Advertisement

Realistic Simulation of Organometallic Reactivity in Solution by Means of First-Principles Molecular Dynamics

  • Pietro VidossichEmail author
  • Agustí LledósEmail author
  • Gregori UjaqueEmail author
Part of the Structure and Bonding book series (STRUCTURE, volume 167)

Abstract

The application of first-principles molecular dynamics simulations to the study of the reactivity of organometallic complexes is surveyed, with special emphasis on studies addressing catalytic processes. We focused on modeling studies in which the solvent, either water or nonaqueous, is explicitly represented. Where available, comparison is made with results obtained from static calculations based on reduced model systems (clusters). In doing so, we show how the mechanistic insight provided by modeling studies of reactions involving charge separation (e.g., proton release) or unsaturated species may qualitatively and quantitatively change when more extended model systems are considered. General aspects of the methodology are also presented.

Keywords

AIMD Explicit solvent Homogeneous catalysis Organometallic reactivity QM/MM-MD 

Abbreviations

AIMD

Ab initio molecular dynamics

CPMD

Car–Parrinello molecular dynamics

DFT

Density functional theory

MD

Molecular dynamics

QM/MM

Quantum mechanics/molecular mechanics

Notes

Acknowledgments

The authors warmly thank all collaborators with whom they share the interest in the application of first-principles simulations to the study of homogeneous catalysis. We specially thank former members of the group Aleix Comas-Vives, Gábor Kovács, and Manuel A. Ortuño and long collaborators as András Stirling, or more recent Nisanth N. Nair, who contributed to some applications presented in this review. The authors thankfully acknowledge the computer resources, technical expertise, and assistance provided by the Barcelona Supercomputing Center (Centro Nacional de Supercomputación). We gratefully acknowledge financial support from Spanish MINECO (CTQ2014-54071-P).

