Skip to main content

Part of the book series: Structure and Bonding ((STRUCTURE,volume 165))

Abstract

Phosphorescent iridium(III) complexes have received increasing attention in bioimaging applications owing to their advantageous photophysical properties and efficient internalization into live cells. In this chapter, we summarize the recent design of bioimaging reagents based on phosphorescent iridium(III) complexes. The utilizations of cationic, neutral, and zwitterionic phosphorescent iridium(III) complexes in bioimaging applications have been described first. Complexes showing aggregation-induced phosphorescence have also been included considering the absence of the commonly observed aggregation-caused quenching. Then we discuss the functionalization of iridium(III) complexes with biological substrates and reactive groups, which allows non-covalent and covalent interaction, respectively, with intracellular biomolecules. As the photophysical properties of iridium(III) complexes are very sensitive toward their surrounding ligands and microenvironment, the use of these complexes as intracellular sensors for gas molecules, ions, and amino acids has been summarized. Additionally, the incorporation of iridium(III) complexes into dendrimer, polymer, and nanoparticle systems providing attractive functionalities has been discussed. Furthermore, various strategies, including the use of near-infrared-emitting and two-photon excitable complexes, upconversion nanoparticles, and lifetime-based microscopy techniques, to enhance signal-to-noise ratios in bioimaging have been discussed. At last, the design of reagents for multi-mode imaging techniques involving phosphorescence and magnetic resonance imaging has been described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Periasamy A (2001) Methods in cellular imaging. American physiological society's methods in physiology series, Oxford University Press

    Google Scholar 

  2. Fernandez-Suarez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Bio 9:929–943

    Article  CAS  Google Scholar 

  3. Vasudev MC (2006) Quantum dots as fluorescent probes for in vitro cellular imaging: a multi labeling approach. University of Illinois, Chicago

    Google Scholar 

  4. Bünzli JCG, Eliseeva SV (2010) Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39:189–227

    Article  Google Scholar 

  5. Fernández-Moreira V, Thorp-Greenwood FL, Coogan MP (2010) Application of d6 transition metal complexes in fluorescence cell imaging. Chem Commun 46:186–202

    Article  Google Scholar 

  6. Zhao Q, Huang C, Li F (2011) Phosphorescent heavy-metal complexes for bioimaging. Chem Soc Rev 40:2508–2524

    Article  CAS  Google Scholar 

  7. Lo KKW, Choi AWT, Law WHT (2012) Applications of luminescent inorganic and organometallic transition metal complexes as biomolecular and cellular probes. Dalton Trans 41:6021–6047

    Article  CAS  Google Scholar 

  8. Zhang KY, Lo KKW (2013) Chemosensing and diagnostics. In: Reedijk J, Poeppelmeier K (eds) Comprehensive inorganic chemistry II, vol 8. Elsevier, Oxford, pp 657–732

    Chapter  Google Scholar 

  9. Yang YM, Zhao Q, Feng W, Li FY (2013) Luminescent chemodosimeters for bioimaging. Chem Rev 113:192–270

    Article  CAS  Google Scholar 

  10. Zhang KY, Lo KKW (2014) Metal complexes for cell and organism imaging. In: Gasser G (ed) Inorganic chemical biology: principles, techniques and applications. Wiley, Chichester

    Google Scholar 

  11. Coogan MP, Fernández-Moreira V (2014) Progress with, and prospects for, metal complexes in cell imaging. Chem Commun 50:384–399

    Article  CAS  Google Scholar 

  12. Negishi Y, Hamano N, Tsunoda Y, Oda Y, Choijamts B, Endo-Takahashi Y, Omata D, Suzuki R, Maruyama K, Nomizu M, Emoto M, Aramaki Y (2013) AG73-modified bubble liposomes for targeted ultrasound imaging of tumor neovasculature. Biomaterials 34:501–507

    Article  CAS  Google Scholar 

  13. Viswanathan S, Kovacs Z, Green KN, Ratnakar SJ, Sherry AD (2010) Alternatives to gadolinium-based MRI metal chelates for magnetic resonance imaging. Chem Rev 110:2960–3018

    Article  CAS  Google Scholar 

  14. Yu M, Zhao Q, Shi L, Li F, Zhou Z, Yang H, Yi T, Huang C (2008) Cationic iridium(III) complexes for phosphorescence staining in the cytoplasm of living cells. Chem Commun 2115–2117

