Nanostructured and/or Nanoscale Lanthanide Metal-Organic Frameworks

  • Zhonghao Zhang
  • Zhiping ZhengEmail author
Part of the Structure and Bonding book series (STRUCTURE, volume 163)


The research on metal-organic framework (MOF) compounds has developed rapidly, stimulated by not only their aesthetically pleasing structures but also diverse chemical and materials applications. The use of lanthanide-containing building blocks adds several features that are unique, fundamentally interesting, and practically significant to the construction of MOFs, due largely to the traits originated from the unique f-electronic configuration of these elements; these include primarily ionic metal-ligand interactions and flexible coordination geometry, line-like luminescence, and interesting magnetic properties associated with the exclusively high-spin configuration. Nanostructured Ln-MOFs featuring nanosized pores and channels offer even more attractive applications since when compared with their sub-nanosized analogs, a greater variety of guest species may be accommodated, either for storage or separation of guests of energy and environmental significance, sensing, or catalysis. On the other hand, reducing the physical size of MOFs to nanoscale imparts properties distinctly different from those of their bulk counterparts. Nanoparticles of Ln-MOFs have been shown to possess unique luminescence and magnetic properties for applications in optical and magnetic imaging as well as for drug delivery. This chapter provides an up-to-date review of the work on both nanostructured and nanoscale Ln-MOFs and ends with some personal perspectives regarding what future directions the research is heading toward.


Lanthanide clusters Nanoporous MOFs Nanoscale LnMOFs Optical and magnetic imaging Sensing by luminescence 



This work was supported by the US National Science Foundation (Grant CHE-1152609).


  1. 1.
    Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal-organic framework materials as catalysts. Chem Soc Rev 38:1450–1459Google Scholar
  2. 2.
    Ma LQ, Abney C, Lin WB (2009) Enantioselective catalysis with homochiral metal-organic frameworks. Chem Soc Rev 38:1248–1256Google Scholar
  3. 3.
    Ma LQ, Falkowski JM, Abney C, Lin WB (2010) A series of isoreticular chiral metal-organic frameworks as a tunable platform for asymmetric catalysis. Nat Chem 2:838–846Google Scholar
  4. 4.
    Dinca M, Long JR (2008) Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. Angew Chem Int Ed 47:6766–6779Google Scholar
  5. 5.
    Rowsell JLC, Yaghi OM (2005) Strategies for hydrogen storage in metal-organic frameworks. Angew Chem Int Ed 44:4670–4679Google Scholar
  6. 6.
    Xie ZG, Ma LQ, deKrafft KE, Jin A, Lin WB (2010) Porous phosphorescent coordination polymers for oxygen sensing. J Am Chem Soc 132:922–923Google Scholar
  7. 7.
    Chen BL, Xiang SC, Qian GD (2010) Metal-organic frameworks with functional pores for recognition of small molecules. Acc Chem Res 43:1115–1124Google Scholar
  8. 8.
    Evans OR, Lin WB (2002) Crystal engineering of NLO materials based on metal-organic coordination networks. Acc Chem Res 35:511–522Google Scholar
  9. 9.
    Liu Y, Xuan WM, Cui Y (2010) Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv Mater 22:4112–4135Google Scholar
  10. 10.
    Li JR, Kuppler RJ, Zhou HC (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38:1477–1504Google Scholar
  11. 11.
    Kong XJ, Long LS, Zheng ZP, Huang RB, Zheng LS (2010) Keeping the ball rolling: fullerene-like molecular clusters. Acc Chem Res 43:201–209Google Scholar
  12. 12.
    Eliseeva SV, Bünzli JCG (2010) Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39:189–227Google Scholar
  13. 13.
    Peng JB, Zhang QC, Kong XJ, Ren Y, Long LS, Huang RB, Zheng LS, Zheng ZP (2011) A 48-metal cluster exhibiting a large magnetocaloric effect. Angew Chem Int Ed 50:10649–10652Google Scholar
  14. 14.
    Boglio C, Lemière G, Hasenknopf B, Thorimbert S, Lacôte E, Malacria M (2006) Lanthanide complexes of the monovacant Dawson polyoxotungstate [α1-P2W17O61]10- as selective and recoverable Lewis acid catalysts. Angew Chem Int Ed 45:3324–3327Google Scholar
  15. 15.
    Du DY, Qin JS, Li SL, Su ZM, Lan YQ (2014) Recent advances in porous polyoxometalate-based metal-organic framework materials. Chem Soc Rev. doi: 10.1039/c3cs60404g Google Scholar
  16. 16.
    Férey G, Mellot-Draznieks C, Serre C, Millange F (2005) Crystallized frameworks with giant pores: are there limits to the possible? Acc Chem Res 38:217–225Google Scholar
  17. 17.
    Zhao M, Ou S, Wu CD (2014) Porous metal-organic frameworks for heterogeneous biomimetic catalysis. Acc Chem Res 47:1199–1207Google Scholar
  18. 18.
    Zhao D, Timmons DJ, Yuan D, Zhou HC (2011) Tuning the topology and functionality of metal-organic frameworks by ligand design. Acc Chem Res 44:123–133Google Scholar
  19. 19.
    Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AÖ, Snurr RQ, O’Keeffe M, Kim J, Yaghi OM (2010) Ultrahigh porosity in metal-organic frameworks. Science 329:424–428Google Scholar
  20. 20.
    Deng H, Grunder S, Cordova KE, Valente C, Furukawa H, Hmadeh M, Gándara F, Whalley AC, Liu Z, Asahina S, Kazumori H, O’Keeffe M, Terasaki O, Stoddart JF, Yaghi OM (2012) Large-pore apertures in s series of metal-organic frameworks. Science 336:1018–1023Google Scholar
  21. 21.
    Getman RB, Bae YS, Wilmer CE, Snurr RQ (2012) Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. Chem Rev 112:703–723Google Scholar
  22. 22.
    Li M, Li D, O’Keeffe M, Yaghi OM (2014) Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem Rev 114:1343–1370Google Scholar
  23. 23.
