Advertisement

Modelling and Rationalizing Organometallic Chemistry with Computation: Where Are We?

  • Lionel Perrin
  • Kevin J. T. Carr
  • David McKay
  • Claire L. McMullin
  • Stuart A. Macgregor
  • Odile Eisenstein
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 167)

Abstract

In this chapter, a perspective on how the field of applied computational organometallic chemistry has developed since the mid-1980s is presented. We describe the way in which the modelling of chemical systems has evolved over time, using metallocene chemistry as an example, and highlight the successes and limitations of simple models that were mandatory in the early days of the discipline. A number of more recent case studies are then presented where the full experimental system is now employed and a more quantitative outcome is sought. This includes examples from the Ce-mediated hydrogenation of pyridine, Rh-catalysed C–H bond activation and functionalization, Pd-catalysed azidocarbonylation and phenyl iodide activation at Ru(II) complexes. We conclude with our take on the title question.

Keywords

Bond activation Computational chemistry DFT Dispersion correction Mechanism Modelling Organometallics Selectivity 

References

  1. 1.
    Woodward RB, Hoffmann R (1965) Stereochemistry of electrocyclic reactions. J Am Chem Soc 87:395–397CrossRefGoogle Scholar
  2. 2.
    Woodward RB, Hoffmann R (1965) Selection rules for concerted cycloaddition reactions. J Am Chem Soc 87:2046–2048CrossRefGoogle Scholar
  3. 3.
    Woodward RB, Hoffmann R (1965) Selection rules for sigmatropic sections. J Am Chem Soc 87:2511–2513CrossRefGoogle Scholar
  4. 4.
    Woodward RB, Hoffmann R (1969) The conservation of orbital symmetry. Angew Chem Int Ed Engl 8:781–932CrossRefGoogle Scholar
  5. 5.
    Fukui K (1982) The role of frontier orbitals in chemical reactions. Angew Chem Int Ed Engl 21:801–809CrossRefGoogle Scholar
  6. 6.
    Hoffmann R (1982) Building bridges between inorganic and organic chemistry. Angew Chem Int Ed Engl 21:711–724CrossRefGoogle Scholar
  7. 7.
    Cramer CJ, Truhlar DG (2009) Density functional theory for transition metals and transition metal chemistry. Phys Chem Chem Phys 11:10757–10816CrossRefGoogle Scholar
  8. 8.
    Becke AD (2014) Perspective: fifty years of density-functional theory in chemical physics. J Chem Phys 140:18A301CrossRefGoogle Scholar
  9. 9.
    Appelhans LN, Zuccaccia D, Kovacevic DA, Chianese AR, Miecznikowski JR, Macchioni A, Clot E, Eisenstein O, Crabtree RH (2005) An anion-dependent switch in selectivity results from a change of C-H activation mechanism in the reaction of an imidazolium salt with IrH5(PPh3)2. J Am Chem Soc 127:16299–16311CrossRefGoogle Scholar
  10. 10.
    Leduc A-M, Salameh A, Soulivong D, Chabanas M, Basset J-M, Copéret C, Solans-Monfort X, Clot E, Eisenstein O, Böhm VPW, Röper M (2008) β-H transfer from the metallacyclobutane: a key step in the deactivation and byproduct formation for the well-defined silica-supported rhenium alkylidene alkene metathesis catalyst. J Am Chem Soc 130:6288–6297CrossRefGoogle Scholar
  11. 11.
    Erhardt S, Grushin VV, Kilpatrick AH, Macgregor SA, Marshall WJ, Roe DC (2008) Mechanisms of catalyst poisoning in palladium-catalyzed cyanation of haloarenes. Remarkably facile C-N bond activation in the [(Ph3P)4Pd]/[Bu4N]+ CN system. J Am Chem Soc 130:4828–4845CrossRefGoogle Scholar
  12. 12.
    Crabtree RH (2012) Resolving heterogeneity problems and impurity artifacts in operationally homogeneous transition metal catalysts. Chem Rev 112:1536–1554CrossRefGoogle Scholar
  13. 13.
