Skip to main content

Luminescent Lanthanide Metal–Organic Frameworks

  • Chapter
  • First Online:
Book cover Lanthanide Metal-Organic Frameworks

Part of the book series: Structure and Bonding ((STRUCTURE,volume 163))

Abstract

More and more attention has been paid to the design and synthesis of the lanthanide metal–organic frameworks (LnMOFs). Their physicochemical properties were investigated deeply, especially in terms of the luminescent properties. Lanthanide ions, used as luminescence centers, in MOFs enable tuning options that exceed all other metals of the periodic table of the elements. This chapter explains the basic principles of lanthanide luminescence in advance, which will help the readers to understand the luminescent properties of the subsequent LnMOFs. Single-Ln3+ LnMOFs show fundamental luminescent phenomenon and law. Furthermore, mixed-Ln3+ LnMOFs exhibit significant ability of tunable white light emission and temperature measurement. Representative publication of LnMOFs with NIR luminescence and upconversion luminescence is also important to discuss here. Furthermore, bulk LnMOFs have been scaled down to the nanoregime to form nanoscale LnMOFs, which will enable their use in a broad range of applications, including drug delivery, bioimaging, and molecular sense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

1,3,5-BTC:

1,3,5-Benzenetricarboxylate

1,4-NDC:

1,4-Naphthalenedicarboxylate

ad:

Adeninate

BPDC:

Biphenyldicarboxylate

BTB:

1,3,5-Tris(4-carboxyphenyl)benzene

BTPCA:

1,1′,1″-(Benzene-1,3,5-triyl)tripiperidine-4-carboxylate

CPs:

Coordination polymers

CTAB:

Cetyltrimethylammonium bromide

DEF:

N,N′-Diethylformamide

DMA:

Dimethylammonium

DMAc:

N,N′-Dimethylacetamide

DMBDC:

2,5-Dimethoxy-1,4-benzenedicarboxylate

DMF:

N,N′-Dimethylformamide

DPA:

Dipicolinic acid

dpdc:

2,2-Diphenyldicarboxylate

H2bidc:

Benzimidazole-5,6-dicarboxylic acid

H2L4:

3,3-(4-Amino-4H-1,2,4-triazole-3,5-diyl)dibenzoic acid

H2oba:

4,4-Oxybis(benzoic acid)

H2ox:

Oxalic acid

H2PIA:

5-(Pyridin-4-yl)isophthalic acid

H2PVDC:

4,4-[(2,5-Dimethoxy-1,4-phenylene)di-2,1-ethenediyl]bisbenzoic acid

H3BPT:

Biphenyl-3,4,5-tricarboxylic acid

H3cpda:

5-(4-Carboxyphenyl)-2,6-pyridinedicarboxylic acid

H3DSB:

3,5-Disulfobenzoic acid

H3L2:

4,4-((2-((4-Carboxyphenoxy)methyl)-2-methylpropane-1,3-diyl)bis(oxy))dibenzoic acid

H4L3:

N-phenyl-N′-phenyl bicyclo[2,2,2]-oct-7-ene-2,3,5,6-tetracarboxdiimide tetracarboxylic acid

H4MDIP:

Methylenediisophthalic acid

H4pdca:

Pyridine-2,3-dicarboxylic acid

H4ptptc:

p-Terphenyl-3,3″,5,5″-tetracarboxylic acid

H4tpabn:

N,N′,N′-Tetrakis[(6-carboxypyridin-2-yl)methyl]butylenediamine

H5L5:

3,5-Bis(1-methoxy-3,5-benzene dicarboxylic acid)benzoic acid

HL1:

4-(Dipyridin-2-yl)aminobenzoic acid

IP:

1H-imidazo[4,5-f][1,10]-phenanthroline

LnMOFs:

Lanthanide metal–organic frameworks

m-bdc:

1,3-Benzenedicarboxylate

MOFs:

Metal–organic frameworks

MRI:

Magnetic resonance imaging

NIR:

Near infrared

NMOFs:

Nanoscale metal–organic frameworks

p-BDC:

1,4-Benzenedicarboxylate

p-BDC-F4 :

Tetrafluoroterephthalate or 2,3,5,6-tetrafluoro-1,4-benzenedicarboxylate

phen:

1,10-Phenanthroline

PVP:

Polyvinylpyrrolidone

UC:

Upconversion

References

  1. Halder GJ, Kepert CJ, Moubaraki B, Murray KS, Cashion JD (2002) Guest-dependent spin crossover in a nanoporous molecular framework material. Science 298:1762–1765

    Article  CAS  Google Scholar 

  2. Férey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37:191–214

    Article  Google Scholar 

  3. Kitagawa S, Kitaura R, S-i N (2004) Functional porous coordination polymers. Angew Chem Int Ed 43:2334–2375

    Article  CAS  Google Scholar 

  4. Dincă M, Long JR (2008) Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. Angew Chem Int Ed 47:6766–6779

    Article  Google Scholar 

  5. Rowsell JL, Yaghi OM (2005) Strategies for hydrogen storage in metal-organic frameworks. Angew Chem Int Ed 44:4670–4679

    Article  CAS  Google Scholar 

  6. Ma L, Abney C, Lin W (2009) Enantioselective catalysis with homochiral metal-organic frameworks. Chem Soc Rev 38:1248–1256

    Article  CAS  Google Scholar 

  7. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal-organic framework materials as catalysts. Chem Soc Rev 38:1450–1459

    Article  CAS  Google Scholar 

  8. Evans OR, Lin W (2002) Crystal engineering of NLO materials based on metal-organic coordination networks. Acc Chem Res 35:511–522

    Article  CAS  Google Scholar 

  9. Liu Y, Xuan W, Cui Y (2010) Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv Mater 22:4112–4135

    Article  CAS  Google Scholar 

  10. Li JR, Kuppler RJ, Zhou HC (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38:1477–1504

    Article  CAS  Google Scholar 

  11. Chen B, Xiang S, Qian G (2010) Metal-organic frameworks with functional pores for recognition of small molecules. Acc Chem Res 43:1115–1124

    Article  CAS  Google Scholar 

  12. Xie Z, Ma L, deKrafft KE, Jin A, Lin W (2010) Porous phosphorescent coordination polymers for oxygen sensing. J Am Chem Soc 132:922–923

    Article  CAS  Google Scholar 

  13. Kent CA, Mehl BP, Ma L, Papanikolas JM, Meyer TJ, Lin W (2010) Energy transfer dynamics in metal-organic frameworks. J Am Chem Soc 132:12767–12769

    Article  CAS  Google Scholar 

  14. Rieter WJ, Pott KM, Taylor KML, Lin W (2008) Nanoscale coordination polymers for platinum-based anticancer drug delivery. J Am Chem Soc 130:11584–11585

    Article  CAS  Google Scholar 

  15. Huxford RC, Dekrafft KE, Boyle WS, Liu D, Lin W (2012) Lipid-coated nanoscale coordination polymers for targeted delivery of antifolates to cancer cells. Chem Sci 3:198–204

    Article  CAS  Google Scholar 

  16. Meek ST, Greathouse JA, Allendorf MD (2011) Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv Mater 23:249–267

    Article  CAS  Google Scholar 

  17. Das MC, Xiang S, Zhang Z, Chen B (2011) Functional mixed metal-organic frameworks with metalloligands. Angew Chem Int Ed 50:10510–10520

    Article  CAS  Google Scholar 

  18. Zhu QL, Li J, Xu Q (2013) Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance. J Am Chem Soc 135:10210–10213

    Article  CAS  Google Scholar 

  19. Kaltsoyannis N, Scott P (1999) The f elements. In: Evans J (ed) Oxford chemistry primers. Oxford Science Publications, Oxford

    Google Scholar 

  20. Cotton S (1991) Lanthanides and actinides, MacMillan Physical Science Series. MacMillan Education, London

    Google Scholar 

  21. Bünzli J-CG, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34:1048–1077

    Article  Google Scholar 

  22. Moore EG, Samuel APS, Raymond KN (2009) From antenna to assay: lessons learned in lanthanide luminescence. Acc Chem Res 42:542–552

    Article  CAS  Google Scholar 

  23. Bünzli J-CG (2006) Benefiting from the unique properties of lanthanide ions. Acc Chem Res 39:53–61

    Article  Google Scholar 

  24. Carnall WT (1979) The absorption and fluorescence spectra of rare earth ions in solution. In: Gschneidner Jr KA, Eyring L (eds) Handbook on the physics and chemistry of rare earths, vol 3. Elsevier, Amsterdam, pp 171–208

