The Electronics of CH Activation by Energy Decomposition Analysis: From Transition Metals to Main-Group Metals

  • Clinton R. King
  • Samantha J. Gustafson
  • Daniel H. EssEmail author
Part of the Structure and Bonding book series (STRUCTURE, volume 167)


Alkane CH activation is a fundamental reaction class where a metal-ligand complex reacts with a CH bond to give a metal-alkyl organometallic intermediate. CH activation reactions have been reported for a variety of transition metals and main-group metals. This chapter highlights recent quantum-mechanical studies that have used energy decomposition analysis (EDA) to provide insight into σ-coordination complexes and transition states for alkane CH activation reactions. These studies have provided new conceptual understanding of CH activation reactions and detailed insight into the physical nature and magnitude of interaction between alkanes with transition metals and main-group metals.


CH activation Energy decomposition analysis Transition metals Main-group metals 


  1. 1.
    Crabtree RH (1985) Chem Rev 85:245CrossRefGoogle Scholar
  2. 2.
    Shilov AE, Shul'pin GB (1987) Russ Chem Rev 56:442CrossRefGoogle Scholar
  3. 3.
    Arndtsen BA, Bergman RG (1995) Science 270:1970CrossRefGoogle Scholar
  4. 4.
    Crabtree RH (1995) Chem Rev 95:987CrossRefGoogle Scholar
  5. 5.
    Shilov AE, Shul’pin GB (1997) Chem Rev 97:2879CrossRefGoogle Scholar
  6. 6.
    Stahl SS, Labinger JA, Bercaw JE (1998) Angew Chem Int Ed 37:2180CrossRefGoogle Scholar
  7. 7.
    Crabtree RH (2001) J Chem Soc Dalton Trans 2437Google Scholar
  8. 8.
    Labinger JA, Bercaw JE (2002) Nature 417:507CrossRefGoogle Scholar
  9. 9.
    Ritleng V, Sirlin C, Pfeffer M (2002) Chem Rev 102:1731CrossRefGoogle Scholar
  10. 10.
    Jones WD (2003) Acc Chem Res 36:140CrossRefGoogle Scholar
  11. 11.
    Goldman AS, Goldberg KI (2004) Organometallic C–H bond activation: an introduction. In: Goldman AS, Goldberg KI (eds) Activation and functionalization of C–H bonds, vol 885, ACS symposium series. Wiley, Washington, p 1CrossRefGoogle Scholar
  12. 12.
    Crabtree RH (2004) J Organomet Chem 689:4083CrossRefGoogle Scholar
  13. 13.
    Labinger JA (2004) J Mol Catal A Chem 220:27CrossRefGoogle Scholar
  14. 14.
    Hashiguchi BG, Hövelmann CH, Bischof SM, Lokare KS, Leung CH, Periana RA (2010) Methane-to-methanol conversion. In: Crabtree RH (ed) Energy production and storage: inorganic chemical strategies for a warming world, Encyclopedia of inorganic chemistry. Wiley, Chichester, p 101Google Scholar
  15. 15.
    Gunnoe TB (2012) In: Perez PJ (ed) Alkane C–H activation by single-site metal catalysts, vol. 38. Springer, Dordrecht, pp 1–15Google Scholar
  16. 16.
    Cavaliere VN, Wicker BF, Mindiola DJ (2012) Adv Organomet Chem 60:1Google Scholar
  17. 17.
