Advertisement

The Renaissance of Fullerene Superconductivity

  • Yasuhiro Takabayashi
  • Kosmas Prassides
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 172)

Abstract

Unconventional high-T c superconductivity, defined both in terms of the magnitude of the superconducting transition temperature, T c, and the key role played by electronic correlations, not only is the realm of atom-based low-dimensional layered systems such as the cuprates or the iron pnictides but is also accessible in molecular systems such as the cubic alkali fullerides with stoichiometry A3C60 (A=alkali metal). In fulleride superconductors, isotropic high-T c superconductivity occurs in competition with electronic ground states resulting from a fine balance between electron correlations and electron–phonon coupling in an electronic phase diagram strikingly similar to those of unconventional superconductors such as the cuprates and the heavy fermions. Superconductivity at the highest T c (38 K) known for any molecular material emerges from the antiferromagnetic insulating state solely by changing an electronic parameter – the overlap between the outer wave functions of the constituent molecules – and T c scales universally in a structure-independent dome-like relationship with proximity to the Mott metal–insulator transition (quantified by V, the volume/C60, or equivalently by (U/W), the ratio of the on-site Coulomb energy, U, to the electronic bandwidth, W), a hallmark of electron correlations characteristic of high-T c superconductors other than fullerides. The C60 molecular electronic structure plays a key role in the Mott–Jahn–Teller (MJT) insulator formed at large V, with the on-molecule dynamic Jahn–Teller (JT) effect distorting the C60 3– units and quenching the t 1u orbital degeneracy responsible for metallicity. As V decreases, the MJT insulator transforms first into an unconventional correlated JT metal (where localised electrons coexist with metallicity and the on-molecule distortion persists) and then into a Fermi liquid with a less prominent molecular electronic signature. This normal state crossover is mirrored in the evolution of the superconducting state, with the highest T c found at the boundary between unconventional correlated and conventional weak-coupling BCS superconductivity, where the interplay between extended and molecular aspects of the electronic structure is optimised to create the superconductivity dome.

Keywords

Antiferromagnetism Electron correlation Fullerenes Jahn–Teller effect Metal–insulator transition Mott insulator Superconductivity 

Abbreviations

AFM

Antiferromagnetic

bcc

Body-centred cubic

bco

Body-centred orthorhombic

BCS

Bardeen–Cooper–Schrieffer

EPR

Electron paramagnetic resonance

fcc

Face-centred cubic

fco

Face-centred orthorhombic

HOMO

Highest occupied molecular orbital

IR

Infrared

JT

Jahn–Teller

LRO

Long-range order

LUMO

Lowest unoccupied molecular orbital

MIT

Metal–insulator transition

MJT

Mott–Jahn–Teller

NMR

Nuclear magnetic resonance

ZFC

Zero field cooled

μSR

Muon spin relaxation

Notes

Acknowledgements

This work was sponsored by the ‘World Premier International (WPI) Research Center Initiative for Atoms, Molecules and Materials’, Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References