    Basch H, Musaev DG, Morokuma K, Fryzuk MD, Love JB, Seidel WW, Albinati A, Koetzle TF, Klooster WT, Mason SA, Eckert J (1999) Theoretical predictions and single-crystal neutron diffraction and inelastic neutron scattering studies on the reaction of dihydrogen with the dinuclear dinitrogen complex of zirconium [P2N2]Zr(μ-η2-N2)Zr[P2N2], P2N2 = PhP(CH2SiMe2NSiMe2CH2)2PPh. J Am Chem Soc 121:523–528CrossRefGoogle Scholar
  14. 14.
    Lauher JW, Hoffmann R (1976) Structure and chemistry of bis(cyclopentadienyl)-MLn complexes. J Am Chem Soc 98:1729–1742CrossRefGoogle Scholar
  15. 15.
    Thomas JR, Quelch GE, Seidl ET, Schaefer HF III (1992) The titane molecule (TiH4): equilibrium geometry, infrared and Raman spectra of the first spectroscopically characterized transition metal tetrahydride. J Chem Phys 96:6857–6861CrossRefGoogle Scholar
  16. 16.
    Maron L, Eisenstein O, Alary F, Poteau R (2002) Modeling C5H5 with atoms or effective group potential in lanthanide complexes: isolobality not the determining factor. J Phys Chem A 106:1797–1801CrossRefGoogle Scholar
  17. 17.
    Steigerwald ML, Goddard WA III (1984) 2s + 2s Reactions at transition metals. 1. The reactions of D2 with Cl2TiH+, Cl2TiH, and Cl2ScH. J Am Chem Soc 106:308–311CrossRefGoogle Scholar
  18. 18.
    Maron L, Eisenstein O (2000) Do f Electrons play a role in the lanthanide–ligand bonds? A DFT study of Ln(NR2)3; R = H, SiH3. J Phys Chem A 104:7140–7143CrossRefGoogle Scholar
  19. 19.
    Castro L, Kefalidis CE, McKay D, Essafi S, Perrin L, Maron L (2014) Theoretical treatment of one electron redox transformation of small molecule using f-element complexes. Dalton Trans 43:12124–12134CrossRefGoogle Scholar
  20. 20.
    Maron L, Eisenstein O (2001) DFT Study of H–H Activation by Cp2LnH d 0 Complexes. J Am Chem Soc 123:1036–1039CrossRefGoogle Scholar
  21. 21.
    Maron L, Perrin L, Eisenstein O (2002) DFT study of CH4 activation by d 0 Cl2LnZ (Z = H, CH3) complexes. J Chem Soc Dalton Trans 534–539Google Scholar
  22. 22.
    Perrin L, Maron L, Eisenstein O (2002) A DFT study of SiH4 activation by Cp2LnH. Inorg Chem 41:4355–4362CrossRefGoogle Scholar
  23. 23.
    Perrin L, Maron L, Eisenstein O (2004) Lanthanide complexes: electronic structure and H-H, C-H and Si-H bond activation from a DFT perspective. In: Goldberg KI, Goldman AS (eds) Activation and functionalization of C-H bonds. ACS Symposium Series 885, pp 116–133Google Scholar
  24. 24.
    Eisenstein O, Maron L (2002) DFT studies of some structures and reactions of lanthanides complexes. J Organomet Chem 647:190–197CrossRefGoogle Scholar
  25. 25.
    Barthelat JC, Chaudret B, Daudey JP, De Loth P, Poilblanc R (1991) Theoretical calculations on Nb and Ta trihydride complexes. Relations with the problem of quantum mechanical exchange coupling. J Am Chem Soc 113:9896–9898CrossRefGoogle Scholar
  26. 26.
    Camanyes S, Maseras F, Moreno M, Lledós A, Lluch JM, Bertrán J (1996) Theoretical study of the hydrogen exchange coupling in the metallocene trihydride complexes [(C5H5)2MH3]n+ (M = Mo, W, n =1; M = Nb, Ta, n = 0). J Am Chem Soc 118:4617–4621CrossRefGoogle Scholar
  27. 27.
