Skip to main content

Ruthenium Ion-Catalyzed Oxidation for Petroleum Molecule Structural Features: A Review

  • Chapter
  • First Online:

Part of the book series: Structure and Bonding ((STRUCTURE,volume 168))

Abstract

Ruthenium ion-catalyzed oxidation (RICO) is an oxidative degradation approach for the structural investigation of petroleum fractions. It is based on the selective oxidation and near quantitative removal of aromatic carbon from aromatic petroleum fractions, while leaving the structural integrity of aliphatic units intact. RICO method has played a highly useful role in the investigation of the molecular structures of heavy petroleum. It distinguishes alkyl groups attached to aromatic rings, alkyl bridges between aromatic rings, the nature of aromatic condensation, etc. The application of RICO to petroleum chemistry was promoted by Strausz and coworkers for the study of asphaltene and other high molecular weight petroleum fractions. Structural details on asphaltenes and their ramifications were revealed by the RICO-based studies, and a hypothetical molecular model was proposed for the petroleum asphaltenes. The structural information obtained from the model is valuable for understanding such complex molecular systems. Another application of the RICO technique in the petroleum industry is the characterization of biomarkers in heavy petroleum fractions and kerogen, which were connected to the condensed core structures by chemical bonds. Generally, only the oxidation of aromatic carbon to carbon dioxide and carbonyl functionalities in RICO is considered; however, other reactions may also take place. Since they occur parallel to the oxidation of aromatic carbon, misinterpretation of the relevant experimental results may result. Recent research based on ultrahigh-resolution mass spectrometry has provided new evidence for the side reactions, which leads to a more informative interpretation of the RICO results. This paper reviews the RICO-related studies on petroleum fractions. The interpretation of RICO experimental results is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rodgers RP, Marshall AG (2007) Petroleomics advanced characterization of petroleum-derived materials by Fourier transform ion cyclotron resonance mass spectrometry (Ft-Icr Ms). In: Mullins OC, Sheu EY, Hammani A, Marshall AG (eds) Asphaltenes, heavy oils, and petroleomics. Springer, New York, pp 63–93

    Chapter  Google Scholar 

  2. Hsu CS (2012) Mass resolving power requirement for molecular formula determination of fossil oils. Energy Fuel 26(2):1169–1177

    Article  CAS  Google Scholar 

  3. Zhang ZG, Guo S, Zhao S, Yan G, Song L, Chen L (2008) Alkyl side chains connected to aromatic units in Dagang vacuum residue and its supercritical fluid extraction and fractions (Sfefs). Energy Fuel 23(1):374–385

    Article  Google Scholar 

  4. Mojelsky T, Ignasiak T, Frakman Z, Mcintyre D, Lown E, Montgomery D, Strausz O (1992) Structural features of Alberta oil sand bitumen and heavy oil asphaltenes. Energy Fuel 6(1):83–96

    Article  CAS  Google Scholar 

  5. Wang Z, Liang W, Que G, Qian J (1997) Study on molecular structure of fractions in Shengli vacuum residue by ruthenium ions catalyzed oxidation. Acta Pet Sin (Pet Process Sect) 13(4):1–9

    Google Scholar 

  6. Peng PA, Fu J, Sheng G, Morales-Izquierdo A, Lown EM, Strausz OP (1999) Ruthenium-ions-catalyzed oxidation of an immature asphaltene: structural features and biomarker distribution. Energy Fuel 13(2):266–277

    Article  CAS  Google Scholar 

  7. Strausz OP, Mojelsky TW, Faraji F, Lown EM, Peng PA (1999) Additional structural details on Athabasca asphaltene and their ramifications. Energy Fuel 13(2):207–227

    Article  CAS  Google Scholar 

  8. Strausz OP, Mojelsky TW, Lown EM, Kowalewski I, Behar F (1999) Structural features of Boscan and Duri asphaltenes. Energy Fuel 13(2):228–247

    Article  CAS  Google Scholar 

  9. Wang Z, Liang W, Que G, Qian J (1999) Investigation on chemical structure of fractions in Daqing vacuum residue by ruthenium ions catalyzed oxidation. J Fuel Chem Technol 27(2):102–109