    Google Scholar 

  15. Zhao Q, Yu M, Shi L, Liu S, Li C, Shi M, Zhou Z, Huang C, Li F (2010) Cationic iridium(III) complexes with tunable emission color as phosphorescent dyes for live cell imaging. Organometallics 29:1085–1091

    Article  CAS  Google Scholar 

  16. Zhang KY, Lo KKW (2009) Synthesis, properties, and live-cell imaging studies of luminescent cyclometalated iridium(III) polypyridine complexes containing two or three biotin pendants. Inorg Chem 48:6011–6025

    Article  CAS  Google Scholar 

  17. Chen Y, Qiao L, Ji L, Chao H (2014) Phosphorescent iridium(III) complexes as multicolor probes for specific mitochondrial imaging and tracking. Biomaterials 35:2–13

    Article  CAS  Google Scholar 

  18. Zhang KY, Li SPY, Zhu N, Or LWS, Cheung MSH, Lam YW, Lo KKW (2010) Structure, photophysical and electrochemical properties, biomolecular interactions, and intracellular uptake of luminescent cyclometalated iridium(III) dipyridoquinoxaline complexes. Inorg Chem 49:2530–2540

    Article  CAS  Google Scholar 

  19. Ma DL, Wong WL, Chung WH, Chan FY, So PK, Lai TS, Zhou ZY, Leung YC, Wong KY (2008) A highly selective luminescent switch-on probe for histidine/histidine-rich proteins and its application in protein staining. Angew Chem Int Ed 47:3735–3739

    Article  CAS  Google Scholar 

  20. Li C, Yu M, Sun Y, Wu Y, Huang C, Li F (2011) A nonemissive iridium(III) complex that specifically lights-up the nuclei of living cells. J Am Chem Soc 133:11231–11239

    Article  CAS  Google Scholar 

  21. Li C, Liu Y, Wu Y, Sun Y, Li F (2013) The cellular uptake and localization of non-emissive iridium(III) complexes as cellular reaction-based luminescence probes. Biomaterials 34:1223–1234

    Article  CAS  Google Scholar 

  22. Ma DL, Zhong HJ, Fu WC, Chan DSH, Kwan HY, Fong WF, Chung LH, Wong CY, Leung CH (2013) Phosphorescent imaging of living cells using a cyclometalated iridium(III) complex. PLos One 8:e55751

    Article  CAS  Google Scholar 

  23. Zhou Y, Jia J, Li W, Fei H, Zhou M (2013) Luminescent biscarbene iridium(III) complexes as living cell imaging reagents. Chem Commun 49:3230–3232

    Article  CAS  Google Scholar 

  24. Sun H, Yang L, Yang H, Liu S, Xu W, Liu X, Tu Z, Su H, Zhao Q, Huang W (2013) Heteronuclear phosphorescent iridium(III) complexes with tunable photophysical and excited-state properties by chelating BF2 moiety for application in bioimaging. RSC Adv 3:8766–8776

    Article  CAS  Google Scholar 

  25. Jiang W, Gao Y, Sun Y, Ding F, Xu Y, Bian Z, Li F, Bian J, Huang C (2009) Zwitterionic iridium complexes: synthesis, luminescent properties, and their application in cell imaging. Inorg Chem 49:3252–3260

    Article  Google Scholar 

  26. Shan GG, Zhang LY, Li HB, Wang S, Zhu DX, Li P, Wang CG, Su ZM, Liao Y (2012) A cationic iridium(III) complex showing aggregation-induced phosphorescent emission (AIPE) in the solid state: synthesis, characterization and properties. Dalton Trans 41:523–530

    Article  CAS  Google Scholar 

  27. Chen Y, Qiao L, Yu B, Li G, Liu C, Ji L, Chao H (2013) Mitochondria-specific phosphorescent imaging and tracking in living cells with an AIPE-active iridium(III) complex. Chem Commun 49:11095–11097

    Article  CAS  Google Scholar 

  28. Lo KKW, Lee PK, Lau JSY (2008) Synthesis, characterization, and properties of luminescent organoiridium(III) polypyridine complexes appended with an alkyl chain and their interactions with lipid bilayers, surfactants, and living cells. Organometallics 27:2998–3006