    Wang R, Carducci MD, Zheng Z (2000) Direct hydrolytic route to molecular oxo-hydroxo lanthanide clusters. Inorg Chem 39:1836–1837Google Scholar
  24. 24.
    Tang XL, Wang WH, Dou W, Jiang J, Liu WS, Qin WW, Zhang GL, Zhang HR, Yu KB, Zheng LM (2009) Olive-shaped chiral supramolecules: simultaneous self-assembly of heptameric lanthanum clusters and carbon dioxide fixation. Angew Chem Int Ed 48:3499–3502Google Scholar
  25. 25.
    Xu J, Raymond KN (2000) Lord of the rings: an octameric lanthanum pyrazolonate cluster. Angew Chem Int Ed 39:2745–2747Google Scholar
  26. 26.
    Wu Y, Morton S, Kong X, Nichol GS, Zheng Z (2011) Hydrolytic synthesis and structural characterization of lanthanide-acetylacetonato/hydroxo cluster complexes – a systematic study. Dalton Trans 40:1041–1046Google Scholar
  27. 27.
    Westin LG, Kritikos M, Caneschi A (2003) Self assembly, structure and properties of the decanuclear lanthanide ring complex, Dy10(OC2H4OCH3)30. Chem Commun 2003:1012–1013Google Scholar
  28. 28.
    Wang R, Selby HD, Liu H, Carducci MD, Jin T, Zheng Z, Anthis JW, Staples RJ (2002) Halide-templated assembly of polynuclear lanthanide-hydroxo complexes. Inorg Chem 41:278–286Google Scholar
  29. 29.
    Chesman ASR, Turner DR, Moubaraki B, Murray KS, Deacon GB, Batten SR (2009) Lanthaballs: chiral, structurally layered polycarbonate tridecanuclear lanthanoid clusters. Chem Eur J 15:5203–5207Google Scholar
  30. 30.
    Bürgstein MR, Roesky PW (2000) Nitrophenolate as a building block for lanthanide chains and clusters. Angew Chem Int Ed 39:549–551Google Scholar
  31. 31.
    Wang R, Zheng Z, Jin T, Staples RJ (1999) Coordination chemistry of lanthanides at “high” pH: synthesis and structure of the pentadecanuclear complex of europium(III) with tyrosine. Angew Chem Int Ed 38:1813–1815Google Scholar
  32. 32.
    Thielemann DT, Wagner AT, Rösch E, Kölmel DK, Heck JG, Rudat B, Neumaier M, Feldmann C, Schepers U, Bräse S, Roesky PW (2013) Luminescent cell-penetrating pentadecanuclear lanthanide clusters. J Am Chem Soc 135:7454–7457Google Scholar
  33. 33.
    Malaestean IL, Ellern A, Baca S, Kögerler P (2012) Cerium oxide nanoclusters: commensurate with concepts of polyoxometalate chemistry. Chem Commun 48:1499–1501Google Scholar
  34. 34.
    Chang LX, Xiong G, Wang L, Cheng P, Zhao B (2013) A 24-Gd nanocapsule with a large magnetocaloric effect. Chem Commun 49:1055–1057Google Scholar
  35. 35.
    Chen L, Huang L, Wang C, Fu J, Zhang D, Zhu D, Xu Y (2012) Hydrothermal synthesis, structure, and properties of two new nanosized Ln26 (Ln = Ho, Er) clusters. J Coord Chem 65:958–968Google Scholar
  36. 36.
    Wu M, Jiang F, Kong X, Yuan D, Long L, Al-Thabaiti SA, Hong M (2013) Two polymeric 36-metal pure lanthanide nanosized clusters. Chem Sci 4:3104–3109Google Scholar
  37. 37.
    Guo FS, Chen YC, Mao LL, Lin WQ, Leng JD, Tarasenko R, Orendáč M, Prokleška J, Sechovský V, Tong ML (2013) Anion-templated assembly and magnetocaloric properties of a nanoscale {Gd38} cage versus a {Gd48} barrel. Chem Eur J 19:14876–14885Google Scholar
  38. 38.
    Kong XJ, Wu Y, Long LS, Zheng LS, Zheng Z (2009) A chiral 60-metal sodalite cage featuring 24 vertex-sharing [Er43-OH)4] cubanes. J Am Chem Soc 131:6918–6919Google Scholar
  39. 39.
    Ma BQ, Zhang DS, Gao S, Jin TZ, Yan CH, Xu GX (2000) From cubane to supercubane: the design, synthesis, and structure of a three-dimensional open framework based on a Ln4O4 cluster. Angew Chem Int Ed 112:3790–3792Google Scholar
  40. 40.
    Wang R, Liu H, Carducci MD, Jin T, Zheng C, Zheng Z (2001) Lanthanide coordination with α-amino acids under near physiological pH conditions: polymetallic complexes containing the cubane-like [Ln43-OH)4]8+ cluster core. Inorg Chem 40:2743–2750Google Scholar
  41. 41.
    Mahé N, Guillou O, Daiguebonne C, Gérault Y, Caneschi A, Sangregorio C, Chane-Ching JY, Car PE, Roisnel T (2005) Polynuclear lanthanide hydroxo complexes: new chemical precursors for coordination polymers. Inorg Chem 44:7743–7750Google Scholar
  42. 42.
    Calvez G, Daiguebonne C, Guillou O (2011) Unprecedented lanthanide-containing coordination polymers constructed from hexanuclear molecular building blocks: {[Ln6O(OH)8](NO3)2(bdc)(Hbdc)2·2NO3·H2bdc}. Inorg Chem 50:2851–2858Google Scholar
  43. 43.
    Natur FL, Calvez G, Daiguebonne C, Guillou O, Bernot K, Ledoux J, Pollès LL, Roiland C (2013) Coordination polymers based on heterohexanuclear rare earth complexes: toward independent luminescence brightness and color tuning. Inorg Chem 52:6720–6730Google Scholar
  44. 44.