    Google Scholar 

  25. Bünzli J-CG (2005) Rare earth luminescent centers in organic and biochemical compounds. In: Liu G, Jacquier B (eds) Spectroscopic properties of rare earths in optical materials. Springer-Verlag, Berlin Heidelberg, pp 462–499

    Chapter  Google Scholar 

  26. Judd BR (1962) Optical absorption intensities of rare-earth ions. Phys Rev 127:750–761

    Article  CAS  Google Scholar 

  27. Ofelt GS (1962) Intensities of crystal spectra of rare-earth ions. J Chem Phys 37:511–520

    Article  CAS  Google Scholar 

  28. Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109:4283–4374

    Article  CAS  Google Scholar 

  29. Weissman SI (1942) Intramolecular energy transfer the fluorescence of complexes of europium. J Chem Phys 10:214–217

    Article  CAS  Google Scholar 

  30. Whan RE, Crosby GA (1962) Luminescence studies of rare earth complexes: benzoylacetonate and dibenzoylmethide chelates. J Mol Spectrosc 8:315–327

    Article  CAS  Google Scholar 

  31. Crosby GA, Whan RE, Alire RM (1961) Intramolecular energy transfer in rare earth chelates. role of the triplet state. J Chem Phys 34:743–748

    Article  CAS  Google Scholar 

  32. Crosby GA, Whan RE, Freeman JJ (1962) Spectroscopic studies of rare earth chelates. J Phys Chem 66:2493–2499

    Article  CAS  Google Scholar 

  33. Feng J, Zhang H (2013) Hybrid materials based on lanthanide organic complexes: a review. Chem Soc Rev 42:387–410

    Article  CAS  Google Scholar 

  34. Eliseeva SV, Bünzli J-CG (2010) Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39:189–227

    Article  CAS  Google Scholar 

  35. Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836–850

    Article  CAS  Google Scholar 

  36. Beeby A, Faulkner S, Parker D, Williams JAG (2001) Sensitised luminescence from phenanthridine appended lanthanide complexes: analysis of triplet mediated energy transfer processes in terbium, europium and neodymium complexes. J Chem Soc Perkin Trans (2) 1268–1273

    Google Scholar 

  37. Guo X, Zhu G, Sun F, Li Z, Zhao X, Li X, Wang H, Qiu S (2006) Synthesis, structure, and luminescent properties of microporous lanthanide metal-organic frameworks with inorganic rod-shaped building units. Inorg Chem 45:2581–2587

    Article  CAS  Google Scholar 

  38. Li Z, Zhu G, Guo X, Zhao X, Jin Z, Qiu S (2007) Synthesis, structure, and luminescent and magnetic properties of novel lanthanide metal-organic frameworks with zeolite-like topology. Inorg Chem 46:5174–5178

    Article  CAS  Google Scholar 

  39. Xia J, Zhao B, Wang H-S, Shi W, Ma Y, Song H-B, Cheng P, Liao D-Z, Yan S-P (2007) Two- and three-dimensional lanthanide complexes structures, and properties. Inorg Chem 46:3450–3458

    Article  CAS  Google Scholar 

  40. Black CA, Costa JS, Fu WT, Massera C, Roubeau O, Teat SJ, Aromı´ G, Gamez P, Reedijk J (2009) 3-D lanthanide metal-organic frameworks structure, photoluminescence, and magnetism. Inorg Chem 48:1062–1068

    Google Scholar 

  41. Reineke TM, Eddaoudi M, Fehr M, Kelley D, Yaghi OM (1999) From condensed lanthanide coordination solids to microporous frameworks having accessible metal sites. J Am Chem Soc 121:1651–1657

    Article  CAS  Google Scholar 

  42. Cepeda J, Balda R, Beobide G, Castillo O, Fernandez J, Luque A, Perez-Yanez S, Roman P, Vallejo-Sanchez D (2011) Lanthanide(III)/pyrimidine-4,6-dicarboxylate/oxalate extended frameworks: a detailed study based on the lanthanide contraction and temperature effects. Inorg Chem 50:8437–8451

    Article  CAS  Google Scholar 

  43. Harbuzaru BV, Corma A, Rey F, Atienzar P, Jorda JL, Garcia H, Ananias D, Carlos LD, Rocha J (2008) Metal-organic nanoporous structures with anisotropic photoluminescence and magnetic properties and their use as sensors. Angew Chem Int Ed 47:1080–1083

