Advertisement

Chiral Lanthanide Metal-Organic Frameworks

  • Weisheng LiuEmail author
  • Xiaoliang Tang
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 163)

Abstract

Chiral metal-organic frameworks (MOFs) have attracted much attention, not only due to their potential applications in enantioselective separation and catalysis, but also because of many advantages such as the high density of active catalytic centers, high level of porosity, regular and reliable crystalline nature, and relatively easy immobilization as compared to other heterogeneous systems. As metal-connecting nodes of MOFs, a large number of chemical synthetic strategies have focused on the transition metal ions which exhibit specific coordination geometries and restricted stereochemistry in the past two decades. However, the researches on chiral lanthanide MOFs are still limited up to now because of high coordination numbers, kinetic lability, weak stereochemical preference, and more variable nature of the coordination sphere for lanthanide ions. In this chapter, we would give a brief introduction to highlight the synthetic approaches reported and the structural features of chiral lanthanide MOFs or coordination polymer, which may be beneficial to explore structurally and functionally defined chiral solid materials.

Keywords

Chiral metal-organic frameworks Chirality Lanthanide Structures of MOFs Synthesis of MOFs 

References

  1. 1.
    Gardner M (1990) The new ambidextrous universe, 3rd edn. W. H. Freeman & Co., New YorkGoogle Scholar
  2. 2.
    Heilbronner E, Dunitz JD (1993) Reflections on symmetry. VHCA, BaselGoogle Scholar
  3. 3.
    Aboul-Enein HY, Wainer IW (1997) The impact of stereochemistry on drug development and use. Wiley, New YorkGoogle Scholar
  4. 4.
    Li CY, Cheng SZ, Weng X et al (2001) Left or right, it is a matter of one methylene unit. J Am Chem Soc 123(10):2462–2463CrossRefGoogle Scholar
  5. 5.
    Ariëns EJ (1986) Stereochemistry: a source of problems in medicinal chemistry. Med Res Rev 6(4):451–466CrossRefGoogle Scholar
  6. 6.
    Maier NM, Franco P, Lindner W (2001) Separation of enantiomers: needs, challenges, perspectives. J Chromatogr A 906(1‒2):3–33CrossRefGoogle Scholar
  7. 7.
    Kuroda R, Endo B, Abe M et al (2009) Chiral blastomere arrangement dictates zygotic left-right asymmetry pathway in snails. Nature 462(7274):790–794CrossRefGoogle Scholar
  8. 8.
    Capdevila J, Vogan KJ, Tabin CJ et al (2000) Mechanisms of left-right determination in vertebrates. Cell 101(1):9–21CrossRefGoogle Scholar
  9. 9.
    Francotte E, Lindner W (2006) Chirality in drug research. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  10. 10.
    Blaschke G, Kraft HP, Fickentscher K et al (1979) Chromatographic separation of racemic thalidomide and teratogenic activity of its enantiomers. Drug Res 29(10):1640–1642Google Scholar
  11. 11.
  12. 12.
    Noyori R (2002) Asymmetric catalysis: science and opportunities. Angew Chem Int Ed 41(12):2008–2022CrossRefGoogle Scholar
  13. 13.
    Sharpless BK (2002) Searching for new reactivity. Angew Chem Int Ed 41(12):2024–2032CrossRefGoogle Scholar
  14. 14.
    Knowles WS (2002) Asymmetric hydrogenations. Angew Chem Int Ed 41(12):1998–2007CrossRefGoogle Scholar
  15. 15.
    Morrison JD (1985) Asymmetric synthesis. Academic, New YorkGoogle Scholar
  16. 16.
    Subramanian G (2001) Chiral separation techniques. Wiley-VCH, WeinheimGoogle Scholar
  17. 17.
    Ward TJ (2006) Chiral separations. Anal Chem 78(12):3947–3956CrossRefGoogle Scholar
  18. 18.
    Hattori H (1995) Heterogeneous basic catalysis. Chem Rev 95(3):537–558CrossRefGoogle Scholar
  19. 19.
