Advertisement

Charge Density and Chemical Bonding

  • Dietmar StalkeEmail author
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 169)

Abstract

In the past 100 years, the Lewis diagram has frequently been challenged, modified, extended and rejected as being too simplistic. Those who teach chemistry to freshman, however, appreciate the diagram as one of the didactical rocks in the wild sea of ever developing science, because it is simple, easy to understand and long ranged in mediate basic chemistry. This article is aimed at the evaluation of the Lewis diagram in the light of modern charge density investigations and the topological analysis based on the quantum theory of atoms in molecules. Some old molecules like boranes, sulfate, and high-coordinate silicon will be revisited as well as some recent low-valent silicon species that were regarded impossible to make only some years ago. Can the Lewis diagram cope with new results from experiment and theory and be extended to “impossible” molecules? The answer is yes and that makes a model a good model: easy to adapt by and by and not suggesting any scientific dead ends, because the model might eventually be mistaken to be real from the inexperienced applicant.

Keywords

Bond theory Charge density Silylene Silylone 

Notes

Acknowledgement

This work was supported by the Deutsche Forschungsgemeinschaft within the priority program 1178 “Experimental charge density as the key to understand chemical interactions,” the DNRF-funded Center for Materials Crystallography, the PhD program CaSuS, Catalysis for Sustainable Synthesis, funded from the Land Niedersachsen, Chemetall, Frankfurt and the Volkswagenstiftung. The author is particularly indebted to many capable students for providing the results that form the basis of this article.