    Article  CAS  Google Scholar 

  29. Lau JSY, Lee PK, Tsang KHK, Ng CHC, Lam YW, Cheng SH, Lo KKW (2009) Luminescent cyclometalated iridium(III) polypyridine indole complexes – synthesis, photophysics, electrochemistry, protein-binding properties, cytotoxicity, and cellular uptake. Inorg Chem 48:708–718

    Article  CAS  Google Scholar 

  30. Steunenberg P, Ruggi A, van den Berg NS, Buckle T, Kuil J, van Leeuwen FWB, Velders AH (2012) Phosphorescence imaging of living cells with amino acid-functionalized tris(2-phenylpyridine)iridium(III) complexes. Inorg Chem 51:2105–2114

    Article  CAS  Google Scholar 

  31. Liu HW, Zhang KY, Law WHT, Lo KKW (2010) Cyclometalated iridium(III) bipyridine complexes functionalized with an N-methylamino-oxy group as novel phosphorescent labeling reagents for reducing sugars. Organometallics 29:3474–3476

    Article  CAS  Google Scholar 

  32. Law WHT, Lee LCC, Louie MW, Liu HW, Ang TWH, Lo KKW (2013) Phosphorescent cellular probes and uptake indicators derived from cyclometalated iridium(III) bipyridine complexes appended with a glucose or galactose entity. Inorg Chem 52:13029–13041

    Article  CAS  Google Scholar 

  33. Kayano T, Burant CF, Fukumoto H, Gould GW, Fan YS, Eddy RL, Byers MG, Shows TB, Seino S, Bell GI (1990) Human facilitative glucose transporters. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) expressed in small intestine, kidney, muscle, and adipose tissue and an unusual glucose transporter pseudogene-like sequence (GLUT6). J Biol Chem 265:13276–13282

    CAS  Google Scholar 

  34. Burant CF, Takeda J, Brot-Laroche E, Bell GI, Davidson NO (1992) Fructose transporter in human spermatozoa and small intestine is GLUT5. J Biol Chem 267:14523–14526

    CAS  Google Scholar 

  35. Lo KKW, Law WHT, Chan JCY, Liu HW, Zhang KY (2013) Photophysical and cellular uptake properties of novel phosphorescent cyclometalated iridium(III) bipyridine d-fructose complexes. Metallomics 5:808–812

    Article  CAS  Google Scholar 

  36. Maity A, Choi JS, Teets TS, Deligonul N, Berdis AJ, Gray TG (2013) Cyclometalated iridium(III) complexes with deoxyribose substituents. Chem Eur J 19:15924–15932

    Article  CAS  Google Scholar 

  37. Wang X, Jia J, Huang Z, Zhou M, Fei H (2011) Luminescent peptide labeling based on a histidine-binding iridium(III) complex for cell penetration and intracellular targeting studies. Chem Eur J 17:8028–8032

    Article  CAS  Google Scholar 

  38. Kuil J, Steunenberg P, Chin PTK, Oldenburg J, Jalink K, Velders AH, van Leeuwen FWB (2011) Peptide-functionalized luminescent iridium complexes for lifetime imaging of CXCR4 expression. ChemBioChem 12:1897–1903

    Article  CAS  Google Scholar 

  39. Lee PK, Liu HW, Yiu SM, Louie MW, Lo KKW (2011) Luminescent cyclometallated iridium(III) bis(quinolylbenzaldehyde) diimine complexes—synthesis, photophysics, electrochemistry, protein cross-linking properties, cytotoxicity and cellular uptake. Dalton Trans 40:2180–2189

    Article  CAS  Google Scholar 

  40. Wang B, Liang Y, Dong H, Tan T, Zhan B, Cheng J, Lo KKW, Lam YW, Cheng SH (2012) A luminescent cyclometalated iridium(III) complex accumulates in mitochondria and induces mitochondrial shortening by conjugation to specific protein targets. ChemBioChem 13:2729–2737

    Article  CAS  Google Scholar 

  41. Saxon E, Bertozzi CR (2000) Cell surface engineering by a modified Staudinger reaction. Science 287:2007–2010

    Article  CAS  Google Scholar 

  42. Prescher JA, Bertozzi CR (2005) Chemistry in living systems. Nat Chem Biol 1:13–21

    Article  CAS  Google Scholar 

  43. Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR (2007) Copper-free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci U S A 104:16793–16797