    Mizuno N, Misono M (1998) Heterogeneous catalysis. Chem Rev 98(1):199–218CrossRefGoogle Scholar
  20. 20.
    Trindade AF, Gois PM, Afonso CA (2009) Recyclable stereoselective catalysts. Chem Rev 109(2):418–514CrossRefGoogle Scholar
  21. 21.
    Kesanli B, Lin W (2003) Chiral porous coordination networks: rational design and applications in enantioselective processes. Coord Chem Rev 246(1‒2):305–326CrossRefGoogle Scholar
  22. 22.
    Ngo HL, Lin W (2005) Hybrid organic–inorganic solids for heterogeneous asymmetric catalysis. Top Catal 34:85–92CrossRefGoogle Scholar
  23. 23.
    Ma L, Abney C, Lin W (2009) Enantioselective catalysis with homochiral metal-organic frameworks. Chem Soc Rev 38(5):1248–1256CrossRefGoogle Scholar
  24. 24.
    Kim K, Banerjee M, Yoon M et al (2010) Chiral metal-organic porous materials: synthetic strategies and applications in chiral separation and catalysis. Top Curr Chem 293:115–153CrossRefGoogle Scholar
  25. 25.
    Bradshaw D, Claridge JB, Cussen EJ et al (2005) Design, chirality, and flexibility in nanoporous molecule-based materials. Acc Chem Res 38(4):273–282CrossRefGoogle Scholar
  26. 26.
    Song F, Zhang T, Wang C et al (2012) Chiral porous metal-organic frameworks with dual active sites for sequential asymmetric catalysis. Proc R Soc A 468(2143):2035–2052CrossRefGoogle Scholar
  27. 27.
    Férey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37(1):191–214CrossRefGoogle Scholar
  28. 28.
    Verbiest T, Elshocht SV, Kauranen M et al (1998) Strong enhancement of nonlinear optical properties through supramolecular chirality. Science 282(5390):913–915CrossRefGoogle Scholar
  29. 29.
    Seo JS, Whang D, Lee H et al (2000) A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 404(6781):982–986CrossRefGoogle Scholar
  30. 30.
    Huang CH (2010) Rare earth coordination chemistry: fundamentals and applications. Wiley, UKCrossRefGoogle Scholar
  31. 31.
    Yaghi OM, O’Keeffe M, Ockwig NW et al (2003) Reticular synthesis and the design of new materials. Nature 423(6941):705–714CrossRefGoogle Scholar
  32. 32.
    Rosi NL, Kim J, Eddaoudi M et al (2005) Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J Am Chem Soc 127(5):1504–1518CrossRefGoogle Scholar
  33. 33.
    Sabbatini N, Guardigli M, Lehn JM (1993) Luminescent lanthanide complexes as photochemical supramolecular devices. Coord Chem Rev 123(1‒2):201–228CrossRefGoogle Scholar
  34. 34.
    Allendorf MD, Bauer CA, Bhakta RK et al (2009) Luminescent metal-organic frameworks. Chem Soc Rev 38(5):1330–1352CrossRefGoogle Scholar
  35. 35.
    Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109(9):4283–4374CrossRefGoogle Scholar
  36. 36.
    Carlos LD, Ferreira RA, Bermudez Vde Z et al (2009) Lanthanide-containing light-emitting organic-inorganic hybrids: a bet on the future. Adv Mater 21(5):509–534CrossRefGoogle Scholar
  37. 37.
    Eliseeva SV, Bünzli JC (2010) Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39(1):189–227CrossRefGoogle Scholar
  38. 38.
    Bünzli JC, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34(12):1048–1077CrossRefGoogle Scholar
  39. 39.
    Zhou TH, Zhang J, Zhang HX et al (2011) A ligand-conformation driving chiral generation and symmetry-breaking crystallization of a zinc(II) organoarsonate. Chem Commun 47(31):8862–8864CrossRefGoogle Scholar
  40. 40.
    Yuan G, Shan KZ, Wang XL et al (2010) A series of novel chiral lanthanide coordination polymers with channels constructed from 16Ln-based cage-like building units. CrystEngComm 12(4):1147–1152CrossRefGoogle Scholar
  41. 41.