References

  1. 1.
    Lewis GN (1916) J Am Chem Soc 38:762–785CrossRefGoogle Scholar
  2. 2.
    Schrödinger E (1926) Phys Rev 28:1049–1070CrossRefGoogle Scholar
  3. 3.
    Frenking G, Shaik S (eds) (2014) The chemical bond. Wiley-VCH, Weinheim. ISBN 978-3-527-33318-9Google Scholar
  4. 4.
    Abegg R (1904) Z Anorg Chem 39:330–380CrossRefGoogle Scholar
  5. 5.
    Werner A (1893) Z Anorg Chem 3:267–330CrossRefGoogle Scholar
  6. 6.
    Langmuir I (1921) Science 54(1386):59–67CrossRefGoogle Scholar
  7. 7.
    Johnson DR, Powell FX (1969) Science 164:950–951CrossRefGoogle Scholar
  8. 8.
    Carberry JJ, Retton RH (1961) J Chem Phys 35:2240–2241CrossRefGoogle Scholar
  9. 9.
    Shibata S, Bartell LS (1965) J Chem Phys 42:1147–1151CrossRefGoogle Scholar
  10. 10.
    Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University Press, Ithaca, Chapter 5Google Scholar
  11. 11.
    Kutzelnigg W (1984) Angew Chem 96:262–286CrossRefGoogle Scholar
  12. 12.
    Kutzelnigg W (1984) Angew Chem Int Ed Engl 23:272–295CrossRefGoogle Scholar
  13. 13.
    Reed AE, Weinhold FJ (1986) J Am Chem Soc 108:3586–3593CrossRefGoogle Scholar
  14. 14.
    Reed AE, Schleyer PR (1990) J Am Chem Soc 112:1434–1445CrossRefGoogle Scholar
  15. 15.
    Jensen WB (2006) J Chem Educ 83:1751–1752CrossRefGoogle Scholar
  16. 16.
    See RF (2009) J Chem Educ 86:1241–1247CrossRefGoogle Scholar
  17. 17.
    Pimentel GC (1951) J Chem Phys 19:446–448CrossRefGoogle Scholar
  18. 18.
    Hach RJ, Rundle RE (1951) J Am Chem Soc 73:4321–4324CrossRefGoogle Scholar
  19. 19.
    Braïda B, Hilberty PC (2013) Nat Chem 5:417–422CrossRefGoogle Scholar
  20. 20.
    Molina JM, Dobado JA (2001) Theor Chem Acc 105:328–337CrossRefGoogle Scholar
  21. 21.
    Noury S, Silvi B, Gillespie RJ (2002) Inorg Chem 41:2164–2172CrossRefGoogle Scholar
  22. 22.
    Kohout M (2004) Int J Quantum Chem 97:651–658CrossRefGoogle Scholar
  23. 23.
    Finzel K, Grin Y, Kohout M (2012) Theor Chem Acc 131:1106–1113CrossRefGoogle Scholar
  24. 24.
    Durrant MC (2015) Chem Sci 6:6614–6623CrossRefGoogle Scholar
  25. 25.
    Koritsanszky T, Coppens P (2001) Chem Rev 101:1583–1627CrossRefGoogle Scholar
  26. 26.
    Gatti C, Macchi P (eds) (2011) Modern charge density analysis. Springer, HeidelbergGoogle Scholar
  27. 27.
    Stalke D (2011) Chem Eur J 17:9264–9278CrossRefGoogle Scholar
  28. 28.
    Stalke D (ed) (2012) Electron density and chemical bonding I (experimental, vol 146) and II (theoretical, vol 147) structure and bonding. Springer, Berlin. ISBN 0081-5993Google Scholar
  29. 29.
    Hansen NK, Coppens P (1978) Acta Crystallogr A 34:909–921CrossRefGoogle Scholar
  30. 30.
    Bader RFW (1990) Atoms in molecules – a quantum theory. Oxford University Press, New YorkGoogle Scholar
  31. 31.
    Pendás AM, Francisco E, Blanco MA, Gatti C (2007) Chem Eur J 13:9362–9371CrossRefGoogle Scholar
  32. 32.
    Bader RFW (1998) J Phys Chem A 102:7314–7323CrossRefGoogle Scholar
  33. 33.
    Henn J, Meindl K, Oechsner A, Schwab G, Koritsanszky T, Stalke D (2010) Angew Chem 122:2472–2476CrossRefGoogle Scholar
  34. 34.
    Henn J, Meindl K, Oechsner A, Schwab G, Koritsanszky T, Stalke D (2010) Angew Chem Int Ed 49:2422–2426CrossRefGoogle Scholar
  35. 35.
    Hey J, Leusser D, Kratzert D, Fliegl H, Dieterich JM, Mata RA, Stalke D (2013) Phys Chem Chem Phys 15:20600–20610CrossRefGoogle Scholar
  36. 36.
    Cremer D, Kraka E (1984) Angew Chem 96:612–614CrossRefGoogle Scholar
  37. 37.
    Cremer D, Kraka E (1984) Angew Chem Int Ed Engl 23:627–628CrossRefGoogle Scholar
  38. 38.
    Abramov Y (1997) Acta Crystallogr A 53:264–272CrossRefGoogle Scholar
  39. 39.
    Gatti C (2005) Z Kristallogr 220:399–457Google Scholar
  40. 40.
    Gatti C (2012) Struct Bond 147:193–285CrossRefGoogle Scholar