    Google Scholar 

  10. Wang Z, Que G, Liang W, Qian J (1999) Investigation on chemical structure of resins and pentane asphaltenes in vacuum residua. Acta Pet Sin (Pet Process Sect) 15(6):39–46

    Google Scholar 

  11. Zhu J, Guo S, Li S (2002) Features of aromatic ring structure in petroleum asphaltene revealed by ruthenium Ion catalyzed oxidation. J Fuel Chem Technol 30(5):433–437

    CAS  Google Scholar 

  12. Djerassi C, Engle RR (1953) Oxidations with ruthenium tetroxide. J Am Chem Soc 75(15):3838–3840

    Article  CAS  Google Scholar 

  13. Carlsen PHJ, Katsuki T, Martin VS, Sharpless KB (1981) A greatly improved procedure for ruthenium tetroxide catalyzed oxidations of organic compounds. J Org Chem 46(19):3936–3938

    Article  CAS  Google Scholar 

  14. Stock LM, Tse K-T (1983) Ruthenium tetroxide catalysed oxidation of Illinois no. 6 coal and some representative hydrocarbons. Fuel 62(8):974–976

    Article  CAS  Google Scholar 

  15. Mallya N, Zingaro RA (1984) Ruthenium tetroxide — a reagent with the potential for the study of oxygen functionalities in coal. Fuel 63(3):423–425

    Article  CAS  Google Scholar 

  16. Stock LM, Wang S-H (1985) Ruthenium tetroxide catalysed oxidation of Illinois no. 6 coal: the formation of volatile monocarboxylic acids. Fuel 64(12):1713–1717

    Article  CAS  Google Scholar 

  17. Stock LM, Wang S-H (1986) Ruthenium tetroxide catalysed oxidation of coals: the formation of aliphatic and benzene carboxylic acids. Fuel 65(11):1552–1562

    Article  CAS  Google Scholar 

  18. Stock LM, Wang S-H (1987) The ruthenium(viii)-catalysed oxidation of Illinois no. 6 bituminous coal: an application of G.C.-Ft-I.R. spectroscopy for structural analysis. Fuel 66(7):921–924

    Article  CAS  Google Scholar 

  19. Choi CY, Wang SH, Stock LM (1988) Ruthenium tetraoxide catalyzed oxidation of maceral groups. Energy Fuel 2(1):37–48

    Article  CAS  Google Scholar 

  20. Stock LM, Wang SH (1989) Aliphatic structural elements of a Pocahontas no. 3 coal. Energy Fuel 3(4):533–535

    Article  CAS  Google Scholar 

  21. Stock LM, Muntean JV (1993) Chemical constitution of Pocahontas no. 3 coal. Energy Fuel 7(6):704–709

    Article  CAS  Google Scholar 

  22. Ilsley WH, Zingaro RA, Zoeller JH Jr (1986) The reactivity of ruthenium tetroxide towards aromatic and etheric functionalities in simple organic compounds. Fuel 65(9):1216–1220

    Article  CAS  Google Scholar 

  23. Artok L, Murata S, Nomura M, Satoh T (1998) Reexamination of the Rico method. Energy Fuel 12(2):391–398

    Article  CAS  Google Scholar 

  24. Murata S, U-Esaka K-I, Ino-Ue H, Nomura M (1994) Studies on aliphatic portion of coal organic materials based on ruthenium ion catalyzed oxidation. Energy Fuel 8(6):1379–1383

    Article  CAS  Google Scholar 

  25. Nomura M, Artok L, Murata S, Yamamoto A, Hama H, Gao H, Kidena K (1998) Structural evaluation of Zao Zhuang coal. Energy Fuel 12(3):512–523

    Article  CAS  Google Scholar 

  26. Nomura M, Kidena K, Hiro M, Murata S (2000) Mechanistic study on the plastic phenomena of coal. Energy Fuel 14(4):904–909