References

  1. 1.
    Cundari TR (ed) (2001) Computational organometallic chemistry. Marcel Dekker, New YorkGoogle Scholar
  2. 2.
    Maseras F, Lledós A (eds) (2002) Computational modeling of homogeneous catalysis. Kluwer, DordrechtGoogle Scholar
  3. 3.
    Morokuma K, Musaev DG (eds) (2008) Computational modeling for homogeneous and enzymatic catalysis. Wiley, WeinheimGoogle Scholar
  4. 4.
    Lin Z (2010) Acc Chem Res 43:602CrossRefGoogle Scholar
  5. 5.
    Tsang ASK, Sanhueza IA, Schoenebeck F (2014) Chem Eur J 20:1CrossRefGoogle Scholar
  6. 6.
    Thiel W (2014) Angew Chem Int Ed 53:2CrossRefGoogle Scholar
  7. 7.
    Davidson ER (2000) Chem Rev 100:351CrossRefGoogle Scholar
  8. 8.
    Bell AT, Head-Gordon M (2011) Annu Rev Chem Biomol Eng 2:453CrossRefGoogle Scholar
  9. 9.
    Cramer CJ, Truhlar DG (1999) Chem Rev 99:2161CrossRefGoogle Scholar
  10. 10.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999CrossRefGoogle Scholar
  11. 11.
    Curutchet C, Cramer CJ, Truhlar DG, Ruiz-López MF, Rinaldi D, Orozco M, Luque FJ (2003) J Comput Chem 24:284CrossRefGoogle Scholar
  12. 12.
    Sunoj RB, Anand M (2012) Phys Chem Chem Phys 14:12715CrossRefGoogle Scholar
  13. 13.
    Ortuño MA, Lledós A, Maseras F, Ujaque G (2014) ChemCatChem 6:3132CrossRefGoogle Scholar
  14. 14.
    Diez J, Gimeno J, Lledós A, Suarez FJ, Vicent C (2012) ACS Catal 2:2087CrossRefGoogle Scholar
  15. 15.
    Rodríguez-Santiago L, Alí-Torres J, Vidossich P, Sodupe M (2015) Phys Chem Chem Phys 17:13582CrossRefGoogle Scholar
  16. 16.
    Van Speybroeck V, Meier RJ (2003) Chem Soc Rev 32:151CrossRefGoogle Scholar
  17. 17.
    Margl P, Ziegler T, Blöchl PE (1995) J Am Chem Soc 117:12625CrossRefGoogle Scholar
  18. 18.
    De Angelis F, Fantacci S, Sgamellotti A (2006) Coord Chem Rev 250:1497CrossRefGoogle Scholar
  19. 19.
    Allen MP, Tildesley DJ (1989) Computer Simulation of Liquids. Oxford University Press, OxfordGoogle Scholar
  20. 20.
    Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications. Academic, San DiegoGoogle Scholar
  21. 21.
    Verlet L (1967) Phys Rev 159:98CrossRefGoogle Scholar
  22. 22.
    Nose S (1984) Mol Phys 52:255CrossRefGoogle Scholar
  23. 23.
    Bussi G, Donadio D, Parrinello M (2007) J Chem Phys 126:014101CrossRefGoogle Scholar
  24. 24.
    Martyna GJ, Tobias DJ, Klein ML (1994) J Chem Phys 101:4177CrossRefGoogle Scholar
  25. 25.
    Marx D, Hutter J (2009) Ab initio molecular dynamics: basic theory and advanced methods. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  26. 26.
    Car R, Parrinello M (1985) Phys Rev Lett 55:2471CrossRefGoogle Scholar
  27. 27.
    Hohenberg P, Kohn W (1964) Phys Rev B 136:B864CrossRefGoogle Scholar
  28. 28.
    Cramer CJ, Truhlar DG (2009) Phys Chem Chem Phys 11:10757CrossRefGoogle Scholar
  29. 29.
    Neese F (2009) Coord Chem Rev 253:526CrossRefGoogle Scholar
  30. 30.
    Becke AD (2014) J Chem Phys 140:18A301CrossRefGoogle Scholar
  31. 31.
    Kohn W, Sham LJ (1965) Phys Rev 140:1133CrossRefGoogle Scholar
  32. 32.
    Parr RG, Yang W (1994) Density-functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  33. 33.
    Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory. Wiley, WeinheimCrossRefGoogle Scholar
  34. 34.
    Cohen AJ, Mori-Sanchez P, Yang W (2012) Chem Rev 112:289CrossRefGoogle Scholar
  35. 35.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215CrossRefGoogle Scholar
  36. 36.
    Grimme S (2006) J Comput Chem 27:1787CrossRefGoogle Scholar
  37. 37.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104CrossRefGoogle Scholar