    Hyla-Kryspin I, Silverio SJ, Niu S, Gleiter R (1997) An ab initio investigation of σ-bond metathesis and insertion reactions of acetylene with Cl2ZrH+ and Cl2ZrCH3 +. J Mol Cat A Chem 115:183–192CrossRefGoogle Scholar
  28. 28.
    Folga E, Ziegler T (1992) A theoretical study on the activation of hydrogen–hydrogen and hydrogen–alkyl bonds by electron-poor early transition metals. Can J Chem 70:333–342CrossRefGoogle Scholar
  29. 29.
    Watson PL, Parshall GW (1985) Organolanthanides in catalysis. Acc Chem Res 18:51–56CrossRefGoogle Scholar
  30. 30.
    Zachmanoglou CE, Docrat A, Bridgewater BM, Parkin G, Brandow CG, Bercaw JE, Jardine CN, Lyall M, Green JC, Keister JB (2002) The electronic influence of ring substituents and ansa bridges in zirconocene complexes as probed by infrared spectroscopic, electrochemical and computational studies. J Am Chem Soc 124:9525–9546CrossRefGoogle Scholar
  31. 31.
    Ziegler T, Folga E, Berces A (1993) A Density functional study on the activation of hydrogen-hydrogen and hydrogen-carbon bonds by Cp2Sc-H and Cp2Sc-CH3. J Am Chem Soc 115:636–646CrossRefGoogle Scholar
  32. 32.
    Barros N, Eisenstein O, Maron L (2006) DFT studies of the methyl exchange reaction between Cp2M–CH3 or Cp*2M-CH3 (Cp = C5H5, Cp* = C5Me5, M = Y, Sc, Ln) and CH4. Does M ionic radius control the reaction? Dalton Trans 3052–3057Google Scholar
  33. 33.
    Ziegler T, Folga E (1994) A density functional study on σ-bond metathesis reactions of possible importance in dehydrogenative silane polymerization. J Organomet Chem 478:47–65CrossRefGoogle Scholar
  34. 34.
    Perrin L, Eisenstein O, Maron L (2007) Chemoselectivity in σ bond activations by lanthanocene complexes from a DFT perspective: reactions of Cp2LnR (R = CH3, H, SiH3) with SiH4 and CH3-SiH3. New J Chem 31:549–555CrossRefGoogle Scholar
  35. 35.
    Perrin L, Maron L, Eisenstein O, Tilley TD (2009) Bond activations of PhSiH3 by Cp2SmH: a mechanistic investigation by the DFT method. Organometallics 28:3767–3775CrossRefGoogle Scholar
  36. 36.
    Werkema EL, Messines E, Perrin L, Maron L, Eisenstein O, Andersen RA (2005) Hydrogen for fluorine exchange in CH4-xFx by monomeric [1,2,4-(Me3C)3C5H2]2CeH: experimental and computational studies. J Am Chem Soc 127:7781–7795CrossRefGoogle Scholar
  37. 37.
    Maron L, Perrin L, Eisenstein O (2003) CF4 defluorination by Cp2Ln-H: a DFT study. Dalton Trans 22:4313–4318CrossRefGoogle Scholar
  38. 38.
    Werkema EL, Andersen RA, Yahia A, Maron L, Eisenstein O (2009) Hydrogen for X-group exchange in CH3X (X = Cl, Br, I, OMe, and NMe2) by monomeric [1,2,4-(Me3C)3C5H2]2CeH: experimental and computational support for a carbenoid mechanism. Organometallics 28:3173–3185CrossRefGoogle Scholar
  39. 39.
    Werkema EL, Yahia A, Maron L, Eisenstein O, Andersen RA (2010) Bridging silyl groups in σ-bond metathesis and [1,2]-shifts. Experimental and computational study of the reaction between cerium metallocenes and MeOSiMe3. Organometallics 29:5103–5110CrossRefGoogle Scholar
  40. 40.
