150. 150.
    Yue C-Y, Lei X-W, Feng L-J, Wang C, Gong Y-P, Liu X-Y (2015) Dalton Trans 44:2416–2424. doi: 10.1039/c4dt02864c CrossRefGoogle Scholar
  151. 151.
    Pu Y-Y, Zhang X, You L-S, Bian G-Q, Zhu Q-Y, Dai J (2012) Z Anorg Allg Chem 638:2498–2502. doi: 10.1002/zaac.201200274 CrossRefGoogle Scholar
  152. 152.
    Melullis M, Clerac R, Dehnen S (2005) Chem Commun 6008–6010. doi: 10.1039/b513305j
  153. 153.
    Zheng NF, Bu XH, Feng PY (2002) J Am Chem Soc 124:9688–9689. doi: 10.1021/ja020480p CrossRefGoogle Scholar
  154. 154.
    Ahamed BN, Arunachalam M, Ghosh P (2010) Inorg Chem 49:4447–4457. doi: 10.1021/ic902300c CrossRefGoogle Scholar
  155. 155.
    You J-F, Papaefthymiou GC, Holm RH (1992) J Am Chem Soc 114:2697–2710. doi: 10.1021/ja00033a050 CrossRefGoogle Scholar
  156. 156.
    Müller A, Kögerler P, Dress AWM (2001) Coord Chem Rev 222:193–218. doi: 10.1016/S0010-8545(01)00391-5 CrossRefGoogle Scholar
  157. 157.
    Kortz U, Müller A, van Slageren J, Schnack J, Dalal NS, Dressel M (2009) Coord Chem Rev 253:2315–2327. doi: 10.1016/j.ccr.2009.01.014 CrossRefGoogle Scholar
  158. 158.
    Schäffer C, Todea AM, Bögge H, Floquet S, Cadot E, Korenev VS, Fedin VP, Gouzerh P, Müller A (2013) Dalton Trans 42:330–333. doi: 10.1039/c2dt32247a CrossRefGoogle Scholar
  159. 159.
    Seidlhofer B, Djamil J, Näther C, Bensch W (2011) Cryst Growth Des 11:5554–5560. doi: 10.1021/cg201122e CrossRefGoogle Scholar
  160. 160.
    Woodward P, Dahl L, Abel E, Crosse B (1965) J Am Chem Soc 87:5251–5253. doi: 10.1021/ja00950a049 CrossRefGoogle Scholar
  161. 161.
    Fenske D, Fischer A (1995) Angew Chem Int Ed Engl 34:307–309. doi: 10.1002/anie.199503071 CrossRefGoogle Scholar
  162. 162.
    Ivanov SA, Kozee MA, Merrill WA, Agarwal S, Dahl LF (2002) J Chem Soc Dalton Trans 4105–4115. doi:  10.1039/b204273h
  163. 163.
    Yamashina Y, Kataoka Y, Ura Y (2014) Inorg Chem 53:3558–3567. doi: 10.1021/ic403050c CrossRefGoogle Scholar
  164. 164.
    Zhang X, Pu Y-Y, You L-S, Bian G-Q, Zhu Q-Y, Dai J (2013) Polyhedron 52:645–649. doi: 10.1016/j.poly.2012.07.092 CrossRefGoogle Scholar
  165. 165.
    Wang Y-H, Wu J, Zhao X-W, Qian L-W, Zhu Q-Y, Dai J (2015) Chem Commun 51:10668–10671. doi: 10.1039/c5cc03404c CrossRefGoogle Scholar
  166. 166.
    Huang-Fu S-X, Shen J-N, Lin H, Chen L, Wu L-M (2015) Chem Eur J 21:9809–9815. doi: 10.1002/chem.201405719 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Chemistry and Centre for Advanced Materials and Biomaterials Research (CAMBR)The University of Western OntarioLondonCanada

Personalised recommendations