    Article  CAS  Google Scholar 

  27. Kidena K, Bandoh N, Murata S, Nomura M (2001) Studies on the bond cleavage reactions of coal molecules and coal model compounds. Fuel Process Technol 74(2):93–105

    Article  CAS  Google Scholar 

  28. Kidena K, Tani Y, Murata S, Nomura M (2004) Quantitative elucidation of bridge bonds and side chains in brown coals. Fuel 83(11–12):1697–1702

    Article  CAS  Google Scholar 

  29. Su Y, Artok L, Murata S, Nomura M (1998) Structural analysis of the asphaltene fraction of an Arabian mixture by a ruthenium-ion-catalyzed oxidation reaction. Energy Fuel 12(6):1265–1271

    Article  CAS  Google Scholar 

  30. Artok L, Su Y, Hirose Y, Hosokawa M, Murata S, Nomura M (1999) Structure and reactivity of petroleum-derived asphaltene. Energy Fuel 13(2):287–296

    Article  CAS  Google Scholar 

  31. Murata S, Tani Y, Hiro M, Kidena K, Artok L, Nomura M, Miyake M (2001) Structural analysis of coal through Rico reaction: detailed analysis of heavy fractions. Fuel 80(14):2099–2109

    Article  CAS  Google Scholar 

  32. Olson ES, Diehl JW, Froehlich ML, Miller DJ (1987) Elucidation of aliphatic structures in low-rank coals with ruthenium tetroxide oxidations. Fuel 66(7):968–972

    Article  CAS  Google Scholar 

  33. Blanc P, Valisolalao J, Albrecht P, Kohut JP, Muller JF, Duchene JM (1991) Comparative geochemical study of three maceral groups from a high-volatile bituminous coal. Energy Fuel 5(6):875–884

    Article  CAS  Google Scholar 

  34. Haenel MW (1992) Recent progress in coal structure research. Fuel 71(11):1211–1223

    Article  CAS  Google Scholar 

  35. Standen G, Boucher RJ, Eglinton G, Hansen G, Eglinton TI, Larter SR (1992) Differentiation of German tertiary brown coal lithotypes (‘Amorphous’ and ‘Woody’ kerogens) using ruthenium tetroxide oxidation and pyrolysis-G.C.-M.S. Fuel 71(1):31–36

    Article  CAS  Google Scholar 

  36. Shaohui G, Shuyuan L, Kuangzong Q (2001) Structural characterization of Chinese coal macerals by 13c Nmr and ruthenium ion catalyzed oxidation. Energy Sources 23(1):27–35

    Article  Google Scholar 

  37. Petersen HI, Nytoft HP (2006) Oil generation capacity of coals as a function of coal age and aliphatic structure. Org Geochem 37(5):558–583

    Article  CAS  Google Scholar 

  38. Akande SO, Ogunmoyero IB, Petersen HI, Nytoft HP (2007) Source rock evaluation of coals from the lower maastrichtian mamu formation, Se Nigeria. J Pet Geol 30(4):303–323

    Article  CAS  Google Scholar 

  39. Huang Y-G, Zong Z-M, Yao Z-S, Zheng Y-X, Mou J, Liu G-F, Cao J-P, Ding M-H, Cai K-Y, Wang F, Zhao W, Xia Z-L, Wu L, Wei X-Y (2008) Ruthenium ion-catalyzed oxidation of Shenfu coal and its residues. Energy Fuel 22(3):1799–1806

    Article  CAS  Google Scholar 

  40. Petersen HI, Lindstrom S, Nytoft HP, Rosenberg P (2009) Composition, peat-forming vegetation and kerogen paraffinicity of Cenozoic coals: relationship to variations in the petroleum generation potential (hydrogen index). Int J Coal Geol 78(2):119–134

    Article  CAS  Google Scholar 

  41. Yao Z-S, Wei X-Y, Huang Y-G, Zong Z-M, Huang Y, Xu J-J, Li Y, Lu Y, Lv J, Lu H (2009) Compositional and structural features of the extracts from Shenfu coal. J Wuhan Univ Sci Technol 32(6):631–637