  1. 1.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162CrossRefGoogle Scholar
  2. 2.
    Iijima S (1991) Nature 354:56CrossRefGoogle Scholar
  3. 3.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666CrossRefGoogle Scholar
  4. 4.
    Margadonna S, Iwasa Y, Takenobu T, Prassides K (2004) Struct Bond 109:127CrossRefGoogle Scholar
  5. 5.
    Tanigaki K, Ebbesen TW, Saito S, Mizuki J, Tsai JS, Kubo Y, Kuroshima S (1991) Nature 352:222CrossRefGoogle Scholar
  6. 6.
    Haddon RC, Hebard AF, Rosseinsky MJ, Murphy DW, Duclos SJ, Lyons KB, Miller B, Rosamilia JM, Fleming RM, Kortan AR, Glarum SH, Makhija AV, Muller AJ, Eick RH, Zahurak SM, Tycko R, Dabbagh G, Thiel FA (1991) Nature 350:320CrossRefGoogle Scholar
  7. 7.
    Hebard AF, Rosseinsky MJ, Haddon RC, Murphy DW, Glarum SH, Palstra TTM, Ramirez AP, Kortan AR (1991) Nature 350:600CrossRefGoogle Scholar
  8. 8.
    Holczer K, Klein O, Huang SM, Kaner RB, Fu KJ, Whetten RL, Diederich F (1991) Science 252:1154CrossRefGoogle Scholar
  9. 9.
    Rosseinsky MJ, Ramirez AP, Glarum SH, Murphy DW, Haddon RC, Hebard AF, Palstra TTM, Kortan AR, Zahurak SM, Makhija AV (1991) Phys Rev Lett 66:2830CrossRefGoogle Scholar
  10. 10.
    Stephens PW, Mihaly L, Lee PL, Whetten RL, Huang SM, Kaner R, Deiderich F, Holczer K (1991) Nature 351:632CrossRefGoogle Scholar
  11. 11.
    Fleming RM, Ramirez AP, Rosseinsky MJ, Murphy DW, Haddon RC, Zahurak SM, Makhija AV (1991) Nature 352:787CrossRefGoogle Scholar
  12. 12.
    Schluter M, Lannoo M, Needels M, Baraff GA, Tomanek D (1992) Phys Rev Lett 68:526CrossRefGoogle Scholar
  13. 13.
    Chakravarty S, Gelfand MP, Kivelson S (1991) Science 254:970CrossRefGoogle Scholar
  14. 14.
    Lof RW, VanVeenendaal MA, Koopmans B, Jonkman HT, Sawatzky GA (1992) Phys Rev Lett 68:3924CrossRefGoogle Scholar
  15. 15.
    Koch E, Gunnarsson O, Martin RM (1999) Phys Rev Lett 83:620CrossRefGoogle Scholar
  16. 16.
    Capone M, Fabrizio M, Castellani C, Tosatti E (2002) Science 296:2364CrossRefGoogle Scholar
  17. 17.
    Iwasa Y (2010) Nature 466:191CrossRefGoogle Scholar
  18. 18.
    Gunnarsson O (1997) Rev Mod Phys 69:575CrossRefGoogle Scholar
  19. 19.
    Prassides K (1997) Curr Opin Solid State Mater Sci 2:433CrossRefGoogle Scholar
  20. 20.
    Rosseinsky MJ (1998) Chem Mater 10:2665CrossRefGoogle Scholar
  21. 21.
    Kosaka M, Tanigaki K, Prassides K, Margadonna S, Lappas A, Brown CM, Fitch AN (1999) Phys Rev B 59:R6628CrossRefGoogle Scholar
  22. 22.
    Forro L, Mihaly L (2001) Rep Prog Phys 64:649CrossRefGoogle Scholar
  23. 23.
    Margadonna S, Prassides K (2002) J Solid State Chem 168:639CrossRefGoogle Scholar
  24. 24.
    Iwasa Y, Takenobu T (2003) J Phys Condens Matter 15:R495CrossRefGoogle Scholar
  25. 25.
    Gunnarsson O (2004) Alkali-doped fullerides: narrow-band solids with unusual properties. World Scientific, SingaporeGoogle Scholar
  26. 26.
    Gunnarsson O, Han JE, Koch E, Crespi VH (2005) Struct Bond 114:71Google Scholar
  27. 27.
    Keimer B, Kivelson SA, Norman MR, Uchida S, Zaanen J (2015) Nature 518:179CrossRefGoogle Scholar
  28. 28.
    Hashimoto K, Cho K, Shibauchi T, Kasahara S, Mizukami Y, Katsumata R, Tsuruhara Y, Terashima T, Ikeda H, Tanatar MA, Kitano H, Salovich N, Giannetta RW, Walmsley P, Carrington A, Prozorov R, Matsuda Y (2012) Science 336:1554CrossRefGoogle Scholar
  29. 29.
    Knebel G, Aoki D, Braithwaite D, Salce B, Flouquet J (2006) Phys Rev B 74:020501CrossRefGoogle Scholar
  30. 30.
    Ardavan A, Brown S, Kagoshima S, Kanoda K, Kuroki K, Mori H, Ogata M, Uji S, Wosnitza J (2012) J Phys Soc Jpn 81:011004CrossRefGoogle Scholar
  31. 31.
    Rosseinsky MJ, Murphy DW, Fleming RM, Zhou O (1993) Nature 364:425CrossRefGoogle Scholar
  32. 32.
    Takenobu T, Muro T, Iwasa Y, Mitani T (2000) Phys Rev Lett 85:381CrossRefGoogle Scholar
  33. 33.