    Article  CAS  Google Scholar 

  44. Gai Y-L, Jiang F-L, Chen L, Bu Y, Su K-Z, Al-Thabaiti SA, Hong M-C (2013) Photophysical studies of europium coordination polymers based on a tetracarboxylate ligand. Inorg Chem 52:7658–7665

    Article  CAS  Google Scholar 

  45. Su S, Chen W, Qin C, Song S, Guo Z, Li G, Song X, Zhu M, Wang S, Hao Z, Zhang H (2012) Lanthanide anionic metal-organic frameworks containing semirigid tetracarboxylate ligands: structure, photoluminescence, and magnetism. Cryst Growth Des 12:1808–1815

    Article  CAS  Google Scholar 

  46. Ramya AR, Sharma D, Natarajan S, Reddy ML (2012) Highly luminescent and thermally stable lanthanide coordination polymers designed from 4-(dipyridin-2-yl)aminobenzoate: efficient energy transfer from Tb3+ to Eu3+ in a mixed lanthanide coordination compound. Inorg Chem 51:8818–8826

    Article  CAS  Google Scholar 

  47. Steemers FJ, Verboom W, Reinhoudt DN, van der Tol EB, Verhoeven JW (1995) New sensitizer-modified calix[4]arenes enabling near-UV excitation of complexed luminescent lanthanide ions. J Am Chem Soc 117:9408–9414

    Article  CAS  Google Scholar 

  48. Li X, Budai JD, Liu F, Howe JY, Zhang J, Wang X-J, Gu Z, Sun C, Meltzer RS, Pan Z (2013) New yellow Ba0.93Eu0.07Al2O4 phosphor for warm-white light-emitting diodes through single-emitting-center conversion. Light Sci Appl 2:e50

    Google Scholar 

  49. Hye Oh J, Ji Yang S, Rag Do Y (2014) Healthy, natural, efficient and tunable lighting: four-package white leds for optimizing the circadian effect, color quality and vision performance. Light Sci Appl 3:e141

    Article  Google Scholar 

  50. Zhang Y-H, Li X, Song S (2013) White light emission based on a single component Sm(III) framework and a two component Eu(III)-doped Gd(III) framework constructed from 2,2'-diphenyl dicarboxylate and 1 h-imidazo[4,5-f][1,10]-phenanthroline. Chem Commun 49:10397–10399

    Article  CAS  Google Scholar 

  51. Sava DF, Rohwer LES, Rodriguez MA, Nenoff TM (2012) Intrinsic broad-band white-light emission by a tuned, corrugated metal-organic framework. J Am Chem Soc 134:3983–3986

    Article  CAS  Google Scholar 

  52. Tang Q, Liu S, Liu Y, Miao J, Li S, Zhang L, Shi Z, Zheng Z (2013) Cation sensing by a luminescent metal-organic framework with multiple lewis basic sites. Inorg Chem 52:2799–2801

    Article  CAS  Google Scholar 

  53. Tang Q, Liu S, Liu Y, He D, Miao J, Wang X, Ji Y, Zheng Z (2014) Color tuning and white light emission via in situ doping of luminescent lanthanide metal-organic frameworks. Inorg Chem 53:289–293

    Article  CAS  Google Scholar 

  54. Ma X, Li X, Cha Y-E, Jin L-P (2012) Highly thermostable one-dimensional lanthanide(III) coordination polymers constructed from benzimidazole-5,6-dicarboxylic acid and 1,10-phenanthroline: synthesis, structure, and tunable white-light emission. Cryst Growth Des 12:5227–5232

    Article  CAS  Google Scholar 

  55. Dang S, Zhang J-H, Sun Z-M (2012) Tunable emission based on lanthanide(III) metal-organic frameworks: an alternative approach to white light. J Mater Chem 22:8868–8873

    Article  CAS  Google Scholar 

  56. Zhu M, Hao Z-M, Song X-Z, Meng X, Zhao S-N, Song S-Y, Zhang H-J (2014) A new type of double-chain based 3D lanthanide(III) metal-organic framework demonstrating proton conduction and tunable emission. Chem Commun 50:1912–1914

    Article  CAS  Google Scholar 

  57. Brites CDS, Lima PP, Silva NJO, Millán A, Amaral VS, Palacio F, Carlos LD (2011) Lanthanide-based luminescent molecular thermometers. New J Chem 35:1177–1183