    Crassous J (2009) Chiral transfer in coordination complexes: towards molecular materials. Chem Soc Rev 38(3):830–845CrossRefGoogle Scholar
  42. 42.
    Lin X, Blake AJ, Wilson C et al (2006) A porous framework polymer based on a zinc(II) 4,4′-bipyridine-2,6,2′,6′-tetracarboxylate: synthesis, structure, and “zeolite-like” behaviors. J Am Chem Soc 128(33):10745–10753CrossRefGoogle Scholar
  43. 43.
    Zhang J, Chen S, Wu T et al (2008) Homochiral crystallization of microporous framework materials from achiral precursors by chiral catalysis. J Am Chem Soc 130(39):12882–12883CrossRefGoogle Scholar
  44. 44.
    Lin Z, Slawin AM, Morris RE (2007) Chiral induction in the ionothermal synthesis of a 3-D coordination polymer. J Am Chem Soc 129(16):4880–4881CrossRefGoogle Scholar
  45. 45.
    Kang Y, Chen S, Wang F et al (2011) Induction in urothermal synthesis of chiral porous materials from achiral precursors. Chem Commun 47(17):4950–4952CrossRefGoogle Scholar
  46. 46.
    Qiu S, Zhu G (2009) Molecular engineering for synthesizing novel structures of metal-organic frameworks with multifunctional properties. Coord Chem Rev 253(23–24):2891–2911CrossRefGoogle Scholar
  47. 47.
    Pérez-García L, Amabilino DB (2002) Spontaneous resolution under supramolecular control. Chem Soc Rev 31(6):342–356CrossRefGoogle Scholar
  48. 48.
    Pérez-García L, Amabilino DB (2007) Spontaneous resolution, whence and whither: from enantiomorphic solids to chiral liquid crystals, monolayers and macro- and supra-molecular polymers and assemblies. Chem Soc Rev 36(6):941–967CrossRefGoogle Scholar
  49. 49.
    Ma Y, Han Z, He Y et al (2007) A 3D chiral Zn(II) coordination polymer with triple Zn-oba-Zn helical chains (oba = 4,4′-oxybis(benzoate)). Chem Commun 40:4107–4109CrossRefGoogle Scholar
  50. 50.
    Yoon M, Srirambalaji R, Kim K (2012) Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem Rev 112(2):1196–1231CrossRefGoogle Scholar
  51. 51.
    Liu Y, Xuan W, Cui Y (2010) Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv Mater 22(37):4112–4135CrossRefGoogle Scholar
  52. 52.
    Zeng MH, Wang B, Wang XY et al (2006) Chiral magnetic metal-organic frameworks of dimetal subunits: magnetism tuning by mixed-metal compositions of the solid solutions. Inorg Chem 45(18):7069–7076CrossRefGoogle Scholar
  53. 53.
    Dybtsev DN, Yutkin MP, Peresypkina EV et al (2007) Isoreticular homochiral porous metal-organic structures with tunable pore sizes. Inorg Chem 46(17):6843–6845CrossRefGoogle Scholar
  54. 54.
    Zhang J, Yao YG, Bu XH (2007) Comparative study of homochiral and racemic chiral metal-organic frameworks built from camphoric acid. Chem Mater 19(21):5083–5089CrossRefGoogle Scholar
  55. 55.
    Song YM, Huang HX, Sun GM et al (2011) Multi-functional magnetic, ferroelectric, and fluorescent homochiral lanthanide (Ln)-camphorate compounds built on helical {Ln-O}n inorganic substructures. CrystEngComm 13(22):6827–6830CrossRefGoogle Scholar
  56. 56.
    Jhu ZR, Yang CI, Lee GH (2013) Two new series of rare-earth organic frameworks involving two structural architectures: syntheses, structures and magnetic properties. CrystEngComm 15(13):2456–2465CrossRefGoogle Scholar
  57. 57.
    Sun ML, Zhang X, Huang YY et al (2014) Homochiral 3D lanthanide camphorates with high thermal stability. New J Chem 38(1):55–58CrossRefGoogle Scholar
  58. 58.