    CAS  Google Scholar 

  42. Yao Z-S, Wei X-Y, Lv J, Liu F-J, Huang Y-G, Xu J-J, Chen F-J, Huang Y, Li Y, Lu Y, Zong Z-M (2010) Oxidation of Shenfu coal with Ruo4 and naocl. Energy Fuel 24:1801–1808

    Article  CAS  Google Scholar 

  43. Ma L, Lu D-R, Li S, Liang H-D, Zhu S-Q (2013) Ft-Icr Ms analytical study on the products of Shenhua coal using ruthenium-ion-catalyzed oxidation method. J China Coal Soc 38(S1):223–230

    CAS  Google Scholar 

  44. Ma L, Lu D-R, Liang H-D, Zhu S-Q, Ding Y, Li S, Chen Y-F (2013) Preliminary study on macromolecular structure characteristics of Shenhua long flame coal. J Fuel Chem Technol 41(5):513–522

    Article  CAS  Google Scholar 

  45. Muhammad AB, Abbott GD (2013) The thermal evolution of asphaltene-bound biomarkers from coals of different rank: a potential information resource during coal biodegradation. Int J Coal Geol 107:90–95

    Article  CAS  Google Scholar 

  46. Payzant J, Lown E, Strausz O (1991) Structural units of Athabasca asphaltene: the aromatics with a linear carbon framework. Energy Fuel 5(3):445–453

    Article  CAS  Google Scholar 

  47. Strausz OP, Mojelsky TW, Lown EM (1992) The molecular structure of asphaltene: an unfolding story. Fuel 71(12):1355–1363

    Article  CAS  Google Scholar 

  48. Peng PA, Morales-Izquierdo A, Hogg A, Strausz OP (1997) Molecular structure of Athabasca asphaltene: sulfide, ether, and ester linkages. Energy Fuel 11(6):1171–1187

    Article  CAS  Google Scholar 

  49. Mullins OC (2007) Rebuttal to comment by professors Herod, Kandiyoti, and Bartle on “molecular size and weight of asphaltene and asphaltene solubility fractions from coals, crude oils and bitumen”. Fuel 86(1–2):309–312

    Article  CAS  Google Scholar 

  50. Mullins OC, Martínez-Haya B, Marshall AG (2008) Contrasting perspective on asphaltene molecular weight. This comment vs the overview of A. A. Herod, K. D. Bartle, and R. Kandiyoti. Energy Fuel 22(3):1765–1773

    Article  CAS  Google Scholar 

  51. Mullins OC (2009) Rebuttal to Strausz et al. regarding time-resolved fluorescence depolarization of asphaltenes. Energy Fuel 23(5):2845–2854

    Article  CAS  Google Scholar 

  52. Mullins OC (2010) The modified Yen model. Energy Fuel 24(4):2179–2207

    Article  CAS  Google Scholar 

  53. Herod AA, Bartle KD, Kandiyoti R (2007) Characterization of heavy hydrocarbons by chromatographic and mass spectrometric methods: an overview. Energy Fuel 21(4):2176–2203

    Article  CAS  Google Scholar 

  54. Herod AA, Bartle KD, Kandiyoti R (2008) Comment on a paper by Mullins, Martinez-haya, and Marshall “contrasting perspective on asphaltene molecular weight. This comment vs the overview of A. A. Herod, K. D. Bartle, and R. Kandiyoti”. Energy Fuel 22(6):4312–4317

    Article  CAS  Google Scholar 

  55. Herod AA, Kandiyoti R (2008) Comment on “Limitations of Size-Exclusion Chromatography in Analyzing Petroleum Asphaltenes: A Proof by Atomic Force Microscopy” by Behrouzi M Luckham PF. Energy Fuels 22(3):1792–1798. doi:10.1021/Ef800064q Energy Fuels 2008;22(6):4307–4309

    Google Scholar 

  56. Strausz OP, Safarik I, Lown EM, Morales-Izquierdo A (2008) A critique of asphaltene fluorescence decay and depolarization-based claims about molecular weight and molecular architecture. Energy Fuel 22(2):1156–1166