    Gándara F, Gutiérrez-Puebla E, Iglesias M, Snejko N, Monge MÁ (2010) Isolated hexanuclear hydroxo lanthanide secondary building units in a rare-earth polymeric framework based on p-sulfonatocalix[4]arene. Cryst Growth Des 10:128–134Google Scholar
  45. 45.
    Shi FN, Cunha-Silva L, Trindade T, Paz FAA, Rocha J (2009) Three-dimensional lanthanide-organic frameworks based on di-, tetra-, and hexameric clusters. Cryst Growth Des 9:2098–2109Google Scholar
  46. 46.
    Yuan N, Sheng T, Tian C, Hu S, Fu R, Zhu Q, Tan C, Wu X (2011) Synthesis, structures and properties of three-dimensional lanthanide frameworks constructed with a trigonal anti-prismatic lanthanide cluster. CrystEngComm 13:4244–4250Google Scholar
  47. 47.
    Zheng XJ, Jin LP, Gao S (2004) Synthesis and characterization of two novel lanthanide coordination polymers with an open framework based on an unprecedented [Ln73-OH)8]13+ cluster. Inorg Chem 43:1600–1602Google Scholar
  48. 48.
    Fang WH, Cheng L, Huang L, Yang GY (2013) A series of lanthanide-based cluster organic frameworks made of heptanuclear tironal-prismatic cluster units. Inorg Chem 52:6–8Google Scholar
  49. 49.
    Chen L, Guo JY, Xu X, Ju WW, Zhang D, Zhu DR, Xu Y (2013) A novel 2-D coordination polymer constructed from high-nuclearity waist drum-like pure Ho48 clusters. Chem Commun 49:9728–9730Google Scholar
  50. 50.
    Wu M, Jiang F, Yuan D, Pang J, Qian J, AL-Thabaiti SA, Hong M (2014) Polymeric double-anion template Er48 nanotubes. Chem Commun 50:1113–1115Google Scholar
  51. 51.
    Liu J, Meyers EA, Shore SG (1998) An unusual cyanide bridging lanthanide-transition metal complex that contains the on-dimensional cationic array {[(DMF)16Yb66-O)(μ3-OH)8(μ-NC)Pd(μ-CN)(CN)2]6+}. Inorg Chem 37:5410–5411Google Scholar
  52. 52.
    Chen LF, Zhang J, Ren GQ, Li ZJ, Qin YY, Yin PX, Cheng JK, Yao YG (2008) Nanosized lanthanide oxide rods in I1O3 hybrid organic–inorganic frameworks involving in situ ligand synthesis. CrystEngComm 10:1088–1092Google Scholar
  53. 53.
    Fang WH, Yang GY (2014) Pillared-layer cluster organic frameworks constructed from nanoscale Ln10 and Cu16 clusters. Inorg Chem 53(11):5631–5636. doi: 10.1021/ic500404z Google Scholar
  54. 54.
    Zhang MB, Zhang J, Zheng ST, Yang GY (2005) A 3D coordination framework based on linkages of nanosized hydroxo lanthanide clusters and copper clusters by isonicotinate ligands. Angew Chem Int Ed 44:1385–1388Google Scholar
  55. 55.
    Cheng JW, Zhang J, Zheng ST, Yang GY (2008) Linking two distinct layered networks of nanosized {Ln18} and {Cu24} wheels through isonicotinate ligands. Chem Eur J 14:88–97Google Scholar
  56. 56.
    Fang WH, Cheng JW, Yang GY (2014) Two series of sandwich frameworks based on two different kinds of nanosized lanthanide(III) and copper(I) wheel cluster units. Chem Eur J 20:2704–2711Google Scholar
  57. 57.
    Gu X, Xue D (2007) Surface modification of high-nuclearity lanthanide clusters: two tetramers constructed by cage-shaped {Dy26} clusters and isonicotinate linkers. Inorg Chem 46:3212–3216Google Scholar
  58. 58.
    Huang L, Han L, Feng W, Zheng L, Zhang Z, Xu Y, Chen Q, Zhu D, Niu S (2010) Two 3D coordination frameworks based on nanosized huge Ln26 (Ln = Dy and Gd) spherical clusters. Cryst Growth Des 10:2548–2552Google Scholar
  59. 59.
    Cheng JW, Zhang J, Zheng ST, Zhang MB, Yang GY (2006) Lanthanide-transition-metal sandwich framework comprising {Cu3} cluster pillars and layered networks of {Er36} wheels. Angew Chem Int Ed 45:73–77Google Scholar
  60. 60.
    Zou X, Conradsson T, Klingstedt M, Dadachov MS, O’Keeffe M (2005) A mesoporous germanium oxide with crystalline pore walls and its chiral derivative. Nature 437:716–719Google Scholar
  61. 61.
    Pan CY, Liu GZ, Zheng ST, Yang GY (2008) GeB4O9·H2en: an organically template borogermanate with large 12-ring channels built by B4O9 polyanions and GeO4 units: host–guest symmetry and charge matching in triangular-tetrahedral frameworks. Chem Eur J 14:5057–5063Google Scholar
  62. 62.
    Liu GZ, Zheng ST, Yang GY (2007) In2Ge6O15(OH)2(H2dien): an open-framework indate germanate with one-dimensional 12-ring channels. Angew Chem Int Ed 46:2827–2830Google Scholar
  63. 63.
    He H, Cao GJ, Zheng ST, Yang GY (2009) Lanthanide germanate cluster organic frameworks constructed from {Ln8Ge12} or {Ln11Ge12} cage cluster building blocks. J Am Chem Soc 131:15588–15589Google Scholar
  64. 64.
    Becker R, Johnsson M, Kremer RK, Klauss HH, Lemmens P (2006) Crystal structure and magnetic properties of FeTe2O5X (X = Cl, Br): A frustrated spin cluster compound with a new Te(IV) coordination polyhedron. J Am Chem Soc 128:15469–15475Google Scholar
  65. 65.
    Cao X, Lu Z, Zhu L, Yang L, Gu L, Cai L, Chen J (2014) A new family of sunlight-driven bifunctional photocatalysts based on TiO2 nanoribbon frameworks and bismuth oxohalide nanoplates. Nanoscale 6:1434–1444Google Scholar
  66. 66.