  38. 38.
    Kulik HJ, Cococcioni M, Scherlis DA, Marzari N (2006) Phys Rev Lett 97:103001CrossRefGoogle Scholar
  39. 39.
    VandeVondele J, Sprik MA (2005) Phys Chem Chem Phys 7:1363CrossRefGoogle Scholar
  40. 40.
    Marques MAL, Gross EKU (2004) Annu Rev Phys Chem 55:427CrossRefGoogle Scholar
  41. 41.
    Neese F (2006) J Biol Inorg Chem 11:702CrossRefGoogle Scholar
  42. 42.
    Goedecker S (1999) Rev Mod Phys 71:1085CrossRefGoogle Scholar
  43. 43.
    Sulpizi M, Raugei S, VandeVondele J, Carloni P, Sprik M (2007) J Phys Chem B 111:3969CrossRefGoogle Scholar
  44. 44.
    Weber V, Bekas C, Laino T, Curioni A, Bertsch A, Futral S (2014) In: Parallel and distributed processing symposium, 2014 IEEE. 28th international 735Google Scholar
  45. 45.
    Warshel A, Levitt M (1976) J Mol Biol 103:227CrossRefGoogle Scholar
  46. 46.
    Field MJ, Bash PA, Karplus M (1990) J Comput Chem 11:700CrossRefGoogle Scholar
  47. 47.
    Singh UC, Kollman PA (1986) J Comput Chem 7:718CrossRefGoogle Scholar
  48. 48.
    Senn HM, Thiel W (2009) Angew Chem Int Ed 48:1198CrossRefGoogle Scholar
  49. 49.
    Rovira C (2013) WIREs Comput Mol Sci 3:393CrossRefGoogle Scholar
  50. 50.
    Bo C, Maseras F (2008) Dalton Trans 2911Google Scholar
  51. 51.
    Ananikov VP, Musaev DG, Morokuma K (2010) J Mol Catal A Chem 324:104CrossRefGoogle Scholar
  52. 52.
    Sameera WMC, Maseras F (2012) WIREs Comput Mol Sci 2:375CrossRefGoogle Scholar
  53. 53.
    Woo TK, Margl PM, Deng L, Cavallo L, Ziegler T (1999) Catal Today 50:479CrossRefGoogle Scholar
  54. 54.
    Woo TK, Blöchl PE, Ziegler T (2000) J Mol Struct (teochem) 506:313–334CrossRefGoogle Scholar
  55. 55.
    Guidoni L, Maurer P, Piana S, Rothlisberger U (2002) Quant Struct-Act Relat 21:119CrossRefGoogle Scholar
  56. 56.
    Laino T, Mohamed F, Laio A, Parrinello M (2005) J Chem Theory Comput 1:1176CrossRefGoogle Scholar
  57. 57.
    Laino T, Mohamed F, Laio A, Parrinello M (2006) J Chem Theory Comput 2:1370CrossRefGoogle Scholar
  58. 58.
    Rowley CN, Roux B (2012) J Chem Theory Comput 8:3526CrossRefGoogle Scholar
  59. 59.
    Nielsen SO, Bulo RE, Moore PB, Ensing B (2010) Phys Chem Chem Phys 12:12401CrossRefGoogle Scholar
  60. 60.
    Bernstein N, Várnai C, Solt I, Winfield SA, Payne MC, Simon I, Fuxreiter M, Csányi G (2012) Phys Chem Chem Phys 14:646CrossRefGoogle Scholar
  61. 61.
    Steinfeld JI, Francisco JF, Hase WL (1998) Chemical kinetics and dynamics. Prentice Hall, Upper Saddle RiverGoogle Scholar
  62. 62.
    Pohorille A, Chipot C (eds) (2007) Free Energy Calculations: Theory and Applications in Chemistry and Biology. Springer, BerlinGoogle Scholar
  63. 63.
    Kirkwood JG (1935) J Chem Phys 3:300CrossRefGoogle Scholar
  64. 64.
    Laio A, Parrinello M (2002) Proc Natl Acad Sci U S A 99:12562CrossRefGoogle Scholar
  65. 65.
    Barducci A, Bonomi M, Parrinello M (2011) WIREs Comput Mol Sci 1:826CrossRefGoogle Scholar
  66. 66.
    Ensing B, De Vivo M, Liu Z, Moore P, Klein ML (2006) Acc Chem Res 39:73CrossRefGoogle Scholar
  67. 67.
    Carter EA, Ciccotti G, Hynes JT, Kapral R (1989) Chem Phys Lett 156:472CrossRefGoogle Scholar
  68. 68.
    Sprik M, Ciccotti G (1998) J Chem Phys 109:7737CrossRefGoogle Scholar
  69. 69.
    Laio A, Gervasio FL (2008) Rep Prog Phys 71:126601CrossRefGoogle Scholar
  70. 70.
    Ensing B, Laio A, Parrinello M, Klein ML (2005) J Phys Chem B 109:6676CrossRefGoogle Scholar
  71. 71.
    Zheng S, Pfaendtner J (2014) Mol Simul 41:55CrossRefGoogle Scholar
  72. 72.