    Article  CAS  Google Scholar 

  44. Jewett JC, Sletten EM, Bertozzi CR (2010) Cu-free click chemistry with readily synthesized biarylazacyclooctynones. J Am Chem Soc 132:3688–3690

    Article  CAS  Google Scholar 

  45. Lo KKW, Chan BTN, Liu HW, Zhang KY, Li SPY, Tang TSM (2012) Cyclometalated iridium(III) polypyridine dibenzocyclooctyne complexes as the first phosphorescent bioorthogonal probes. Chem Commun 49:4271–427346

    Article  Google Scholar 

  46. Irie M (2000) Diarylethenes for memories and switches. Chem Rev 100:1685–1716

    Article  CAS  Google Scholar 

  47. Tian H, Yang SJ (2004) Recent progresses on diarylethene based photochromic switches. Chem Soc Rev 33:85–97

    Article  CAS  Google Scholar 

  48. Tan W, Zhou J, Li F, Yi T, Tian H (2011) Visible light-triggered photoswitchable diarylethene-based iridium(III) complexes for imaging living cells. Chem Asian J 6:1263–1268

    Article  CAS  Google Scholar 

  49. Brahimi-Horn C, Berra E, Pouysségur J (2001) Hypoxia: the tumor’s gateway to progression along the angiogenic pathway. Trends Cell Biol 11:S32–S36

    Article  CAS  Google Scholar 

  50. Zhang S, Hosaka M, Yoshihara T, Negishi K, Iida Y, Tobita S, Takeuchi T (2010) Phosphorescent light-emitting iridium complexes serve as a hypoxia-sensing probe for tumor imaging in living animals. Cancer Res 70:4490–4498

    Article  CAS  Google Scholar 

  51. Prior S, Kim A, Yoshihara T, Tobita S, Takeuchi T, Higuchi M (2014) Mitochondrial respiratory function induces endogenous hypoxia. PLos One 9:e88911

    Article  Google Scholar 

  52. Yoshihara T, Yamaguchi Y, Hosaka M, Takeuchi T, Tobita S (2012) Ratiometric molecular sensor for monitoring oxygen levels in living cells. Angew Chem Int Ed 51:4148–4151

    Article  CAS  Google Scholar 

  53. Ignarro LJ (1999) Nitric oxide: a unique endogenous signaling molecule in vascular biology. Angew Chem Int Ed 38:1882–1892

    Article  CAS  Google Scholar 

  54. Murad F (1999) Discovery of some of the biological effects of nitric oxide and its role in cell signaling. Angew Chem Int Ed 38:1856–1868

    Article  CAS  Google Scholar 

  55. Furchgott RF (1999) Endothelium-derived relaxing factor: discovery, early studies, and identification as nitric oxide. Angew Chem Int Ed 38:1870–1880

    Article  CAS  Google Scholar 

  56. Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770

    Article  CAS  Google Scholar 

  57. Law WHT, Leung KK, Lee LCC, Poon CS, Liu HW, Lo KKW (2014) Cyclometalated iridium(III) bipyridyl–phenylenediamine complexes with multicolor phosphorescence: synthesis, electrochemistry, photophysics, and intracellular nitric oxide sensing. ChemMedChem 9:1316–1329

    Article  CAS  Google Scholar 

  58. Murphy L, Congreve A, Pålsson LO, Williams JAG (2010) The time domain in co-stained cell imaging: time-resolved emission imaging microscopy using a protonatable luminescent iridium complex. Chem Commun 46:8743–8745

    Article  CAS  Google Scholar 

  59. Moromizato S, Hisamatsu Y, Suzuki T, Matsuo Y, Abe R, Aoki S (2012) Design and synthesis of a luminescent cyclometalated iridium(III) complex having N,N-diethylamino group that stains acidic intracellular organelles and induces cell death by photoirradiation. Inorg Chem 51:12697–1270660

    Article  CAS  Google Scholar 

  60. da Silva JJRF, Williams RJP (2001) The biological chemistry of elements: the inorganic chemistry of life, 2nd edn. Oxford University Press, New York