    Hu B, Feng ML, Li JR, Lin QP, Huang XY (2011) Lanthanide antimony oxohalides: from discrete nanoclusters to inorganic–organic hybrid chains and layers. Angew Chem Int Ed 50:8110–8113Google Scholar
  67. 67.
    Hu B, Zou GD, Feng ML, Huang XY (2012) Inorganic–organic hybrid compounds based on novel lanthanide-antimony oxohalide nanoclusters. Dalton Trans 41:9879–9881Google Scholar
  68. 68.
    Zou GD, Zhang GG, Hu B, Li JR, Feng ML, Wang XC, Huang XY (2013) A 3D hybrid praseodymium-antimony-oxochloride compound: single-crystal-to-single-crystal transformation and photocatalytic properties. Chem Eur J 19:15396–15403Google Scholar
  69. 69.
    Zheng YZ, Evangelisti M, Winpenny REP (2011) Large magnetocaloric effect in a Wells–Dawson type {Ni6Gd6P6} cage. Angew Chem Int Ed 50:3692–3695Google Scholar
  70. 70.
    Karotsis G, Evangelisti M, Dalgarno SJ, Brechin EK (2009) A calix[4]arene 3d/4f magnetic cooler. Angew Chem Int Ed 48:9928–9931Google Scholar
  71. 71.
    Cui Y, Yue Y, Qian G, Chen B (2012) Luminescent functional metal-organic frameworks. Chem Rev 112:1126–1162Google Scholar
  72. 72.
    Liu Q, Ge SZ, Zhong JC, Sun YQ, Chen YP (2013) Two novel 2D lanthanide–cadmium heterometal–organic frameworks based on nanosized heart-like Ln6Cd6O12 wheel-clusters exhibiting luminescence sensing to the polarization and concentration of cations. Dalton Trans 42:6314–6317Google Scholar
  73. 73.
    Li G, Akitsu T, Sato O, Einaga Y (2003) Photoinduced magnetization of the cyano-bridged 3d-4f heterobimetallic assembly Nd(DMF)4(H2O)3(μ-CN)Fe(CN)5·H2O (DMF = N,N-Dimethylformamide). J Am Chem Soc 125:12396–12397Google Scholar
  74. 74.
    Zhao B, Chen XY, Chen Z, Shi W, Cheng P, Yan SP, Liao DZ (2009) A porous 3D heterometal–organic framework containing both lanthanide and high-spin Fe(II) ions. Chem Commun 2009:3113–3115Google Scholar
  75. 75.
    He YP, Tan YX, Zhang J (2013) Gas sorption, second-order nonlinear optics, and luminescence properties of a series of lanthanide-organic frameworks based on nanosized tris((4-carboxyl)phenylduryl)amine ligand. Inorg Chem 52:12758–12762Google Scholar
  76. 76.
    Ma ML, Ji C, Zhang SQ (2013) Synthesis, structures, tunable emission and white light emitting Eu3+ and Tb3+ doped lanthanide metal-organic framework materials. Dalton Trans 42:10579–10586Google Scholar
  77. 77.
    Zhu XD, Lin ZJ, Liu TF, Xu B, Cao R (2012) Two novel 3d-4f heterometallic frameworks assembled from a flexible bifunctional macrocyclic ligand. Cryst Growth Des 12:4708–4711Google Scholar
  78. 78.
    Ghosh SK, Bharadwaj PK (2005) Coordination polymers of La(III) as bunched infinite nanotubes and their conversion into an open-framework structure. Inorg Chem 44:3156–3161Google Scholar
  79. 79.
    Chen SP, Ren YX, Wang WT, Gao SL (2010) Nanoporous lanthanide-carboxylate frameworks based on 5-nitroisophthalic acid. Dalton Trans 39:1552–1557Google Scholar
  80. 80.
    Cai B, Yang P, Dai JW, Wu JZ (2011) Tuning the porosity of lanthanide MOFs with 2,5-pyrazinedicarboxylate and the first in situ hydrothermal carboxyl transfer. CrystEngComm 13:985–991Google Scholar
  81. 81.
    Lopez N, Zhao H, Zhao D, Zhou HC, Riebenspies JP, Dunbar KR (2013) A porous Sm(III) coordination nanotube with hydrophobic and hydrophilic channels. Dalton Trans 42:54–57Google Scholar
  82. 82.
    Sumida K, Rogow DL, Mason JA, McDonald TM, Block ED, Herm ZR, Bae TH, Long JR (2012) Carbon dioxide capture in metal-organic frameworks. Chem Rev 112:724–781Google Scholar
  83. 83.
    Suh MP, Park HJ, Prasad TK, Lim DW (2012) Hydrogen storage in metal-organic frameworks. Chem Rev 112:782–835Google Scholar
  84. 84.
    Wu H, Gong Q, Olson DH, Li J (2012) Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. Chem Rev 112:836–868Google Scholar
  85. 85.
    Luo J, Xu H, Liu Y, Zhao Y, Daemen LL, Brown C, Timofeeva TV, Ma S, Zhou HC (2008) Hydrogen adsorption in a highly stable porous rare-earth metal-organic framework: sorption properties and neutron diffraction studies. J Am Chem Soc 130:9626–9627Google Scholar
  86. 86.
    Peterson VK, Liu Y, Brown CM, Kepert CJ (2006) Neutron powder diffraction study of D2 sorption in Cu3(1,3,5-benzenetricarboxylate)2. J Am Chem Soc 128:15578–15579Google Scholar
  87. 87.
    Dincă M, Dailly A, Liu Y, Brown CM, Neumann DA, Long JR (2006) Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites. J Am Chem Soc 128:16876–16883Google Scholar
  88. 88.
    Dolbecq A, Dumas E, Mayer CR, Mialane P (2010) Hybrid organic–inorganic polyoxometalate compounds: from structural diversity to applications. Chem Rev 110:6009–9048Google Scholar
  89. 89.