    Werkema EL, Yahia A, Maron L, Eisenstein O, Andersen RA (2010) Splitting a C–O bond in dialkylethers with bis(1,2,4-tri-tert-butylcyclopentadienyl)cerium does not occur by a σ-bond pathway: a combined experimental and DFT computational study. New J Chem 34:2189–2196CrossRefGoogle Scholar
  41. 41.
    Werkema EL, Castro L, Maron L, Eisenstein O, Andersen RA (2013) Cleaving bonds in CH3OSO2CF3 with [1,2,4-(Me3C)3C5H2]2CeH; an experimental and computational study. New J Chem 37:132–142CrossRefGoogle Scholar
  42. 42.
    Werkema EL, Castro L, Maron L, Eisenstein O, Andersen RA (2012) Selectivity in the C–H activation reaction of CH3OSO2CH3 with [1,2,4-(Me3C)3C5H2]2CeH or [1,2,4-(Me3C)3C5H2][1,2-(Me3C)2-4-(Me2CCH2)C5H2]Ce: to choose or not to choose. Organometallics 31:870–881CrossRefGoogle Scholar
  43. 43.
    Maron L, Werkema EL, Perrin L, Eisenstein O, Andersen RA (2005) Hydrogen for fluorine exchange in C6F6 and C6F5H by monomeric [1,3,4-(Me3C)3C5H2]2CeH: experimental and computational studies. J Am Chem Soc 127:279–292CrossRefGoogle Scholar
  44. 44.
    Werkema EL, Andersen RA (2008) Fluorine for hydrogen exchange in the hydrofluorobenzene derivatives C6HxF(6-x), where x = 2, 3, 4 and 5 by monomeric [1,2,4-(Me3C)3C5H2]2CeH: the solid state isomerization of [1,2,4-(Me3C)3C5H2]2Ce(2,3,4,5-C6HF4) to [1,2,4-(Me3C)3C5H2]2Ce(2,3,4,6-C6HF4). J Am Chem Soc 130:7153–7165CrossRefGoogle Scholar
  45. 45.
    McKay D, Riddlestone IM, Macgregor SA, Mahon MF, Whittlesey MK (2015) A mechanistic study of Ru-NHC catalysed hydrodefluorination of fluoropyridines: the influence of the NHC on the regioselectivity of C-F activation and chemoselectivity of C-F vs C-H bond cleavage. ACS Catal 5:776–787CrossRefGoogle Scholar
  46. 46.
    Werkema EL, Andersen RA, Maron L, Eisenstein O (2010) The reaction of bis(1,2,4-tri-t-butylcyclopentadienyl)ceriumbenzyl, Cp′2CeCH2Ph, with methylhalides: a metathesis reaction that does not proceed by a metathesis transition state. Dalton Trans 39:6648–6660CrossRefGoogle Scholar
  47. 47.
    Scherer E, Cramer CJ (2003) Quantum chemical characterization of methane metathesis in L2MCH3 (L = H, Cl, Cp, Cp*; M = Sc, Y, Lu). Organometallics 22:1682–1689CrossRefGoogle Scholar
  48. 48.
    Woodrum NL, Cramer CJ (2006) Density functional characterization of methane metathesis with Cp*2MR (M = Sc, Y, Lu; R = Me, tBuCH2). Structural and kinetic consequences of alkyl steric bulk. Organometallics 25:68–73CrossRefGoogle Scholar
  49. 49.
    Barros N, Eisenstein O, Maron L, Tilley TD (2006) DFT investigation of the catalytic hydromethylation of α-olefins by metallocenes. 1. Differences between scandium and lutetium in propene hydromethylation. Organometallics 25:5699–5708CrossRefGoogle Scholar
  50. 50.
    Barros N, Eisenstein O, Maron L, Tilley TD (2008) DFT investigation of the catalytic hydromethylation of olefins by scandocenes. 2. Influence of the ansa ligand on propene and isobutene hydromethylation. Organometallics 27:2252–2257CrossRefGoogle Scholar
  51. 51.
    Barros N, Eisenstein O, Maron L (2010) Catalytic hydrosilylation of olefins with organolanthanides: a DFT study. Part I: hydrosilylation of propene by SiH4. Dalton Trans 39:10749–10756CrossRefGoogle Scholar
  52. 52.