  41. 41.
    Engels B, Schmidt TC, Gatti C, Schirmeister T, Fink RF (2012) Struct Bond 147:47–97CrossRefGoogle Scholar
  42. 42.
    Sinn H, Kaminsky W (1980) Adv Organomet Chem 18:99–149Google Scholar
  43. 43.
    Storre J, Schnitter C, Roesky HW, Schmidt H-G, Noltemeyer M, Fleischer R, Stalke D (1997) J Am Chem Soc 119:7505–7513CrossRefGoogle Scholar
  44. 44.
    Stephan DW (2009) Dalton Trans 3129–3136Google Scholar
  45. 45.
    Stephan DW, Erker G (2010) Angew Chem Int Ed 49:46–76CrossRefGoogle Scholar
  46. 46.
    Stephan DW (2010) Chem Commun 46:8526–8533CrossRefGoogle Scholar
  47. 47.
    Flierler U, Leusser D, Ott H, Kehr G, Erker G, Grimme S, Stalke D (2009) Chem Eur J 15:4595–4601CrossRefGoogle Scholar
  48. 48.
    Schmøkel MS, Cenedese S, Overgaard J, Jørgensen MRV, Chen Y-S, Gatti C, Stalke D, Iversen BB (2012) Inorg Chem 51:8607–8616CrossRefGoogle Scholar
  49. 49.
    Rademacher P (1987) Strukturen organischer Moleküle. VCH, New YorkCrossRefGoogle Scholar
  50. 50.
    Leusser D, Walfort B, Stalke D (2002) Angew Chem 114:2183–2186CrossRefGoogle Scholar
  51. 51.
    Leusser D, Walfort B, Stalke D (2002) Angew Chem Int Ed Engl 41:2079–2082CrossRefGoogle Scholar
  52. 52.
    Leusser D, Henn J, Kocher N, Engels B, Stalke D (2004) J Am Chem Soc 126:1781–1793CrossRefGoogle Scholar
  53. 53.
    Henn J, Leusser D, Ilge D, Stalke D, Engels B (2004) J Phys Chem A 108:9442–9452CrossRefGoogle Scholar
  54. 54.
    Grabowsky S, Luger P, Buschmann J, Schneider T, Schirmeister T, Sobolev AN, Jayatilaka D (2012) Angew Chem 124:6880–6884CrossRefGoogle Scholar
  55. 55.
    Grabowsky S, Luger P, Buschmann J, Schneider T, Schirmeister T, Sobolev AN, Jayatilaka D (2012) Angew Chem Int Ed 51:6776–6779CrossRefGoogle Scholar
  56. 56.
    Kocher N, Henn J, Gostevskii B, Kost D, Kalikhman I, Engels B, Stalke D (2004) J Am Chem Soc 126:5563–5568CrossRefGoogle Scholar
  57. 57.
    Kost D, Kalikhman I (1998) In: Rappoport Z, Apeloig Y (eds) The chemistry of organic silicon compounds. Wiley, Chichester, pp 1339–1445CrossRefGoogle Scholar
  58. 58.
    Himmel D, Krossing I, Schnepf A (2014) Angew Chem 126:378–382CrossRefGoogle Scholar
  59. 59.
    Himmel D, Krossing I, Schnepf A (2014) Angew Chem Int Ed 53:370–374CrossRefGoogle Scholar
  60. 60.
    Frenking G (2014) Angew Chem 126:6152–6158CrossRefGoogle Scholar
  61. 61.
    Frenking G (2014) Angew Chem Int Ed 53:6040–6046CrossRefGoogle Scholar
  62. 62.
    Himmel D, Krossing I, Schnepf A (2014) Angew Chem 126:6159–6160CrossRefGoogle Scholar
  63. 63.
    Himmel D, Krossing I, Schnepf A (2014) Angew Chem Int Ed 53:6047–6048CrossRefGoogle Scholar
  64. 64.
    Gleiter R, Herberhauer G (2012) Aromaticity and other conjugated effects. Wiley-VCH, Weinheim. ISBN 978-3-527-32934-2Google Scholar
  65. 65.
    Matito E, Poater J, Solà M, Schleyer PR (2009) In: Chattaray PK (ed) Chemical reactivity theory. Taylor and Francis, Boca Ratón, pp 419–438Google Scholar
  66. 66.
    Schleyer PR (2005) Chem Rev 105:3433CrossRefGoogle Scholar
  67. 67.
    Tokitoh N, Wakita K, Okazaki R, Nagase S, Schleyer PR, Jiao H (1997) J Am Chem Soc 759(119):6951–6952CrossRefGoogle Scholar
  68. 68.
    Lee VY, Sekiguchi A (2007) Angew Chem 119:6716–6740CrossRefGoogle Scholar
  69. 69.
    Lee VY, Sekiguchi A (2007) Angew Chem Int Ed 46:6596–6620CrossRefGoogle Scholar
  70. 70.
    Sen SS, Roesky HW, Meindl K, Stern D, Henn J, Stückl AC, Stalke D (2010) Chem Commun 46:5873–5875CrossRefGoogle Scholar
  71. 71.
    Abersfelder K, White AJP, Rzepa HS, Scheschkewitz D (2010) Science 327:564–566CrossRefGoogle Scholar
  72. 72.
    Kratzert D, Leusser D, Holstein JJ, Dittrich B, Abersfelder K, Scheschkewitz D, Stalke D (2013) Angew Chem 125:4574–4578CrossRefGoogle Scholar