    Article  CAS  Google Scholar 

  57. Strausz OP, Safarik I, Lown EM (2009) Cause of asphaltene fluorescence intensity variation with molecular weight and its ramifications for laser ionization mass spectrometry. Energy Fuel 23(3):1555–1562

    Article  CAS  Google Scholar 

  58. Zhu J, Li S, Guo S (2003) New methods for the study of biodegraded crude oil. J Fuel Chem Technol 31(01):1–5

    Google Scholar 

  59. Ma A, Zhang S, Zhang D (2004) Ruthenium-Inos-catalyzed oxidation of the asphaltenes of heavy oils from Lunnan and Tahe oil fields of the Tarim Basin NW China. Nat Gas Geosci 15(02):144–149

    Google Scholar 

  60. Ma A, Zhang S, Zhang D, Lu G (2004) Ruthenium-ions-catalyzed oxidation of the asphaltenes of οils and oil-source correlation in the Tarim Basin. Pet Explor Dev 31(03):54–58

    CAS  Google Scholar 

  61. Ma A, Zhang S, Zhang D, Jin Z (2005) The advances in the geochemistry of the biodegraded oil. Adv Earth Sci 20(04):449–454

    Google Scholar 

  62. Ma A, Zhang S, Zhang D, Jin Z, Chen Z (2005) Ruthenium-ions-catalyzed oxidation of an asphaltene of a biodegraded oil from Caoqiao oilfield, Dongying depression, Bohaiwan basin-the distribution of biomarkers and the geological significance. Pet Geol Exp 27(3):288–292

    CAS  Google Scholar 

  63. Xiong Y, Wang Y, Wang Y (2007) Selective chemical degradation of kerogen from nenjiang formation of the Southern Songliao basin. Sci China Ser D Earth Sci 50(10):1504–1509

    Article  CAS  Google Scholar 

  64. Barakat AO, Scholz-Böttcher BM, Rullkötter J (2013) Structural investigations of Monterey kerogen by sequential chemical degradation. Fuel 104:788–797

    Article  CAS  Google Scholar 

  65. Liu F-J, Wei X-Y, Gui J, Wang Y-G, Li P, Zong Z-M (2013) Characterization of biomarkers and structural features of condensed aromatics in Xianfeng lignite. Energy Fuel 27(12):7369–7378

    Article  CAS  Google Scholar 

  66. Cyr N, Mcintyre D, Toth G, Strausz O (1987) Hydrocarbon structural group analysis of Athabasca asphaltene and its Gpc fractions by 13c Nmr. Fuel 66(12):1709–1714

    Article  CAS  Google Scholar 

  67. Schuda PF, Cichowicz MB, Heimann MR (1983) A facile method for the oxidative removal of benzyl ethers: the oxidation of benzyl ethers to benzoates by ruthenium tetraoxide. Tetrahedron Lett 24(36):3829–3830

    Article  CAS  Google Scholar 

  68. Zhou X, Shi Q, Zhang Y, Zhao S, Zhang R, Chung KH, Xu C (2012) Analysis of saturated hydrocarbons by redox reaction with negative-ion electrospray fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 84(7):3192–3199

    Article  CAS  Google Scholar 

  69. Bakke JM, Frøhaug AE (1996) Ruthenium tetraoxide mediated reactions: the mechanisms of oxidations of hydrocarbons and ethers. J Phys Org Chem 9(6):310–318

    Article  CAS  Google Scholar 

  70. Bakke JM, Frøhaug AE (1996) Mechanism of Ruo4‐mediated oxidations of saturated hydrocarbons, isotope effects, solvent effects and substituent effects. J Phys Org Chem 9(7):507–513

    Article  CAS  Google Scholar 

  71. Dragojlović V, Bajc S, Amblès A, Vitorović D (2005) Ether and ester moieties in Messel shale kerogen examined by hydrolysis/ruthenium tetroxide oxidation/hydrolysis. Org Geochem 36(1):1–12

    Article  Google Scholar 

  72. Bakke JM, Lundquist M (1986) The Ruo4 oxidation of cyclic saturated hydrocarbons formation of alcohols. Acta Chem Scand 40B:430–433