    Laio A, Rodriguez-Fortea A, Gervasio FL, Ceccarelli M, Parrinello M (2005) J Phys Chem B 109:6714CrossRefGoogle Scholar
  73. 73.
    Iannuzzi M, Laio A, Parrinello M (2003) Phys Rev Lett 90:238302CrossRefGoogle Scholar
  74. 74.
    Bolhuis PG, Chandler D, Dellago C, Geissler PL (2002) Annu Rev Phys Chem 53:291CrossRefGoogle Scholar
  75. 75.
    Hutter J, Curioni A (2005) ChemPhysChem 6:1788CrossRefGoogle Scholar
  76. 76.
    VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J (2005) Comput Phys Commun 167:103CrossRefGoogle Scholar
  77. 77.
    Hassanali AA, Cuny J, Verdolino V, Parrinello M (2014) Phil Trans R Soc A 372:20120482CrossRefGoogle Scholar
  78. 78.
    Haber F, Weiss J (1934) Proc R Soc Lond 147:332CrossRefGoogle Scholar
  79. 79.
    Bray WC, Gorin MH (1932) J Am Chem Soc 54:2124CrossRefGoogle Scholar
  80. 80.
    Ensing B, Buda F, Blöchl PE, Baerends EJ (2001) Angew Chem Int Ed 40:2893CrossRefGoogle Scholar
  81. 81.
    Ensing B, Buda F, Blöchl PE, Baerends EJ (2002) Phys Chem Chem Phys 2:3619CrossRefGoogle Scholar
  82. 82.
    Yamamoto N, Koga N, Nagaoka M (2012) J Phys Chem B 116:14178CrossRefGoogle Scholar
  83. 83.
    Ensing B, Buda F, Gribnau MCM, Baerends EJ (2004) J Am Chem Soc 126:4355CrossRefGoogle Scholar
  84. 84.
    Shaik S, Kumar D, de Visser SP, Altun A, Thiel W (2005) Chem Rev 105:2279CrossRefGoogle Scholar
  85. 85.
    Louwerse MJ, Vassilev P, Baerends EJ (2008) J Phys Chem A 112:1000CrossRefGoogle Scholar
  86. 86.
    Bernasconi L, Baerends EJ (2013) J Am Chem Soc 135:8857CrossRefGoogle Scholar
  87. 87.
    Jira R (2009) Angew Chem Int Ed 48:9034CrossRefGoogle Scholar
  88. 88.
    Keith JA, Henry PM (2009) Angew Chem Int Ed 48:9038CrossRefGoogle Scholar
  89. 89.
    Stirling A, Nair NN, Lledós A, Ujaque G (2014) Chem Soc Rev 43:4940CrossRefGoogle Scholar
  90. 90.
    Kovács G, Stirling A, Lledós A, Ujaque G (2012) Chem Eur J 18:5612CrossRefGoogle Scholar
  91. 91.
    Nair NN (2011) J Phys Chem B 115:2312CrossRefGoogle Scholar
  92. 92.
    Imandi V, Kunnikuruvan S, Nair NN (2013) Chem Eur J 19:4724CrossRefGoogle Scholar
  93. 93.
    Bäckvall JE, Akermark B, Ljunggren SO (1979) J Am Chem Soc 101:2411CrossRefGoogle Scholar
  94. 94.
    Beyramabadi SA, Eshtiagh-Hosseini H, Housaindokht MR, Morsali A (2009) J Mol Struct (THEOCHEM) 903:108CrossRefGoogle Scholar
  95. 95.
    Henry PM (1973) J Org Chem 38:2415CrossRefGoogle Scholar
  96. 96.
    Heck RF (1968) Hercules Chem 57:12Google Scholar
  97. 97.
    Keith JA, Nielsen RJ, Oxgaard J, Goddard WA (2006) J Am Chem Soc 128:3132CrossRefGoogle Scholar
  98. 98.
    Imandi V, Nair NN (2015) J Phys Chem B 119:11176CrossRefGoogle Scholar
  99. 99.
    Carloni P, Sprik M, Andreoni W (2000) J Phys Chem B 104:823CrossRefGoogle Scholar
  100. 100.
    Bose RN, Cornelius RD, Viola RE (1984) J Am Chem Soc 106:3336CrossRefGoogle Scholar
  101. 101.
    Lau JKC, Ensing B (2010) Phys Chem Chem Phys 12:10348CrossRefGoogle Scholar
  102. 102.
    Melchior A, Tolazzi M, Martínez JM, Pappalardo RR, Sánchez-Marcos E (2015) J Chem Theory Comput 11:1735CrossRefGoogle Scholar
  103. 103.
    Noyori R, Hashiguchi S (1997) Acc Chem Res 30:97CrossRefGoogle Scholar
  104. 104.
    Pavlova A, Meijer EJ (2012) ChemPhysChem 13:3492CrossRefGoogle Scholar
  105. 105.
    Bandaru S, English NJ, MacElroy JMD (2014) J Comput Chem 35:683CrossRefGoogle Scholar
  106. 106.
    Li P, Henkelman G, Keith JA, Johnson JK (2014) J Phys Chem C 118:21385CrossRefGoogle Scholar
  107. 107.
    Lewis NS, Nocera DG (2008) Proc Natl Acad Sci U S A 103:15729CrossRefGoogle Scholar
  108. 108.