    Wei M, He C, Sun Q, Meng Q, Duan C (2007) Zeolite ionic crystals assembled through direct incorporation of polyoxometalate clusters within 3D metal-organic frameworks. Inorg Chem 46:5957–5966Google Scholar
  90. 90.
    Tsang JSW, Neverov AA, Brown RS (2003) La3+-catalyzed methanolysis of hydroxypropyl-p-nitrophenyl phosphate as a model for the RNA transesterification reaction. J Am Chem Soc 125:1559–1566Google Scholar
  91. 91.
    Belousoff MJ, Ung P, Forsyth CM, Tor Y, Spiccia L, Graham B (2009) New macrocyclic terbium(III) complex for use in RNA footprinting experiments. J Am Chem Soc 131:1106–1114Google Scholar
  92. 92.
    Dang D, Bai Y, He C, Wang J, Duan C, Niu J (2010) Structural and catalytic performance of a polyoxometalate-based metal-organic framework having a lanthanide nanocage as secondary building block. Inorg Chem 49:1280–1282Google Scholar
  93. 93.
    Chen XY, Chen YP, Xia ZM, Hu HB, Sun YQ, Huang WY (2012) Synthesis, crystal structure of α-Keggin heteropolymolybdates with pyridine-2,6-dicarboxylate based frameworks, and associated RhB photocatalytic degradation and 2D-IR COS tests. Dalton Trans 41:10035–10042Google Scholar
  94. 94.
    Hiskia A, Mylonas A, Papaconstantinou E (2001) Comparison of the photoredox properties of polyoxometallates and semiconducting particles. Chem Soc Rev 30:62–69Google Scholar
  95. 95.
    Mahapatra S, Madras G, Row TNG (2007) Structural and photocatalytic activity of lanthanide (Ce, Pr, and Nd) molybdovanadates. J Phys Chem C 111:6505–6511Google Scholar
  96. 96.
    Nishiyama Y, Nakagawa Y, Mizuno N (2001) High turnover numbers for the catalytic selective epoxidation of alkenes with 1 atm of molecular oxygen. Angew Chem Int Ed 40:3639–3641Google Scholar
  97. 97.
    Kovalchuk TV, Kochkin JN, Sfihi H, Zaitsev VN, Fraissard J (2009) Oniumsilica-immobilized-Keggin acids: acidity and catalytic activity for ethyl tert-butyl ether synthesis and acetic acid esterification with ethanol. J Catal 263:247–257Google Scholar
  98. 98.
    Liu X, Jia Y, Zhang Y, Huang R (2010) Construction of a hybrid family based on lanthanide-organic frameworks hosts and polyoxometalate guests. Eur J Inorg Chem 2010:4027–4033Google Scholar
  99. 99.
    Williams NH, Takasaki B, Wall M, Chin J (1999) Structure and nuclease activity of simple dinuclear metal complexes: quantitative dissection of the role of metal ions. Acc Chem Res 32:485–493Google Scholar
  100. 100.
    Weston J (2005) Mode of action of bi- and trinuclear zinc hydrolases and their synthetic analogues. Chem Rev 105:2151–2174Google Scholar
  101. 101.
    Fanning AM, Plush SE, Gunnlaugsson T (2006) Tuning the properties of cyclen based lanthanide complexes for phosphodiester hydrolysis: the role of basic cofactors. Chem Commun 2006:3791–3793Google Scholar
  102. 102.
    New K, Andolina CM, Morrow JR (2008) Tethered dinuclear europium(III) macrocyclic catalysts for the cleavage of RNA. J Am Chem Soc 130:14861–14871Google Scholar
  103. 103.
    Han Q, Zhang L, He C, Niu J, Duan C (2012) Metal-organic frameworks with phosphotungstate incorporated for hydrolytic cleavage of a DNA-model phosphodiester. Inorg Chem 51:5118–5127Google Scholar
  104. 104.
    Oh M, Mirkin CA (2005) Chemically tailorable colloidal particles from infinite coordination polymers. Nature 438:651–654Google Scholar
  105. 105.
    Sun X, Dong SJ, Wang EK (2005) Coordination-induced formation of submicrometer-scale, monodisperse, spherical colloids of organic–inorganic hybrid materials at room temperature. J Am Chem Soc 127:13102–13103Google Scholar
  106. 106.
    Lin WB, Rieter W, Taylor KML (2009) Modular synthesis of functional nanoscale coordination polymers. Angew Chem Int Ed 48:650–658Google Scholar
  107. 107.
    Spokoyny AM, Kim D, Sumrein A, Mirkin CA (2009) Infinite coordination polymer nano- and microparticle structures. Chem Soc Rev 38:1218–1227Google Scholar
  108. 108.
    Sindoro M, Yanai N, Jee AY, Granick S (2014) Colloidal-sized metal-organic frameworks: synthesis and applications. Acc Chem Res 47:459–469Google Scholar
  109. 109.
    Rocca JD, Liu D, Lin WB (2011) Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res 44:957–968Google Scholar
  110. 110.
    Rocca JD, Lin WB (2010) Nanoscale metal-organic frameworks: magnetic resonance imaging contrast agents and beyond. Eur J Inorg Chem 2010:3725–3734Google Scholar
  111. 111.
    Nishiyabu R, Hashimoto N, Cho T, Watanabe K, Yasunaga T, Endo A, Kaneko K, Niidome T, Murata M, Adachi C, Katayama Y, Hashizume M, Kimizuka N (2009) Nanoparticles of adaptive supramolecular networks self-assembled from nucleotides and lanthanide ions. J Am Chem Soc 131:2151–2158Google Scholar
  112. 112.
    Jeon YM, Armatas GS, Kim D, Kanatzidis MG, Mirkin CA (2009) Tröger’s-base-derived infinite co-ordination polymer microparticles. Small 5:46–50Google Scholar
  113. 113.
    Rieter WJ, Pott KM, Taylor KML, Lin WB (2008) Nanoscale coordination polymers for platinum-based anticancer drug delivery. J Am Chem Soc 130:11584–11585Google Scholar
  114. 114.