    Article  Google Scholar 

  73. Zhou X, Zhang Y, Zhao S, Chung KH, Xu C, Shi Q (2013) Characterization of saturated hydrocarbons in vacuum petroleum residua: redox derivatization followed by negative-Ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuel 28(1):417–422

    Article  Google Scholar 

  74. Strausz OP, Lown EM (2003) The chemistry of Alberta oil sands, bitumens and heavy oils. Alberta Energy Research Institute, Calgary

    Google Scholar 

  75. Zhou X (2013) Characterization of molecular structure in heavy oil by ruthenium ion catalyzed oxidation, in College of Chemical Engineering, China University of Petroleum, Beijing

    Google Scholar 

  76. Mojelsky TW, Montgomery DSS, Otto P (1985) Ruthenium (VIII) catalyzed oxidation of high molecular weight components of Athabasca Oil Sand Bitumen. Aostra J Res 2(2):131–137

    CAS  Google Scholar 

  77. Zijun W, Wenjie L, Guohe Q, Jialin Q (1997) Structural characterization of gudao asphaltene by ruthenium ion catalyzed oxidation. Pet Sci Technol 15(5-6):559–577

    Article  Google Scholar 

  78. Zhang ZG, Guo S, Zhao S, Mou T (2006) Structure features of the supercritical fluid extraction and fraction tailing of Dagang vacuum residue. J Fuel Chem Technol 34(4):427–433

    CAS  Google Scholar 

  79. Zhang H, Yan Y, Cheng Z, Sun W, Guan M (2007) Changes of asphaltene after hydrotreating by ruthenium ions catalyzed oxidation. Acta Pet Sin (Pet Process Sect) 23(4):33–38

    Google Scholar 

  80. Zhang ZG, Guo S, Yan G, Zhao S, Song L, Chen L (2007) Distribution of polymethylene bridges and alkyl side chains in dagang vacuum residue asphaltene and Sfef tailing asphaltene. J Chem Ind Eng (China) 58(10):2601–2607

    CAS  Google Scholar 

  81. Zhang ZG, Guo S, Yan G, Zhao S, Song L, Chen L (2007) Chemical structural features of fractions from dagang vacuum residue. J Fuel Chem Technol 35(5):553–557

    CAS  Google Scholar 

  82. Zhang ZG, Guo S, Zhao S, Yan G (2007) Chemical structure features of polar fractions of Sfef tailing from dagang vacuum residue. Acta Pet Sin (Pet Process Sect) 23(4):82–88

    Google Scholar 

  83. Zhang H, Yan Y, Cheng Z, Sun W (2008) Structural changes of sub-fractions in residue hydrotreating products by ruthenium catalyzed oxidation. Pet Sci Technol 26(16):1945–1962

    Article  CAS  Google Scholar 

  84. Ma A, Zhang S, Zhang D, Jin Z (2004) Oil and source correlation in Lunnan and Tahe heavy oil fields. Oil Gas Geol 25(1):31–38

    CAS  Google Scholar 

  85. Ali MF, Siddiqui MN, Al-Hajji AA (2004) Structural studies on residual fuel oil asphaltenes by Rico method. Pet Sci Technol 22(5-6):631–645

    Article  CAS  Google Scholar 

  86. Jia W, Peng PA (2004) Molecular structure of oil asphaltenes from Lunnan area of the Tarim Basin and its applications: a study by pyrolysis, methylation-pyrolysis and Rico. Geochim 33(2):139–146

    CAS  Google Scholar 

  87. Ma A, Zhang S, Zhang D (2008) Ruthenium-ion-catalyzed oxidation of asphaltenes of heavy oils in Lunnan and Tahe oilfields in Tarim Basin NW China. Org Geochem 39(11):1502–1511

    Article  CAS  Google Scholar 

  88. Zhang H, Yan Y, Cheng Z, Sun W (2009) Structural analysis of coke on used catalysts during residue hydrotreating by ruthenium ion catalyzed oxidation reaction. Pet Sci Technol 27(1):33–45