    Conley BL, Tenn WJ III, Young KJH, Ganesh SK, Meier SK, Ziatdinov VR, Mironov O, Oxgaard J, Gonzales J, Goddard WA III, Periana RA (2006) J Mol Catal A 251:8CrossRefGoogle Scholar
  18. 18.
    Webb JR, Bolaño T, Gunnoe TB (2011) ChemSusChem 4:37CrossRefGoogle Scholar
  19. 19.
    Golisz SR, Gunnoe TB, Goddard WA III, Groves JR, Periana RA (2011) Catal Lett 141:213CrossRefGoogle Scholar
  20. 20.
    Hashiguchi BG, Bischof SM, Konnick MM, Periana RA (2012) Acc Chem Res 45:885CrossRefGoogle Scholar
  21. 21.
    Bader R (1990) Atoms in molecules: a quantum theory. Oxford University Press, New YorkGoogle Scholar
  22. 22.
    Popelier PLA (2014) The QTAIM perspective of chemical bonding. In The chemical bond. Wiley-VCH , Weinheim, pp 271–308Google Scholar
  23. 23.
    Weinhold F, Landis CR (2012) Discovering chemistry with natural bond orbitals. Wiley, HobokenCrossRefGoogle Scholar
  24. 24.
    Bickelhaupt FM, Baerends EJ (2000) Kohn-sham DFT: predicting and understanding chemistry. In: Boyd DB, Lipkowitz KB (eds) Reviews in computational chemistry, vol 15. Wiley-VCH, New York, pp 1–86CrossRefGoogle Scholar
  25. 25.
    von Hopffgarten M, Frenking G (2012) WIREs Comput Mol Sci 2:43CrossRefGoogle Scholar
  26. 26.
    Lein M, Frenking G (2005) The nature of the chemical bond in the light of an energy decomposition analysis. In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first forty years. Elsevier , Amsterdam, pp 291–372CrossRefGoogle Scholar
  27. 27.
    van Zeist WJ, Bickelhaupt FM (2010) Org Biomol Chem 8:3118CrossRefGoogle Scholar
  28. 28.
    Frenking G, Bickelhaupt FM (2014) The EDA perspective of chemical bonding. In: Frenking G, Shaik S (eds) The chemical bond. Wiley-VCH, Weinheim, pp 121–157CrossRefGoogle Scholar
  29. 29.
    Fernández I (2014) Phys Chem Chem Phys 16:7662CrossRefGoogle Scholar
  30. 30.
    Fernández I, Bickelhaupt FM (2014) Chem Soc Rev 43:4953CrossRefGoogle Scholar
  31. 31.
    Fernández I (2014) Understanding trends in reaction barriers. In: Pignataro B (ed) Discovering the future of molecular sciences. Wiley-VCH, Weinheim, pp 165–187CrossRefGoogle Scholar
  32. 32.
    Klopman G (1968) J Am Chem Soc 90:223CrossRefGoogle Scholar
  33. 33.
    Salem L (1968) J Am Chem Soc 90:543CrossRefGoogle Scholar
  34. 34.
    Salem L (1968) J Am Chem Soc 90:553CrossRefGoogle Scholar
  35. 35.
    Morokuma K (1971) J Chem Phys 55:1236CrossRefGoogle Scholar
  36. 36.
    Ziegler T, Rauk A (1977) Theor Chim Acta 46:1CrossRefGoogle Scholar
  37. 37.
    ADF (2014) SCM theoretical chemistry. Vrije Universiteit, Amsterdam.
  38. 38.
    Khaliullin RZ, Cobar EA, Lochan RC, Bell AT, Head-Gordon M (2007) J Phys Chem A 111:8753CrossRefGoogle Scholar
  39. 39.
    Khaliullin RZ, Bell AT, Head-Gordon M (2008) J Chem Phys 128:184112CrossRefGoogle Scholar
  40. 40.
    Walter MD, White PS, Schauer CK, Brookhart M (2013) J Am Chem Soc 135:15933CrossRefGoogle Scholar
  41. 41.