    Sun ML, Zhang J, Lin QP et al (2010) Multifunctional homochiral lanthanide camphorates with mixed achiral terephthalate ligands. Inorg Chem 49(20):9257–9264CrossRefGoogle Scholar
  59. 59.
    Dang DB, An B, Bai Y et al (2013) Three-dimensional homochiral manganese-lanthanide frameworks based on chiral camphorates with multi-coordination modes. Chem Commun 49(22):2243–2245CrossRefGoogle Scholar
  60. 60.
    Tan X, Du YZ, Che YX et al (2013) Syntheses, structures and magnetic properties of one family of 3d-4f chiral metal-organic frameworks (MOFs) based on D(+)-camphoric acid. Inorg Chem Commun 36:63–67CrossRefGoogle Scholar
  61. 61.
    Qiu Y, Liu Z, Mou J et al (2010) Rationally designed and controlled syntheses of different series of 4d-4f heterometallic coordination frameworks based on lanthanide carboxylate and Ag(IN)2 substructures. CrystEngComm 12(1):277–290CrossRefGoogle Scholar
  62. 62.
    Qu ZR, Ye Q, Zhao H et al (2008) Homochiral laminar europium metal–organic framework with unprecedented giant dielectric anisotropy. Chem Eur J 14(11):3452–3456CrossRefGoogle Scholar
  63. 63.
    Ye Q, Fu DW, Tian H et al (2008) Multiferroic homochiral metal−organic framework. Inorg Chem 47(3):772–774CrossRefGoogle Scholar
  64. 64.
    Thushari S, Cha JAK, Sung HHY et al (2005) Microporous chiral metal coordination polymers: hydrothermal synthesis, channel engineering and stability of lanthanide tartrates. Chem Commun 44:5515–5517CrossRefGoogle Scholar
  65. 65.
    Amghouz Z, Roces L, Garcia-Granda S et al (2010) Metal organic frameworks assembled from Y(III), Na(I), and chiral flexible-achiral rigid dicarboxylates. Inorg Chem 49(17):7917–7926CrossRefGoogle Scholar
  66. 66.
    Amghouz Z, Garcia-Granda S, Garcia JR et al (2012) Series of metal organic frameworks assembled from Ln(III), Na(I), and chiral flexible-achiral rigid dicarboxylates exhibiting tunable UV-vis-IR light emission. Inorg Chem 51(3):1703–1716CrossRefGoogle Scholar
  67. 67.
    Gao Q, Wang X, Jacobson AJ (2011) Homochiral frameworks formed by reactions of lanthanide ions with a chiral antimony tartrate secondary building unit. Inorg Chem 50(18):9073–9082CrossRefGoogle Scholar
  68. 68.
    Li XF, Liu TF, Gao ZX et al (2011) Syntheses and characterization of homochiral 3-dimensional lanthanide-organic frameworks based on Ln4O4 clusters and L-aspartic acid. Chin J Struct Chem 30(5):757–763Google Scholar
  69. 69.
    Lin W (2007) Metal-organic frameworks for asymmetric catalysis and chiral separations. Mrs Bull 32(7):544–548CrossRefGoogle Scholar
  70. 70.
    Evans OR, Ngo HL, Lin W (2001) Chiral porous solids based on lamellar lanthanide phosphonates. J Am Chem Soc 123(42):10395–10396CrossRefGoogle Scholar
  71. 71.
    Cui Y, Ngo HL, White PS et al (2002) Homochiral 3D lanthanide coordination networks with an unprecedented 4966 topology. Chem Commun 16:1666–1667CrossRefGoogle Scholar
  72. 72.
    Ngo HL, Lin W (2002) Chiral crown ether pillared lamellar lanthanide phosphonates. J Am Chem Soc 124(48):14298–14299CrossRefGoogle Scholar
  73. 73.
    Jeong KS, Lee BH, Li Q et al (2011) Near achiral metal-organic frameworks from conformationally flexible homochiral ligands resulted by the preferential formation of pseudo-inversion center in asymmetric unit. CrystEngComm 13(5):1277–1279CrossRefGoogle Scholar
  74. 74.