    Barros N, Eisenstein O, Maron L (2010) Catalytic hydrosilylation of olefins with organolanthanide complexes: a DFT study. Part II: influence of the substitution on olefin and silane. Dalton Trans 39:10757–10767CrossRefGoogle Scholar
  53. 53.
    Harvey JN (2010) Ab initio transition state theory for polar reactions in solution. Faraday Discuss 145:487–505CrossRefGoogle Scholar
  54. 54.
    Plata RE, Singleton DA (2015) A case study of the mechanism of alcohol-mediated Morita-Baylis-Hillman reactions. The importance of experimental observations. J Am Chem Soc 137:3811–3826CrossRefGoogle Scholar
  55. 55.
    Perrin L, Werkema EL, Eisenstein O, Andersen RA (2014) Two [1,2,4-(Me3C)3C5H2]2CeH molecules are involved in the hydrogenation of pyridine to piperidine as shown by experiments and calculations. Inorg Chem 53:6361–6373CrossRefGoogle Scholar
  56. 56.
    Deelman BJ, Stevels WM, Teuben JH, Lakin MT, Spek AL (1994) Insertion chemistry of yttrium complex Cp*2Y(2-pyridyl) and molecular structure of an unexpected CO insertion product (Cp*2Y)2(μ-η22-OC(NC5H4)2). Organometallics 13:3881–3891CrossRefGoogle Scholar
  57. 57.
    Evans WJ, Meadows JH, Hunter WE, Atwood JL (1984) Organolanthanide and organoyttrium hydride chemistry. 5. Improved synthesis of [(C5H4R)2YH(THF)]2 complexes and their reactivity with alkenes, alkynes, 1,2-propadiene, nitriles, and pyridine, including structural characterization of an alkylideneamido product. J Am Chem Soc 106:1291–1300CrossRefGoogle Scholar
  58. 58.
    Werkema EL, Maron L, Eisenstein O, Andersen RA (2007) Reactions of monomeric [1,2,4-(Me3C)3C5H2]2CeH and CO with or without H2: an experimental and computational study. J Am Chem Soc 129:2529–2541CrossRefGoogle Scholar
  59. 59.
    Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465CrossRefGoogle Scholar
  60. 60.
    Grimme S, Steinmetz M (2013) Effects of London dispersion correction in density functional theory on the structures of organic molecules in the gas phase. Phys Chem Chem Phys 15:16031–16042CrossRefGoogle Scholar
  61. 61.
    Hansen A, Bannwarth C, Grimme S, Petrović P, Werlé C, Djukic J-P (2014) The thermochemistry of london dispersion-driven transition metal reactions: getting the ‘right answer for the right reason’. ChemistryOpen 3:177–189CrossRefGoogle Scholar
  62. 62.
    Brandenburg JG, Bender G, Ren J, Hansen A, Grimme S, Eckert H, Daniliuc CG, Kehr G, Erker G (2014) Crystal packing induced carbon–carbon double–triple bond isomerization in a zirconocene complex. Organometallics 33:5358–5364CrossRefGoogle Scholar
  63. 63.
    Moellmann J, Grimme S (2013) Influence of crystal packing on an organometallic ruthenium(IV) complex structure: the right distance for the right reason. Organometallics 32:3784–3787CrossRefGoogle Scholar
  64. 64.
    Carr KJT, Davies DL, Macgregor SA, Singh K, Villa-Marcos B (2014) Metal control of selectivity in acetate-assisted C-H bond activation: an experimental and computational study of heterocyclic, vinylic and phenylic C(sp2)-H bonds at Ir and Rh. Chem Sci 5:2340–2346CrossRefGoogle Scholar
  65. 65.
    Ling L, Brennessel WW, Jones WD (2009) C–H activation of phenyl imines and 2-phenylpyridines with [Cp*MCl2]2 (M = Ir, Rh): regioselectivity, kinetics, and mechanism. Organometallics 28:3492–3500CrossRefGoogle Scholar
  66. 66.