    Article  CAS  Google Scholar 

  89. Barakat AO, Scholz-Boettcher BM, Rullkoetter J (2012) Ruthenium tetroxide oxidation of immature sulfur-rich kerogens from the Nordlinger Ries (Southern Germany). Fuel 96(1):176–184

    Article  CAS  Google Scholar 

  90. Khaddor M, Ziyad M, Amblès A (2008) Structural characterization of the kerogen from youssoufia phosphate formation using mild potassium permanganate oxidation. Org Geochem 39(6):730–740

    Article  CAS  Google Scholar 

  91. Yoshioka H, Ishiwatari R (2005) An improved ruthenium tetroxide oxidation of marine and lacustrine kerogens: possible origin of low molecular weight acids and benzenecarboxylic acids. Org Geochem 36(1):83–94

    Article  CAS  Google Scholar 

  92. Li C, Peng P, Sheng GY, Fu JM (2004) A study of a 1.2 Ga kerogen using Ru ion-catalyzed and pyrolysis-gas chromatography-mass spectrometry: structural features and possible source. Org Geochem 35(5):531–541

    Article  CAS  Google Scholar 

  93. Kribii A, Lemee L, Chaouch A, Ambles A (2001) Structural study of the Moroccan timahdit (Y-layer) oil shale kerogen using chemical degradations. Fuel 80(5):681–691

    Article  CAS  Google Scholar 

  94. Reiss C, Blanc P, Trendel JM, Albrecht P (1997) Novel hopanoid derivatives released by oxidation of Messel shale kerogen. Tetrahedron 53(16):5767–5774

    Article  CAS  Google Scholar 

  95. Boucher RJ, Standen G, Eglinton G (1991) Molecular characterization of kerogens by mild selective chemical degradation — ruthenium tetroxide oxidation. Fuel 70(6):695–702

    Article  CAS  Google Scholar 

  96. Boucher RJ, Standen G, Patience RL, Eglinton G (1990) Molecular characterisation of kerogen from the kimmeridge clay formation by mild selective chemical degradation and solid state 13c-Nmr. Org Geochem 16(4–6):951–958

    Article  CAS  Google Scholar 

  97. Guo S, Li S, Qin K (2000) Structural characterization of kerogen and macerals by ruthenium ion catalyzed oxidation. J Univ Pet China 24(3):54–57

    CAS  Google Scholar 

  98. Standen G, Boucher RJ, Rafalska-Bloch J, Eglinton G (1991) Ruthenium tetroxide oxidation of natural organic macromolecules: messel kerogen. Chem Geol 91(4):297–313

    Article  CAS  Google Scholar 

  99. Blokker P, Van Bergen P, Pancost R, Collinson ME, De Leeuw JW, Damste JSS (2001) The chemical structure of Gloeocapsomorpha Prisca microfossils: implications for their origin. Geochim Et Cosmochim Acta 65(6):885–900

    Article  CAS  Google Scholar 

  100. Marshall AG, Rodgers RP (2004) Petroleomics: the next grand challenge for chemical analysis. Acc Chem Res 37(1):53–59

    Article  CAS  Google Scholar 

  101. Rodgers RP, Schaub TM, Marshall AG (2005) Petroleomics: Ms returns to its roots. Anal Chem 77(1):20 A–27 A

    Article  CAS  Google Scholar 

  102. Shi Q, Zhang Y, Xu C, Zhao S, Chung KH (2014) Progress and prospect on petroleum analysis by Fourier transform ion cyclotron resonance mass spectrometry. Sci China Chem (in Chinese) 44(5):694–700

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shi, Q., Wang, J., Zhou, X., Xu, C., Zhao, S., Chung, K.H. (2015). Ruthenium Ion-Catalyzed Oxidation for Petroleum Molecule Structural Features: A Review. In: Xu, C., Shi, Q. (eds) Structure and Modeling of Complex Petroleum Mixtures. Structure and Bonding, vol 168. Springer, Cham. https://doi.org/10.1007/430_2015_180

Download citation

Publish with us

Policies and ethics