    Google Scholar 

  61. Lee PK, Law WHT, Liu HW, Lo KKW (2011) Luminescent cyclometalated iridium(III) polypyridine di-2-picolylamine complexes: synthesis, photophysics, electrochemistry, cation binding, cellular internalization, and cytotoxic activity. Inorg Chem 50:8570–8579

    Article  CAS  Google Scholar 

  62. You Y, Lee S, Kim T, Ohkubo K, Chae WS, Fukuzumi S, Jhon GJ, Nam W, Lippard SJ (2011) Phosphorescent sensor for biological mobile zinc. J Am Chem Soc 133:18328–18342

    Article  CAS  Google Scholar 

  63. Woo H, Cho S, Han Y, Chae WS, Ahn DR, You Y, Nam W (2013) Synthetic control over photoinduced electron transfer in phosphorescence zinc sensors. J Am Chem Soc 135:4771–4787

    Article  CAS  Google Scholar 

  64. You Y, Han Y, Lee YM, Park SY, Nam W, Lippard SJ (2011) Phosphorescent sensor for robust quantification of copper(II) ion. J Am Chem Soc 133:11488–11491

    Article  CAS  Google Scholar 

  65. Reddy GU, Das P, Saha S, Baidya M, Ghosh SK, Das A (2013) A CN specific turn-on phosphorescent probe with probable application for enzymatic assay and as an imaging reagent. Chem Commun 49:255–257

    Article  Google Scholar 

  66. Wu Y, Jing H, Dong Z, Zhao Q, Wu H, Li F (2011) Ratiometric phosphorescence imaging of Hg(II) in living cells based on a neutral iridium(III) complex. Inorg Chem 50:7412–7420

    Article  CAS  Google Scholar 

  67. Refsum H, Smtth AD, Ueland PM, Nexo E, Clarke R, Mcpartlin J, Johnston C, Engbaek F, Schneede J (2004) Facts and recommendations about total homocysteine determinations: an expert opinion. Clin Chem 50:3–32

    Article  CAS  Google Scholar 

  68. Tang Y, Yang HR, Sun HB, Liu SJ, Wang JX, Zhao Q, Liu XM, Xu WJ, Li SB, Huang W (2013) Rational design of an “OFF–ON” phosphorescent chemodosimeter based on an iridium(III) complex and its application for time-resolved luminescent detection and bioimaging of cysteine and homocysteine. Chem Eur J 19:1311–1319

    Article  CAS  Google Scholar 

  69. Li G, Chen Y, Wu J, Ji L, Chao H (2013) Thiol-specific phosphorescent imaging in living cells with an azobis(2,2′-bipyridine)-bridged dinuclear iridium(III) complex. Chem Commun 49:2040–2042

    Article  CAS  Google Scholar 

  70. Li G, Chen Y, Wang J, Lin Q, Zhao J, Ji L, Chao H (2013) A dinuclear iridium(III) complex as a visual specific phosphorescent probe for endogenous sulphite and bisulphite in living cells. Chem Sci 4:4426–4433

    Article  CAS  Google Scholar 

  71. Xiong L, Zhao Q, Chen H, Wu Y, Dong Z, Zhou Z, Li F (2010) Phosphorescence imaging of homocysteine and cysteine in living cells based on a cationic iridium(III) complex. Inorg Chem 49:6402–6408

    Article  CAS  Google Scholar 

  72. Ma Y, Liu S, Yang H, Wu Y, Yang C, Liu X, Zhao Q, Wu H, Liang J, Li F, Huang W (2011) Water-soluble phosphorescent iridium(III) complexes as multicolor probes for imaging of homocysteine and cysteine in living cells. J Mater Chem 21:18974–18982

    Article  CAS  Google Scholar 

  73. Li SPY, Liu HW, Zhang KY, Lo KKW (2010) Modification of luminescent iridium(III) polypyridine complexes with discrete poly(ethylene glycol) (PEG) pendants: synthesis, emissive behavior, intracellular uptake, and PEGylation properties. Chem Eur J 16:8329–8339

    Article  CAS  Google Scholar 

  74. Li SPY, Lau CTS, Louie MW, Lam YW, Cheng SH, Lo KKW (2013) Mitochondria-targeting cyclometalated iridium(III) − PEG complexes with tunable photodynamic activity. Biomaterials 34:7519–7532