    Qiao H, Jia Y, Zheng Y, Guo N, Zhao Q, Lv W, You H (2012) Facile fabrication of Y4(1,2-BDC)6(H2O)2·5H2O: Eu3+, Tb3+ ultralong nanobelts and tunable luminescence properties. CrystEngComm 14:5830–5835Google Scholar
  115. 115.
    Liu K, Zheng Y, Jia G, Yang M, Song Y, Guo N, You H (2010) Nano/micro-scaled La(1,3,5-BTC)(H2O)6 coordination polymer: facile morphology-controlled fabrication and color-tunable photoluminescence properties by co-doping Eu3+, Tb3+. J Solid State Chem 183:2309–2316Google Scholar
  116. 116.
    Tang J, Alivisatos AP (2006) Crystal splitting in the growth of Bi2S3. Nano Lett 6:2701–2706Google Scholar
  117. 117.
    Demars T, Boltoeva M, Vigier N, Maynadié J, Ravaux J, Genre C, Meyer D (2012) From coordination polymers to doped rare-earth oxides. Eur J Inorg Chem 2012:3875–3884Google Scholar
  118. 118.
    Wang F, Deng K, Wu G, Liao H, Liao H, Zhang L, Lan S, Zhang J, Song X, Wen L (2012) Facile and large-scale syntheses of nanocrystal rare earth metal-organic frameworks at room temperature and their photoluminescence properties. J Inorg Organomet Polym 22:680–685Google Scholar
  119. 119.
    Zhu YM, Zeng CH, Chu TS, Wang HM, Yang YY, Tong YX, Su CY, Wong WT (2013) A novel highly luminescent LnMOF film: a convenient sensor for Hg2+ detecting. J Mater Chem A 1:11312–11319Google Scholar
  120. 120.
    Ganguli AK, Ganguly A, Vaidya S (2010) Microemulsion-based synthesis of nanocrystalline materials. Chem Soc Rev 39:474–485Google Scholar
  121. 121.
    Sun HL, Shi H, Zhao F, Qi L, Gao S (2005) Shape-dependent magnetic properties of low-dimensional nanoscale Prussian blue (PB) analogue SmFe(CN)6·4H2O. Chem Commun 2005:4339–4341Google Scholar
  122. 122.
    Rieter WJ, Taylor KML, An H, Lin W, Lin WB (2006) Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. J Am Chem Soc 128:9024–9025Google Scholar
  123. 123.
    Cadiau A, Brites CDS, Costa PMFJ, Ferreira RAS, Rocha J, Carlos LD (2013) Ratiometric nanothermometer based on an emissive Ln3+-organic framework. ACS Nano 7:7213–7218Google Scholar
  124. 124.
    Foucault-Collet A, Gogick KA, White KA, Villette S, Pallier A, Collet G, Kieda C, Li T, Geib SJ, Rosi NL, Petoud S (2013) Lanthanide near infrared imaging in living cells with Yb3+ nano metal organic frameworks. Proc Natl Acad Sci U S A 110:17199–17204Google Scholar
  125. 125.
    Kathryn MLT, Jin A, Lin WB (2008) Surfactant-assisted synthesis of nanoscale gadolinium metal-organic frameworks for potential multimodal imaging. Angew Chem Int Ed 47:7722–7725Google Scholar
  126. 126.
    Xu B, Wang X (2012) Solvothermal synthesis of monodisperse nanocrystals. Dalton Trans 41:4719–4725Google Scholar
  127. 127.
    Shi W, Song S, Zhang HJ (2013) Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. Chem Soc Rev 42:5714–5743Google Scholar
  128. 128.
    Ding SB, Wang W, Qiu LG, Yuan YP, Peng FM, Jiang X, Xie AJ, Shen YH, Zhu JF (2011) Surfactant-assisted synthesis of lanthanide metal-organic framework nanorods and their fluorescence sensing of nitroaromatic explosives. Mater Lett 65:1385–1387Google Scholar
  129. 129.
    Hua Q, Cao T, Gu XK, Lu J, Jiang Z, Pan X, Luo L, Li WX, Huang W (2014) Crystal-plane-controlled selectivity of Cu2O catalysts in propylene oxidation with molecular oxygen. Angew Chem Int Ed 53:4856–4861Google Scholar
  130. 130.
    Li W, Zamani R, Ibáñez M, Doris C, Shavel A, Morante JR, Arbiol J, Cabot A (2013) Metal ions to control the morphology of semiconductor nanoparticles: copper selenide nanocubes. J Am Chem Soc 135:4664–4667Google Scholar
  131. 131.
    Liu B, Aydil ES (2009) Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J Am Chem Soc 131:3985–3990Google Scholar
  132. 132.
    Guo H, Zhu Y, Qiu S, Lercher JA, Zhang H (2010) Coordination modulation induced synthesis of nanoscale Eu1−xTbx-metal-organic frameworks for luminescent thin films. Adv Mater 22:4190–4192Google Scholar
  133. 133.
    Xu H, Rao X, Gao J, Yu J, Wang Z, Dou Z, Cui Y, Yang Y, Chen B, Qian G (2012) A luminescent nanoscale metal-organic framework with controllable morphologies for spore detection. Chem Commun 48:7377–7379Google Scholar
  134. 134.
    Buller R, Peterson ML, Almarsson Ö, Leiserowitz L (2002) Quinoline binding site on malaria pigment crystal: a rational pathway for antimalarial drug design. Cryst Growth Des 2:553–562Google Scholar
  135. 135.
    Zhang X, Ballem MA, Hu ZJ, Bergman P, Uvdal K (2011) Nanoscale light-harvesting metal-organic frameworks. Angew Chem Int Ed 50:5729–5733Google Scholar
  136. 136.
    Fillion H, Luche JL (1998) Synthetic organic sonochemistry. Plenum, New YorkGoogle Scholar
  137. 137.
    Li X, Wang X, Zhang L, Lee S, Dai HJ (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319:1229–1232Google Scholar
  138. 138.
    Suslick KS (1988) Ultrasound: its chemical, physical and biological effects. VCH, WeinheimGoogle Scholar
  139. 139.