  73. 73.
    Kratzert D, Leusser D, Holstein JJ, Dittrich B, Abersfelder K, Scheschkewitz D, Stalke D (2013) Angew Chem Int Ed 52:4478–4482CrossRefGoogle Scholar
  74. 74.
    Schmeisser VM, Voss P (1964) Z Anorg Allg Chem 334:50–56CrossRefGoogle Scholar
  75. 75.
    Schenk VPW, Bloching H (1964) Z Anorg Allg Chem 334:57–65CrossRefGoogle Scholar
  76. 76.
    Ghadwal RS, Roesky HW, Merkel S, Henn J, Stalke D (2009) Angew Chem 121:5793–5796CrossRefGoogle Scholar
  77. 77.
    Ghadwal RS, Roesky HW, Merkel S, Henn J, Stalke D (2009) Angew Chem Int Ed 48:5683–5686CrossRefGoogle Scholar
  78. 78.
    Filippou AC, Chernov O, Schnakenburg G (2009) Angew Chem 121:5797–5800CrossRefGoogle Scholar
  79. 79.
    Filippou AC, Chernov O, Schnakenburg G (2009) Angew Chem Int Ed 48:5867–5870Google Scholar
  80. 80.
    Wang Y, Xie Y, Wei P, King RB, Schaefer HF III, Schleyer PR, Robinson GH (2008) Science 321:1069–1071CrossRefGoogle Scholar
  81. 81.
    Thomas Reuters (2015) Web of ScienceGoogle Scholar
  82. 82.
    Ott H, Pieper U, Leusser D, Flierler U, Henn J, Stalke D (2009) Angew Chem 121:3022–3026CrossRefGoogle Scholar
  83. 83.
    Ott H, Pieper U, Leusser D, Flierler U, Henn J, Stalke D (2009) Angew Chem Int Ed 48:2978–2982CrossRefGoogle Scholar
  84. 84.
    Cambridge Structural Database, Version 5.36 (2014) Cambridge Crystallographic Data Centre, CambridgeGoogle Scholar
  85. 85.
    Mondal KC, Roesky HW, Schwarzer MC, Frenking G, Neudeck S, Tkach I, Wolf H, Kratzert D, Herbst-Irmer R, Niepötter B, Stalke D (2013) Angew Chem 125:3036–3040CrossRefGoogle Scholar
  86. 86.
    Mondal KC, Roesky HW, Schwarzer MC, Frenking G, Neudeck S, Tkach I, Wolf H, Kratzert D, Herbst-Irmer R, Niepötter B, Stalke D (2013) Angew Chem Int Ed 52:2963–2967CrossRefGoogle Scholar
  87. 87.
    Mondal KC, Roesky HW, Klinke F, Schwarzer MC, Frenking G, Niepötter B, Wolf H, Herbst-Irmer R, Stalke D (2013) Angew Chem 125:1845–1850CrossRefGoogle Scholar
  88. 88.
    Mondal KC, Roesky HW, Klinke F, Schwarzer MC, Frenking G, Niepötter B, Wolf H, Herbst-Irmer R, Stalke D (2013) Angew Chem Int Ed 52:1801–1805CrossRefGoogle Scholar
  89. 89.
    Tonner R, Frenking G (2007) Angew Chem 119:8850–8853CrossRefGoogle Scholar
  90. 90.
    Tonner R, Frenking G (2007) Angew Chem Int Ed 46:8695–8698CrossRefGoogle Scholar
  91. 91.
    Dyker CA, Lavallo V, Donnadieu B, Bertrand G (2008) Angew Chem 120:3250–3253CrossRefGoogle Scholar
  92. 92.
    Dyker CA, Lavallo V, Donnadieu B, Bertrand G (2008) Angew Chem Int Ed 47:3206–3209CrossRefGoogle Scholar
  93. 93.
    Fürstner A, Alcarazo M, Gooard R, Lehmann CW (2008) Angew Chem 120:3254–3258CrossRefGoogle Scholar
  94. 94.
    Fürstner A, Alcarazo M, Gooard R, Lehmann CW (2008) Angew Chem Int Ed 47:3210–3214CrossRefGoogle Scholar
  95. 95.
    Ishida S, Iwamoto T, Kabuto C, Kira M (2003) Nature 421:725–727CrossRefGoogle Scholar
  96. 96.
    Niepötter B, Herbst-Irmer R, Kratzert D, Samuel PP, Mondal KC, Roesky HW, Jerabek P, Frenking G, Stalke D (2014) Angew Chem 126:2806–2811CrossRefGoogle Scholar
  97. 97.
    Niepötter B, Herbst-Irmer R, Kratzert D, Samuel PP, Mondal KC, Roesky HW, Jerabek P, Frenking G, Stalke D (2014) Angew Chem Int Ed 53:2766–2770CrossRefGoogle Scholar
  98. 98.
    Li Y, Mondal KC, Roesky HW, Zhu H, Stollberg P, Herbst-Irmer R, Stalke D, Andrada DM (2013) J Am Chem Soc 135:12422–12428CrossRefGoogle Scholar
  99. 99.
    Kocher N, Selinka C, Leusser D, Kost D, Kalikhman I, Stalke D (2004) Z Anorg Allg Chem 630:1777–1793CrossRefGoogle Scholar
  100. 100.
    Stalke D (2012) Chem Commun 48:9559–9573CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Georg-August-Universität Göttingen, Institut für Anorganische ChemieGöttingenGermany

Personalised recommendations