    Article  CAS  Google Scholar 

  75. Zhang KY, Liu HW, Fong TTH, Chen XG, Lo KKW (2010) Luminescent dendritic cyclometalated iridium(III) polypyridine complexes: synthesis, emission behavior, and biological properties. Inorg Chem 49:5432–5443

    Article  CAS  Google Scholar 

  76. Akinc A, Thomas M, Klibanov AM, Langer R (2005) Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med 7:657–663

    Article  CAS  Google Scholar 

  77. Li SPY, Tang TSM, Yiu KSM, Lo KKW (2012) Cyclometalated iridium(III)–polyamine complexes with intense and long-lived multicolor phosphorescence: synthesis, crystal structure, photophysical behavior, cellular uptake, and transfection properties. Chem Eur J 18:13342–13354

    Article  CAS  Google Scholar 

  78. Liu S, Qiao W, Cao G, Chen Y, Ma Y, Huang Y, Liu X, Xu W, Zhao Q, Huang W (2013) Smart poly(N-isopropylacrylamide) containing iridium(III) complexes as water-soluble phosphorescent probe for sensing and bioimaging of homocysteine and cysteine. Macromol Rapid Commun 34:81–86

    Article  Google Scholar 

  79. Ma Y, Liu S, Yang H, Wu Y, Sui H, Wang J, Zhao Q, Li F, Huang W (2013) A water-soluble phosphorescent polymer for time-resolved assay and bioimaging of cysteine/homocysteine. J Mater Chem B 1:319–329

    Article  CAS  Google Scholar 

  80. Shi H, Chen X, Liu S, Xu H, An Z, Ouyang L, Tu Z, Zhao Q, Fan Q, Wang L, Huang W (2013) Hyper-branched phosphorescent conjugated polyelectrolytes for time-resolved heparin sensing. ACS Appl Mater Interfaces 5:4562–4568

    Article  CAS  Google Scholar 

  81. Shi H, Sun H, Yang H, Liu S, Jenkins G, Feng W, Li F, Zhao Q, Liu B, Huang W (2013) Cationic polyfluorenes with phosphorescent iridium(III) complexes for time-resolved luminescent biosensing and fluorescence lifetime imaging. Adv Funct Mater 23:3268–3276

    Article  CAS  Google Scholar 

  82. Wu H, Yang T, Zhao Q, Zhou J, Li C, Li F (2011) A cyclometalated iridium(III) complex with enhanced phosphorescence emission in the solid state (EPESS): synthesis, characterization and its application in bioimaging. Dalton Trans 40:1969–1976

    Article  CAS  Google Scholar 

  83. Yang T, Liu Q, Pu S, Dong Z, Huang C, Li F (2012) Fluorophore–photochrome co-embedded polymer nanoparticles for photoswitchable fluorescence bioimaging. Nano Res 5:494–503

    Article  CAS  Google Scholar 

  84. Wang Y, Wu Y, Li F, Chen D (2014) Folic acid-modified iridium(III) coordination polymeric nanoparticles facilitating intracellular release of a phosphorescent residue capable of nuclear entry. Inorg Chem Commun 40:143–147

    Article  CAS  Google Scholar 

  85. Fan Y, Li C, Cao H, Li F, Chen D (2012) The intranuclear release of a potential anticancer drug from small nanoparticles that are derived from intracellular dissociation of large nanoparticles. Biomaterials 33:4220–4228

    Article  CAS  Google Scholar 

  86. Liu X, Xi N, Liu S, Ma Y, Yang H, Li H, He J, Zhao Q, Li F, Huang W (2012) Highly selective phosphorescent nanoprobes for sensing and bioimaging of homocysteine and cysteine. J Mater Chem 22:7894–7901

    Article  CAS  Google Scholar 

  87. Zhang G, Zhang H, Gao Y, Tao R, Xin L, Yi J, Li F, Liu W, Qiao J (2014) Near-infrared-emitting iridium(III) complexes as phosphorescent dyes for live cell imaging. Organometallics 33:61–68

    Article  CAS  Google Scholar 

  88. Ho CL, Wong KL, Kong HK, Ho YM, Chan CTL, Kwok WM, Leung KSY, Tam HL, Lam MHW, Ren XF, Ren AM, Feng JK, Wong WY (2012) A strong two-photon induced phosphorescent Golgi-specific in vitro marker based on a heteroleptic iridium complex. Chem Commun 48:2525–2527