    Algarra AG, Cross WB, Davies DL, Khamker Q, Macgregor SA, McMullin CL, Singh K (2014) Combined experimental and computational investigations of rhodium- and ruthenium-catalyzed C-H functionalization of pyrazoles with alkynes. J Org Chem 79:1954–1970CrossRefGoogle Scholar
  67. 67.
    Algarra AG, Macgregor SA, Panetier JA (2013) Mechanistic studies of C-X bond activation at transition-metal centers. In: Reedijik J, Poeppelmeier K (eds) Comprehensive inorganic chemistry II, vol 9. Elsevier, Amsterdam, pp 635–694CrossRefGoogle Scholar
  68. 68.
    Svensson M, Humbel S, Froese RJD, Matsubara T, Sieber S, Morokuma K (1996) ONIOM: a multilayered integrated MO + MM method for geometry optimizations and single point energy predictions. A test for Diels-Alder reactions and Pt(P(tBu)3)2 + H2 oxidative addition. J Phys Chem 100:19357–19363CrossRefGoogle Scholar
  69. 69.
    Bo C, Maseras F (2008) QM/MM methods in inorganic chemistry. Dalton Trans 2911–2919Google Scholar
  70. 70.
    Ahlquist MSG, Norrby PO (2011) Dispersion and back-donation gives tetracoordinate [Pd(PPh3)4]. Angew Chem Int Ed 50:11794–11797CrossRefGoogle Scholar
  71. 71.
    Minenkov Y, Occhipinti G, Jensen VR (2009) Metal-phosphine bond strengths of the transition metals: a challenge for DFT. J Phys Chem A 113:11833–11844CrossRefGoogle Scholar
  72. 72.
    Ryde U, Mata RA, Grimme S (2011) Does DFT-D estimate accurate energies for the binding of ligands to metal complexes? Dalton Trans 40:11176–11183CrossRefGoogle Scholar
  73. 73.
    Sieffert N, Bühl M (2009) Noncovalent interactions in a transition-metal triphenylphosphine complex: a density functional case study. Inorg Chem 48:4622–4624CrossRefGoogle Scholar
  74. 74.
    Zhao Y, Truhlar DG (2007) Attractive noncovalent interactions in the mechanism of Grubbs second-generation Ru catalysts for olefin metathesis. Org Lett 9:1967–1970CrossRefGoogle Scholar
  75. 75.
    McMullin CL, Jover J, Harvey JN, Fey N (2010) Accurate modelling of Pd(0) + PhX oxidative addition kinetics. Dalton Trans 39:10833–10836CrossRefGoogle Scholar
  76. 76.
    Miloserdov FM, McMullin CL, Belmonte MM, Benet-Buchholz J, Bakhmutov VI, Macgregor SA, Grushin VV (2014) The challenge of palladium-catalyzed aromatic azidocarbonylation: from mechanistic and catalyst deactivation studies to a highly efficient process. Organometallics 33:736–752CrossRefGoogle Scholar
  77. 77.
    Häller LJL, Page MJ, Erhardt S, Macgregor SA, Mahon MF, Naser MA, Velez A, Whittlesey MK (2010) Experimental and computational investigation of C-N bond activation in ruthenium N-heterocyclic carbene complexes. J Am Chem Soc 132:18408–18416CrossRefGoogle Scholar
  78. 78.
    Miloserdov FM, McKay D, Muñoz BK, Samouei H, Macgregor SA, Grushin VV (2015) Exceedingly facile Ph-X activation (X = F, Cl, Br, I) with Ru(II): arresting kinetics, autocatalysis, and mechanisms. Angew Chem Int Ed 6:8466–8470CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.CNRS UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CPE LyonUniversité Claude Bernard Lyon 1Villeurbanne cedexFrance
  2. 2.Institute of Chemical SciencesHeriot-Watt UniversityEdinburghUK
  3. 3.School of ChemistryUniversity of St. AndrewsSt. AndrewsUK
  4. 4.Institut Charles Gerhardt, CNRS UMR 5253Université de MontpellierMontpellierFrance

Personalised recommendations