    Ganin AY, Takabayashi Y, Bridges CA, Khimyak YZ, Margadonna S, Prassides K, Rosseinsky MJ (2006) J Am Chem Soc 128:14784CrossRefGoogle Scholar
  34. 34.
    Prassides K, Margadonna S, Arcon D, Lappas A, Shimoda H, Iwasa Y (1999) J Am Chem Soc 121:11227CrossRefGoogle Scholar
  35. 35.
    Takabayashi Y, Ganin AY, Rosseinsky MJ, Prassides K (2007) Chem Commun 2007:870CrossRefGoogle Scholar
  36. 36.
    Arvanitidis J, Papagelis K, Takabayashi Y, Takanobu T, Iwasa Y, Rosseinsky MJ, Prassides K (2007) J Phys Condens Matter 19:386235CrossRefGoogle Scholar
  37. 37.
    Uemura YJ (2009) Nat Mater 8:253CrossRefGoogle Scholar
  38. 38.
    Ganin AY, Takabayashi Y, Khimyak YZ, Margadonna S, Tamai A, Rosseinsky MJ, Prassides K (2008) Nat Mater 7:367CrossRefGoogle Scholar
  39. 39.
    Palstra TTM, Zhou O, Iwasa Y, Sulewski PE, Fleming RM, Zegarski BR (1995) Solid State Commun 93:327CrossRefGoogle Scholar
  40. 40.
    Darling GR, Ganin AY, Rosseinsky MJ, Takabayashi Y, Prassides K (2008) Phys Rev Lett 101:136404CrossRefGoogle Scholar
  41. 41.
    Takabayashi Y, Ganin AY, Jeglič P, Arčon D, Takano T, Iwasa Y, Ohishi Y, Takata M, Takeshita N, Prassides K, Rosseinsky MJ (2009) Science 323:1585CrossRefGoogle Scholar
  42. 42.
    Han JE, Gunnarsson O, Crespi VH (2003) Phys Rev Lett 90:167006CrossRefGoogle Scholar
  43. 43.
    Capone M, Fabrizio M, Castellani C, Tosatti E (2009) Rev Mod Phys 81:943CrossRefGoogle Scholar
  44. 44.
    Akashi R, Arita R (2013) Phys Rev B 88:054510CrossRefGoogle Scholar
  45. 45.
    Murakami Y, Werner P, Tsuji N, Aoki H (2013) Phys Rev B 88:125126CrossRefGoogle Scholar
  46. 46.
    Nomura Y, Sakai S, Capone M, Arita R (2015) Sci Adv 1, e1500568CrossRefGoogle Scholar
  47. 47.
    Ganin AY, Takabayashi Y, Jeglič P, Arčon D, Potočnik A, Baker PJ, Ohishi Y, McDonald MT, Tzirakis MD, McLennan A, Darling GR, Takata M, Rosseinsky MJ, Prassides K (2010) Nature 466:221CrossRefGoogle Scholar
  48. 48.
    Ihara Y, Alloul H, Wzietek P, Pontiroli D, Mazzani M, Riccó M (2010) Phys Rev Lett 104:256402CrossRefGoogle Scholar
  49. 49.
    Kasahara Y, Takeuchi Y, Itou T, Zadik RH, Takabayashi Y, Ganin AY, Arcon D, Rosseinsky MJ, Prassides K, Iwasa Y (2014) Phys Rev B 90:014413CrossRefGoogle Scholar
  50. 50.
    Klupp G, Matus P, Kamarás K, Ganin AY, McLennan A, Rosseinsky MJ, Takabayashi Y, McDonald MT, Prassides K (2012) Nat Commun 3:912CrossRefGoogle Scholar
  51. 51.
    Potocnik A, Ganin AY, Takabayashi Y, McDonald MT, Heinmaa I, Jeglic P, Stern R, Rosseinsky MJ, Prassides K, Arcon D (2014) Chem Sci 5:3008CrossRefGoogle Scholar
  52. 52.
    Jiang H-C, Kivelson S (2015) arXiv:1510.04704Google Scholar
  53. 53.
    Fradkin E, Kivelson SA (2012) Nat Phys 8:864CrossRefGoogle Scholar
  54. 54.
    Zadik RH, Takabayashi Y, Klupp G, Colman RH, Ganin AY, Potočnik A, Jeglič P, Arčon D, Matus P, Kamarás K, Kasahara Y, Iwasa Y, Fitch AN, Ohishi Y, Garbarino G, Kato K, Rosseinsky MJ, Prassides K (2015) Sci Adv 1, e150059CrossRefGoogle Scholar
  55. 55.
    Potočnik A, Krajnc A, Jeglič P, Takabayashi Y, Ganin AY, Prassides K, Rosseinsky MJ, Arčon D (2014) Sci Rep 4:4265Google Scholar
  56. 56.
    Wzietek P, Mito T, Alloul H, Pontiroli D, Aramini M, Riccò M (2014) Phys Rev Lett 112:066401CrossRefGoogle Scholar
  57. 57.
    Tanaka K, Lee WS, Lu DH, Fujimori A, Fujii T, Terasaki I, Scalapino DJ, Devereaux TP, Hussain Z, Shen Z-X (2006) Science 314:1910CrossRefGoogle Scholar
  58. 58.
    Xu Y-M, Richard P, Nakayama K, Kawahara T, Sekiba Y, Qian T, Neupane M, Souma S, Sato T, Takahashi T, Luo H-Q, Wen H-H, Chen G-F, Wang N-L, Wang Z, Fang Z, Dai X, Ding H (2011) Nat Commun 2:392Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.World Premier International – Advanced Institute for Materials Research (WPI-AIMR), Tohoku UniversitySendaiJapan

Personalised recommendations