    Didenko YT, Suslick KS (2002) The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation. Nature 418:394–397Google Scholar
  140. 140.
    Flannigan DJ, Suslick KS (2005) Plasma formation and temperature measurement during single-bubble cavitation. Nature 434:52–55Google Scholar
  141. 141.
    Qiu LG, Li ZQ, Wu Y, Wang W, Xu T, Jiang X (2008) Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chem Commun 2008:3642–3644Google Scholar
  142. 142.
    Khan NA, Haque MM, Jhung SH (2010) Accelerated synthesis of porous isostructural lanthanide-benzenetricarboxylates (Ln-BTC) under ultrasound at room temperature. Eur J Inorg Chem 2010:4975–4981Google Scholar
  143. 143.
    Hu SM, Niu HL, Qiu LG, Yuan YP, Jiang X, Xie AJ, Shen YH, Zhu JF (2012) Facile synthesis of highly luminescent nanowires of a terbium-based metal-organic framework by an ultrasonic-assisted method and their application as a luminescent probe for selective sensing of organoamines. Inorg Chem Commun 17:147–150Google Scholar
  144. 144.
    Xiao JD, Qiu LG, Ke F, Yuan YP, Xu GS, Wang YM, Jiang X (2013) Rapid synthesis of nanoscale terbium-based metal-organic frameworks by a combined ultrasound-vapour phase diffusion method for highly selective sensing of picric acid. J Mater Chem A 1:8745–8752Google Scholar
  145. 145.
    Wang Z, Cohen SM (2009) Postsynthetic modification of metal-organic frameworks. Chem Soc Rev 38:1315–1329Google Scholar
  146. 146.
    Dou Z, Yu J, Xu H, Cui Y, Yang Y, Qian G (2013) Preparation and thiols sensing of luminescent metal-organic framework films functionalized with lanthanide ions. Microporous Mesoporous Mater 179:198–204Google Scholar
  147. 147.
    Zheng YZ, Zhou GJ, Zheng ZP, Winpenny REP (2014) Molecule-based magnetic coolers. Chem Soc Rev 43:1462–1475Google Scholar
  148. 148.
    Heffern MC, Matosziuk LM, Meade TJ (2014) Lanthanide probes for bioresponsive imaging. Chem Soc Rev 114:4496–4539Google Scholar
  149. 149.
    Wang F, Liu X (2014) Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation. Acc Chem Res 47:1378–1385Google Scholar
  150. 150.
    Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352Google Scholar
  151. 151.
    Kuriki K, Koike Y, Okamoto Y (2002) Plastic optical fiber lasers and amplifiers containing lanthanide complexes. Chem Rev 102:2347–2356Google Scholar
  152. 152.
    Cockerill AF, Davies GLO, Harden RC, Rackham DM (1973) Lanthanide shift reagents for nuclear magnetic resonance spectroscopy. Chem Rev 73:553–588Google Scholar
  153. 153.
    Huang X, Han S, Huang W, Liu X (2013) Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev 42:173–201Google Scholar
  154. 154.
    Shibasaki M, Yoshikawa N (2002) Lanthanide complexes in multifunctional asymmetric catalysis. Chem Rev 102:2187–2210Google Scholar
  155. 155.
    Habib F, Murugesu M (2013) Lessons learned from dinuclear lanthanide nano-magnets. Chem Soc Rev 42:3278–3288Google Scholar
  156. 156.
    Molander GA (1992) Application of lanthanide reagents in organic synthesis. Chem Rev 92:29–68Google Scholar
  157. 157.
    Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21:2133–2148Google Scholar
  158. 158.
    Cui CH, Yu SH (2013) Engineering interface and surface of noble metal nanoparticle nanotubes toward enhanced catalytic activity for fuel cell applications. Acc Chem Res 46:1427–1437Google Scholar
  159. 159.
    Rowe MD, Chang CC, Thamm DH, Kraft SL, Harmon JF, Vogt AP, Sumerlin BS, Boyes SG (2009) Tuning the magnetic resonance imaging properties of positive contrast agent nanoparticles by surface modification with RAFT polymers. Langmuir 25:9487–9499Google Scholar
  160. 160.
    Sabbatini N, Guardigli M (1993) Luminescent lanthanide complexes as photochemical supramolecular devices. Coord Chem Rev 123:201–228Google Scholar
  161. 161.
    Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109:4283–4374Google Scholar
  162. 162.
    Bünzli JCG (2010) Lanthanide luminescence for biomedical analysis and imaging. Chem Rev 110:2729–2755Google Scholar
  163. 163.
    Brites CDS, Lima PP, Silva NJO, Millán A, Amaral VS, Palacio F, Carlos LD (2012) Thermometry at the nanoscale. Nanoscale 4:4799–4829Google Scholar
  164. 164.
    Jaque D, Vetrone F (2012) Luminescence nanothermometry. Nanoscale 4:4301–4326Google Scholar
  165. 165.
    Cui Y, Xu H, Yue Y, Guo Z, Yu J, Chen Z, Gao J, Yang Y, Qian G, Chen B (2012) A luminescent mixed-lanthanide metal-organic framework thermometer. J Am Chem Soc 134:3979–3982Google Scholar
  166. 166.
    Kim Y, Jung HY, Choe YH, Lee C, Ko SK, Koun S, Choi Y, Chung BH, Park BC, Hun TL, Shin J, Kim E (2012) High-contrast reversible fluorescence photoswitching of dye-crosslinked dendritic nanoclusters in living vertebrates. Angew Chem Int Ed 51:2878–2882Google Scholar
  167. 167.
    Gao X, Cui Y, Levenson RM, Chung LWK, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976Google Scholar
  168. 168.
    Yang Q, Liu S, Liu Y, He D, Miao J, Wang X, Ji Y, Zheng Z (2014) Color tuning and white light emission via in situ doping of luminescent lanthanide metal-organic frameworks. Inorg Chem 53:289–293Google Scholar
  169. 169.