    Pike SD, Thompson AL, Algarra AG, Apperley DC, Macgregor SA, Weller AS (2012) Science 337:1648CrossRefGoogle Scholar
  42. 42.
    Bernskoetter WH, Schauer CK, Goldberg KI, Brookhart M (2009) Science 326:553CrossRefGoogle Scholar
  43. 43.
    Chan B, Ball GE (2013) J Chem Theory Comput 9:2199CrossRefGoogle Scholar
  44. 44.
    Cobar EA, Khaliullin RZ, Bergman RG, Head-Gordon M (2007) Proc Nat Acad Sci USA 104:6963CrossRefGoogle Scholar
  45. 45.
    Ess DH, Bischof SM, Oxgaard J, Periana RA, Goddard WA III (2008) Organometallics 27:6440CrossRefGoogle Scholar
  46. 46.
    Ess DH, Gunnoe TB, Cundari TR, Goddard WA III, Periana RA (2010) Organometallics 29:6801CrossRefGoogle Scholar
  47. 47.
    Pike SD, Chadwick FM, Rees NH, Scott MP, Weller AS, Kramer T, Macgregor SA (2015) J Am Chem Soc 137:820CrossRefGoogle Scholar
  48. 48.
    Balcells D, Clot E, Eisenstein O (2010) Chem Rev 110:749CrossRefGoogle Scholar
  49. 49.
    Ackermann L (2011) Chem Rev 111:1315CrossRefGoogle Scholar
  50. 50.
    Ng SM, Lam WH, Mak CC, Tsang CW, Jia G, Lin Z, Lau CP (2003) Organometallics 22:641CrossRefGoogle Scholar
  51. 51.
    Lam WH, Jia G, Lin Z, Lau CP, Eisenstein O (2003) Chem Eur J 9:2775CrossRefGoogle Scholar
  52. 52.
    Webster CE, Fan Y, Hall MB, Kunz D, Hartwig JF (2003) J Am Chem Soc 125:858CrossRefGoogle Scholar
  53. 53.
    Hartwig JF, Cook KS, Hapke M, Incarvito CD, Fan Y, Webster CE, Hall MB (2005) J Am Chem Soc 127:2538CrossRefGoogle Scholar
  54. 54.
    Perutz RN, Sabo-Etienne S (2007) Angew Chem Int Ed 46:2578CrossRefGoogle Scholar
  55. 55.
    Vastine BA, Hall MB (2007) J Am Chem Soc 129:12068CrossRefGoogle Scholar
  56. 56.
    Ryabov AD (1990) Chem Rev 90:403CrossRefGoogle Scholar
  57. 57.
    Ess DH, Goddard WA III, Periana RA (2010) Organometallics 29:6459CrossRefGoogle Scholar
  58. 58.
    Vidossich P, Ujaque G, Lledós A (2012) Chem Commun 48:1979CrossRefGoogle Scholar
  59. 59.
    Pardue DB, Gustafson SJ, Periana RA, Ess DH, Cundari TR (2013) Comput Theor Chem 1019:85CrossRefGoogle Scholar
  60. 60.
    Streitwieser A Jr, Ciuffarin E, Hammons JH (1967) J Am Chem Soc 89:63CrossRefGoogle Scholar
  61. 61.
    Diefenbach A, de Jong GT, Bickelhaupt FM (2005) J Chem Theory Comput 1:286CrossRefGoogle Scholar
  62. 62.
    Wolters LP, van Zeist WJ, Bickelhaupt FM (2014) Chem Eur J 20:11370CrossRefGoogle Scholar
  63. 63.
    de Jong GT, Visser R, Bickelhaupt FM (2006) J Organomet Chem 691:4341CrossRefGoogle Scholar
  64. 64.
    de Jong GT, Bickelhaupt FM (2009) Can J Chem 87:806CrossRefGoogle Scholar
  65. 65.
    Hashiguchi BG, Konnick MM, Bischof SM, Gustafson SJ, Devarajan D, Gunsalus N, Ess DH, Periana RA (2014) Science 343:1232CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Clinton R. King
    • 1
  • Samantha J. Gustafson
    • 1
  • Daniel H. Ess
    • 1
    Email author
  1. 1.Department of Chemistry and BiochemistryBrigham Young UniversityProvoUSA

Personalised recommendations