    Hao Z, Song S, Su S et al (2013) Design and synthesis of enantiomerically pure chiral sandwichlike lamellar structure: new explorations from molecular building blocks to three-dimensional morphology. Cryst Growth Des 13(3):976–980CrossRefGoogle Scholar
  75. 75.
    Liang X, Zhang F, Zhao H et al (2014) A proton-conducting lanthanide metal-organic framework integrated with a dielectric anomaly and second-order nonlinear optical effect. Chem Commun 50(49):6513–6516CrossRefGoogle Scholar
  76. 76.
    Dang D, Wu P, He C et al (2010) Homochiral metal-organic frameworks for heterogeneous asymmetric catalysis. J Am Chem Soc 132(41):14321–14323CrossRefGoogle Scholar
  77. 77.
    Wang WH, Tian HR, Zhou ZC et al (2012) Two unusual chiral lanthanide-sulfate frameworks with helical tubes and channels constructed from interweaving two double-helical chains. Cryst Growth Des 12(5):2567–2571CrossRefGoogle Scholar
  78. 78.
    Gil-Hernandez B, Maclaren JK, Hoeppe HA et al (2012) Homochiral lanthanoid(III) mesoxalate metal-organic frameworks: synthesis, crystal growth, chirality, magnetic and luminescent properties. CrystEngComm 14(8):2635–2644CrossRefGoogle Scholar
  79. 79.
    Zhang LM, Deng DY, Peng G et al (2012) A series of three-dimensional (3D) chiral lanthanide coordination polymers generated by spontaneous resolution. CrystEngComm 14(23):8083–8089CrossRefGoogle Scholar
  80. 80.
    Guo X, Zhu G, Li Z et al (2006) A lanthanide metal-organic framework with high thermal stability and available Lewis-acid metal sites. Chem Commun 30:3172–3174CrossRefGoogle Scholar
  81. 81.
    Gustafsson M, Li Z, Zhu G et al (2008) A porous chiral lanthanide metal-organic framework with high thermal stability. Stud Surf Sci Catal 174A:451–454CrossRefGoogle Scholar
  82. 82.
    Jiang HL, Tsumori N, Xu Q (2010) A series of (6,6)-connected porous lanthanide-organic framework enantiomers with high thermostability and exposed metal sites: scalable syntheses, structures, and sorption properties. Inorg Chem 49(21):10001–10006CrossRefGoogle Scholar
  83. 83.
    Majeed Z, Mondal KC, Kostakis GE et al (2010) LnNa(PhCO2)4 (Ln = Ho, Dy): the first examples of chiral srs 3D networks constructed using the monotopic benzoate ligand. Chem Commun 46(15):2551–2553CrossRefGoogle Scholar
  84. 84.
    Wang MX, Long LS, Huang RB et al (2011) Influence of halide ions on the chirality and luminescent property of ionothermally synthesized lanthanide-based metal-organic frameworks. Chem Commun 47(35):9834–9836CrossRefGoogle Scholar
  85. 85.
    Rossin A, Giambastiani G, Peruzzini M et al (2012) Amine-templated polymeric lanthanide formates: synthesis, characterization, and applications in luminescence and magnetism. Inorg Chem 51(12):6962–6968CrossRefGoogle Scholar
  86. 86.
    Masu H, Tominaga M, Katagiri K et al (2006) 2-D coordination network of a cyclic amide with a lanthanide metal cation and its columnar stacking. CrystEngComm 8(8):578–580CrossRefGoogle Scholar
  87. 87.
    Tang Y, Tang K, Liu W et al (2008) Assembly, crystal structure, and luminescent properties of three-dimensional (10,3)-a netted rare earth coordination polymers. Sci China Chem 51(7):614–622CrossRefGoogle Scholar
  88. 88.
    Yan X, Cai Z, Yi C et al (2011) Anion-induced structures and luminescent properties of chiral lanthanide-organic frameworks assembled by an achiral tripodal ligand. Inorg Chem 50(6):2346–2353CrossRefGoogle Scholar
  89. 89.