    Kohl SW, Winer L, Schwartsburd L, Konstantinovski L, Shimon LJW, Ben-David Y, Iron MA, Milstein D (2009) Science 324:74CrossRefGoogle Scholar
  109. 109.
    Ma C, Piccinin S, Fabris S (2012) ACS Catal 2:1500CrossRefGoogle Scholar
  110. 110.
    Vallés-Pardo JL, Guijt MC, Iannuzzi M, Joya KS, de Groot HJM, Buda F (2012) ChemPhysChem 13:140CrossRefGoogle Scholar
  111. 111.
    Vallés-Pardo JL, de Groot HJM, Buda F (2012) Phys Chem Chem Phys 14:15502.Google Scholar
  112. 112.
    Shilov AE, Shul’pin GB (1997) Chem Rev 97:2879CrossRefGoogle Scholar
  113. 113.
    Vidossich P, Ujaque G, Lledos A (2012) Chem Commun 48:1979CrossRefGoogle Scholar
  114. 114.
    Bühl M, Golubnychiy V (2007) Organometallics 26:6218Google Scholar
  115. 115.
    Bühl M, Wipff G (2011) ChemPhysChem 12:3095CrossRefGoogle Scholar
  116. 116.
    Bühl M, Kabrede H (2006) Inorg Chem 45:3834CrossRefGoogle Scholar
  117. 117.
    Bühl M, Schreckenbach G (2010) Inorg Chem 49:3821CrossRefGoogle Scholar
  118. 118.
    Shamov GA, Schreckenbach G (2008) J Am Chem Soc 130:13735CrossRefGoogle Scholar
  119. 119.
    Szabo Z, Grenthe I (2007) Inorg Chem 46:9372CrossRefGoogle Scholar
  120. 120.
    Rodríguez-Fortea A, Vilà-Nadal L, Poblet JM (2008) Inorg Chem 47:7745CrossRefGoogle Scholar
  121. 121.
    Vilà-Nadal L, Rodríguez-Fortea A, Poblet JM (2009) Eur J Inorg Chem 5125Google Scholar
  122. 122.
    Jiménez-Lozano P, Carbó JJ, Chaumont A, Poblet JM, Rodríguez-Fortea A, Wipff G (2014) Inorg Chem 53:778CrossRefGoogle Scholar
  123. 123.
    Moret ME, Tavernelli I, Rothlisberger U (2009) J Phys Chem B 113:7737CrossRefGoogle Scholar
  124. 124.
    Moret ME, Tavernelli I, Chergui M, Rothlisberger U (2010) Chem Eur J 16:5889CrossRefGoogle Scholar
  125. 125.
    Daku LML, Hauser A (2010) J Phys Chem Lett 1:1830CrossRefGoogle Scholar
  126. 126.
    Truflandier LA, Autschbach J (2010) J Am Chem Soc 132:3472CrossRefGoogle Scholar
  127. 127.
    Beret EC, Pappalardo RR, Doltsinis NL, Marx D, Sánchez-Marcos E (2008) ChemPhysChem 9:237CrossRefGoogle Scholar
  128. 128.
    Beret EC, Martínez JM, Pappalardo RR, Sánchez-Marcos E, Doltsinis NL, Marx D (2008) J Chem Theory Comput 4:2108CrossRefGoogle Scholar
  129. 129.
    Vidossich P, Ortuño M, Ujaque G, Lledós A (2011) ChemPhysChem 12:1666CrossRefGoogle Scholar
  130. 130.
    Zahn S, Brehm M, Brüssel M, Hollóczki O, Kohagen M, Lehmann S, Malberg F, Pensado AS, Schöppke M, Weber H, Kirchner B (2014) J Mol Liq 192:71CrossRefGoogle Scholar
  131. 131.
    Pu M, Privalov T (2015) Isr J Chem 55:179CrossRefGoogle Scholar
  132. 132.
    Dub PA, Henson NJ, Martin RL, Gordon JC (2014) J Am Chem Soc 136:3505CrossRefGoogle Scholar
  133. 133.
    Handgraaf JW, Meijer EJ (2007) J Am Chem Soc 129:3099CrossRefGoogle Scholar
  134. 134.
    Vidossich P, Ujaque G, Lledós A (2014) Chem Commun 50:661CrossRefGoogle Scholar
  135. 135.
    Ortuño MA, Vidossich P, Ujaque G, Conejero S, Lledós A (2013) Dalton Trans 42:12165CrossRefGoogle Scholar
  136. 136.
    Rowley CN, Woo TK (2010) Organometallics 30:2071CrossRefGoogle Scholar
  137. 137.
    Aresta M (2010) Carbon dioxide as chemical feedstock. Wiley, WeinheimCrossRefGoogle Scholar
  138. 138.
    Brüssel M, di Dio PJ, Muñiz K, Kirchner B (2011) Int J Mol Sci 12:1389CrossRefGoogle Scholar
  139. 139.
    Wang LP, Titov A, McGibbon R, Liu F, Pande VS, Martínez TJ (2014) Nat Chem 6:1044CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Departament de Química, Edifici C.n.Universitat Autònoma de BarcelonaCerdanyola del VallèsSpain

Personalised recommendations