    Article  CAS  Google Scholar 

  89. Fan Y, Zhao J, Yan Q, Chen PR, Zhao D (2014) Water-soluble triscyclometalated organoiridium complex: phosphorescent nanoparticle formation, nonlinear optics, and application for cell imaging. ACS Appl Mater Interfaces 6:3122–3131

    Article  CAS  Google Scholar 

  90. Xu W, Zhao X, Lv W, Yang H, Liu S, Liang H, Tu Z, Xu H, Qiao W, Zhao Q, Huang W (2014) Rational design of phosphorescent chemodosimeter for reaction based one- and two-photon and time-resolved luminescent imaging of biothiols in living cells. Adv Healthcare Mater 3:658–669

    Article  CAS  Google Scholar 

  91. Liu J, Liu Y, Liu Q, Li C, Sun L, Li F (2011) Iridium(III) complex-coated nanosystem for ratiometric upconversion luminescence bioimaging of cyanide anions. J Am Chem Soc 133:15276–15279

    Article  CAS  Google Scholar 

  92. Yao L, Zhou J, Liu J, Feng W, Li F (2012) Iridium-complex-modified upconversion nanophosphors for effective LRET detection of cyanide anions in pure water. Adv Funct Mater 22:2667–2672

    Article  CAS  Google Scholar 

  93. Shi C, Sun H, Tang X, Lv W, Yan H, Zhao Q, Wang J, Huang W (2013) Variable photophysical properties of phosphorescent iridium(III) complexes triggered by closo- and nido-carborane substitution. Angew Chem Int Ed 52:13434–13438

    Article  CAS  Google Scholar 

  94. Heffern MC, Matosziuk LM, Meade TJ (2014) Lanthanide probes for bioresponsive imaging. Chem Rev 114:4496–4539

    Article  CAS  Google Scholar 

  95. Yang H, Ding L, An L, Xiang Z, Chen M, Zhou J, Li F, Wu D, Yang S (2012) A d–f heteronuclear complex for dual-mode phosphorescence and magnetic resonance imaging. Biomaterials 33:8591–8599

    Article  CAS  Google Scholar 

  96. Zhou Z, Li D, Yang H, Zhu Y, Yang S (2011) Synthesis of d–f coordination polymer nanoparticles and their application in phosphorescence and magnetic resonance imaging. Dalton Trans 40:11941–11944

    Article  CAS  Google Scholar 

  97. Zhou J, Lu Z, Shan G, Wang S, Liao Y (2014) Gadolinium complex and phosphorescent probe-modified NaDyF4 nanorods for T1- and T2-weighted MRI/CT/phosphorescence multimodality imaging. Biomaterials 35:368–377

    Article  CAS  Google Scholar 

  98. Lai CW, Wang YH, Lai CH, Yang MJ, Chen CY, Chou PT, Chan CS, Chi Y, Chen YC, Hsiao JK (2008) Iridium-complex-functionalized Fe3O4/SiO2 core/shell nanoparticles: a facile three-in-one system in magnetic resonance imaging, luminescence imaging, and photodynamic therapy. Small 4:218–224

    Article  CAS  Google Scholar 

  99. Peng YK, Lai CW, Liu CL, Chen HC, Hsiao YH, Liu WL, Tang KC, Chi Y, Hsiao JK, Lim KE, Liao HE, Shyue JJ, Chou PT (2011) A new and facile method to prepare uniform hollow MnO/functionalized mSiO2 core/shell nanocomposites. ACS Nano 5:4177–4187

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Basic Research Program of China (2012CB933301), National Natural Science Foundation of China (61274018, 21174064, and 21171098), Program for New Century Excellent Talents in University (NCET-12-0740), the Ministry of Education of China (IRT1148 and 20133223110006), Natural Science Foundation of Jiangsu Province of China (BK20130038), and Nanjing University of Posts and Telecommunications (Project No. NY213097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, K.Y., Liu, S., Zhao, Q., Li, F., Huang, W. (2014). Phosphorescent Iridium(III) Complexes for Bioimaging. In: Lo, KW. (eds) Luminescent and Photoactive Transition Metal Complexes as Biomolecular Probes and Cellular Reagents. Structure and Bonding, vol 165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2014_166

Download citation

Publish with us

Policies and ethics