    Tang K, Yun R, Lu Z et al (2013) High CO2/N2 selectivity and H2 adsorption of a novel porous yttrium metal-organic framework based on N,N′,N″-tris(isophthalyl)-1,3,5-benzenetricarboxamide. Cryst Growth Des 13(4):1382–1385CrossRefGoogle Scholar
  90. 90.
    Devic T, Wagner V, Guillou N et al (2011) Synthesis and characterization of a series of porous lanthanide tricarboxylates. Microporous Mesoporous Mater 140(1–3):25–33CrossRefGoogle Scholar
  91. 91.
    Mu B, Li F, Huang Y et al (2012) Breathing effects of CO2 adsorption on a flexible 3D lanthanide metal-organic framework. J Mater Chem 22(20):10172–10178CrossRefGoogle Scholar
  92. 92.
    Lin Z, Zou R, Liang J et al (2012) Pore size-controlled gases and alcohols separation within ultramicroporous homochiral lanthanide-organic frameworks. J Mater Chem 22(16):7813–7818CrossRefGoogle Scholar
  93. 93.
    Gu X, Xue D (2006) Spontaneously resolved homochiral 3D lanthanide–silver heterometallic coordination framework with extended helical Ln–O–Ag subunits. Inorg Chem 45(23):9257–9261CrossRefGoogle Scholar
  94. 94.
    Peng G, Ma L, Cai J et al (2011) Influence of alkali metal cation (Li(I), Na(I), K(I)) on the construction of chiral and achiral heterometallic coordination polymers. Cryst Growth Des 11(6):2485–2492CrossRefGoogle Scholar
  95. 95.
    Ma YS, Li H, Wang JJ et al (2007) Three-dimensional lanthanide(III)–copper(II) compounds based on an unsymmetrical 2-pyridylphosphonate ligand: an experimental and theoretical study. Chem Eur J 13(17):4759–4769CrossRefGoogle Scholar
  96. 96.
    Dong DP, Liu L, Sun ZG et al (2011) Synthesis, crystal structures, and luminescence and magnetic properties of 3D chiral and achiral lanthanide diphosphonates containing left- and right-handed helical chains. Cryst Growth Des 11(12):5346–5354CrossRefGoogle Scholar
  97. 97.
    Gil-Hernandez B, Hoppe HA, Vieth JK et al (2010) Spontaneous resolution upon crystallization of chiral La(III) and Gd(III) MOFs from achiral dihydroxymalonate. Chem Commun 46(43):8270–8272CrossRefGoogle Scholar
  98. 98.
    Dang S, Zhang JH, Sun ZM et al (2012) Luminescent lanthanide metal-organic frameworks with a large SHG response. Chem Commun 48(90):11139–11141CrossRefGoogle Scholar
  99. 99.
    Zhang M, Lu J, Hu R (2012) Chiral (6,3) network assembled by lanthanide and changeful dihydroxyfumaric acid. Chin J Chem 30(2):228–232CrossRefGoogle Scholar
  100. 100.
    Lu J, Mang D, Li L et al (2008) Hydrothermal synthesis of a chiral rare earth iodate (Gd(IO3)3·H2O) showing the rare (3,8)-connected (43)(4·62) (49·617·82) topology. J Coord Chem 61(9):1406–1411CrossRefGoogle Scholar
  101. 101.
    Ju W, Zhang D, Zhu D et al (2012) L- and D-[Ln(HCO2)(SO4)(H2O)]n (Ln = La, Ce, Pr, Nd, and Eu): chiral enantiomerically 3D architectures constructed by double-[Ln-O]n-helices. Inorg Chem 51(24):13373–13379CrossRefGoogle Scholar
  102. 102.
    Shi FN, Paz FAA, Ribeiro-Claro P et al (2013) Transposition of chirality from diphosphonate metal-organic framework precursors onto porous lanthanide pyrophosphates. Chem Commun 49(99):11668–11670CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringLanzhou UniversityLanzhouP. R. China

Personalised recommendations