    Meyer LV, Schönfeld F, Müller-Buschbaum K (2014) Lanthanide based tuning of luminescence in MOFs and dense frameworks – from mono- and multimetal systems to sensors and films. Chem Commun. doi: 10.1039/c4cc00848k Google Scholar
  170. 170.
    Carlos LD, Ferreira RAS, Bermudez VZ, Julián-Ĺopez B, Escribano P (2011) Progress on lanthanide-based organic–inorganic hybrid phosphors. Chem Soc Rev 40:536–549Google Scholar
  171. 171.
    Templeton DH, Dauben CH (1954) Lattice parameters of some rare earth compounds and a set of crystal radii. J Am Chem Soc 76:5237–5239Google Scholar
  172. 172.
    Piatkevich KD, Subach FV, Verkhusha VV (2013) Engineering of bacterial phytochromes for near-infrared imaging, sensing, and light-control in mammals. Chem Soc Rev 42:3441–3452Google Scholar
  173. 173.
    Bünzli JCG, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34:1048–1077Google Scholar
  174. 174.
    Wj R, Taylor KML, Lin W (2007) Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing. J Am Chem Soc 129:9852–9853Google Scholar
  175. 175.
    Yang L, Song S, Shao C, Zhang W, Zhang H, Bu Z, Ren T (2011) Synthesis, structure and luminescent properties of 3D lanthanide (La(III), Ce(III)) coordination polymers possessing 1D nanosized cavities based on pyridine-2,6-dicarboxylic acid. Synth Met 161:1500–1508Google Scholar
  176. 176.
    Foster DR, Richardson FS, Vallarino LM, Shillady D (1983) Magnetic circularly polarized luminescence spectra of Eu(β-diketonate)3X2 complexes in nonaqueous solution. Inorg Chem 22:4002–4009Google Scholar
  177. 177.
    Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Férey G, Morris RE, Serre C (2012) Metal-organic frameworks in biomedicine. Chem Rev 112:1232–1268Google Scholar
  178. 178.
    Lorusoo G, Sharples JW, Palacios E, Roubeau O, Brechin EK, Sessoli R, Rossin A, Tuna F, Mclnnes EJL, Collison D, Evangelisti M (2013) A dense metal-organic framework for enhanced magnetic refrigeration. Adv Mater 25:4653–4656Google Scholar
  179. 179.
    Filho MAM, Dutra JDL, Rocha GB, Freire RO, Simas AM (2013) Sparkle/RM1 parameters for the semiempirical quantum chemical calculation of lanthanide complexes. RSC Adv 3:16747–16755Google Scholar
  180. 180.
    Dutra JDL, Ferreira JW, Rodrigues MO, Freire RO (2013) Theoretical methodologies for calculation of Judd–Ofelt intensity parameters of polyeuropium systems. J Phys Chem A 117:14095–14099Google Scholar
  181. 181.
    Dutra JDL, Bispo TD, Freire RO (2014) LUMPAC lanthanide luminescence software: efficient and user friendly. J Comput Chem 35:772–775Google Scholar
  182. 182.
    Chaudhuri RG, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–2433Google Scholar
  183. 183.
    Burrows AD (2011) Mixed-component metal-organic frameworks (MC-MOFs): enhancing functionality through solid solution formation and surface modifications. CrystEngComm 13:3623–3642Google Scholar
  184. 184.
    Li T, Sullivan JE, Rosi NL (2013) Design and preparation of a core–shell metal-organic framework for selective CO2 capture. J Am Chem Soc 135:9984–9987Google Scholar
  185. 185.
    Zhao M, Deng K, He L, Liu Y, Li G, Zhao H, Tang Z (2014) Core–shell palladium nanoparticle@metal-organic frameworks as multifunctional catalysts for cascade reactions. J Am Chem Soc 136:1738–1741Google Scholar
  186. 186.
    Guo J, Yang W, Wang C (2013) Magnetic colloidal supraparticles: design, fabrication and biomedical applications. Adv Mater 25:5196–5214Google Scholar
  187. 187.
    Nakagawa Y, Kageyama H, Oaki Y, Imai H (2014) Direction control of oriented self-assembly for 1D, 2D, and 3D microarrays of anisotropic rectangular nanoblocks. J Am Chem Soc 136:3716–3719Google Scholar
  188. 188.
    Zhang SY, Regulacio MD, Han MY (2014) Self-assembly of colloidal one-dimensional nanocrystals. Chem Soc Rev 43:2301–2323Google Scholar
  189. 189.
    Martín-Rodríguez R, Geitenbeek R, Meijerink A (2013) Incorporation and luminescence of Yb3+ in CdSe nanocrystals. J Am Chem Soc 135:13668–13671Google Scholar
  190. 190.
    Luo F, Yang YT, Che YX, Zheng JM (2008) Construction of Cu(II)-Gd(III) metal-organic framework by the introduction of a small amino acid molecule: hydrothermal synthesis, structure, thermostability, and magnetic studies. CrystEngComm 10:1613–1616Google Scholar
  191. 191.
    Fabelo O, Cañadillas-Delgado L, Pasán J, Díaz-Gallifa P, Labrador A, Ruiz-Pérez C (2012) Dryness sensitive porous 3d-4f metal-organic framework with unusual dynamic behavior. CrystEngComm 14:765–767Google Scholar
  192. 192.
    Hu XL, Sun CY, Qin C, Wang XL, Wang HN, Zhou EL, Li WE, Su ZM (2013) Iodine-templated assembly of unprecedented 3d-4f metal-organic frameworks as photocatalysts for hydrogen generation. Chem Commun 49:3564–3566Google Scholar
  193. 193.
    Park YK, Choi SB, Kim H, Kim K, Won BH, Choi K, Choi JS, Ahn WS, Won N, Kim S, Jung DH, Choi SH, Kim GH, Cha SS, Jhon YH, Yang JK, Kim J (2007) Crystal structure and guest uptake of a mesoporous metal-organic framework containing cages of 3.9 and 4.7 nm in diameter. Angew Chem Int Ed 46:8230–8233Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of ArizonaTucsonUSA

Personalised recommendations