    Article  CAS  Google Scholar 

  58. Carlos LD, Ferreira RAS, de Zea Bermudez V, Julián-Lopez B, Escribano P (2011) Progress on lanthanide-based organic–inorganic hybrid phosphors. Chem Soc Rev 40:536–549

    Google Scholar 

  59. Feng J, Tian K, Hu D, Wang S, Li S, Zeng Y, Li Y, Yang G (2011) A triarylboron-based fluorescent thermometer: sensitive over a wide temperature range. Angew Chem Int Ed 50:8072–8076

    Article  CAS  Google Scholar 

  60. Cui Y, Xu H, Yue Y, Guo Z, Yu J, Chen Z, Gao J, Yang Y, Qian G, Chen B (2012) A luminescent mixed-lanthanide metal-organic framework thermometer. J Am Chem Soc 134:3979–3982

    Article  CAS  Google Scholar 

  61. Rao X, Song T, Gao J, Cui Y, Yang Y, Wu C, Chen B, Qian G (2013) A highly sensitive mixed lanthanide metal-organic framework self-calibrated luminescent thermometer. J Am Chem Soc 135:15559–15564

    Article  CAS  Google Scholar 

  62. Cui Y, Zou W, Song R, Yu J, Zhang W, Yang Y, Qian G (2014) A ratiometric and colorimetric luminescent thermometer over a wide temperature range based on a lanthanide coordination polymer. Chem Commun 50:719–721

    Article  CAS  Google Scholar 

  63. D'Vries RF, Álvarez-García S, Snejko N, Bausá LE, Gutiérrez-Puebla E, de Andrés A, Monge MÁ (2013) Multimetal rare earth MOFs for lighting and thermometry: tailoring color and optimal temperature range through enhanced disulfobenzoic triplet phosphorescence. J Mater Chem C 1:6316–6324

    Article  Google Scholar 

  64. Rocha J, Carlos LD, Paz FAA, Ananias D (2011) Luminescent multifunctional lanthanides-based metal-organic frameworks. Chem Soc Rev 40:926–940

    Article  CAS  Google Scholar 

  65. Chen B, Yang Y, Zapata F, Qian G, Luo Y, Zhang J, Lobkovsky EB (2006) Enhanced near-infrared–luminescence in an erbium tetrafluoroterephthalate framework. Inorg Chem 45:8882–8886

    Article  CAS  Google Scholar 

  66. Marchal C, Filinchuk Y, Chen X-Y, Imbert D, Mazzanti M (2009) Lanthanide-based coordination polymers assembled by a flexible multidentate linker: design, structure, photophysical properties, and dynamic solid-state behavior. Chem Eur J 15:5273–5288

    Article  CAS  Google Scholar 

  67. White KA, Chengelis DA, Zeller M, Geib SJ, Szakos J, Petoud S, Rosi NL (2009) Near-infrared emitting ytterbium metal-organic frameworks with tunable excitation properties. Chem Commun 4506–4508

    Google Scholar 

  68. White KA, Chengelis DA, Gogick KA, Stehman J, Rosi NL, Petoud S (2009) Near-infrared luminescent lanthanide MOF barcodes. J Am Chem Soc 131:18069–18071

    Article  CAS  Google Scholar 

  69. Guo Z, Xu H, Su S, Cai J, Dang S, Xiang S, Qian G, Zhang H, O’Keeffe M, Chen B (2011) A robust near infrared luminescent ytterbium metal-organic framework for sensing of small molecules. Chem Commun 47:5551–5553

    Article  CAS  Google Scholar 

  70. Dang S, Min X, Yang W, Yi F-Y, You H, Sun Z-M (2013) Lanthanide metal-organic frameworks showing luminescence in the visible and near-infrared regions with potential for acetone sensing. Chem Eur J 19:17172–17179

    Article  CAS  Google Scholar 

  71. Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104:139–173

    Article  CAS  Google Scholar 

  72. Yang J, Yue Q, Li G-D, Cao J-J, Li G-H, Chen J-S (2006) Structures, photoluminescence, up-conversion, and magnetism of 2D and 3D rare-earth coordination polymers with multicarboxylate linkages. Inorg Chem 45:2857–2865

    Article  CAS  Google Scholar 

  73. Mahata P, Ramya KV, Natarajan S (2007) Synthesis, structure and optical properties of rare-earth benzene carboxylates. Dalton Trans 4017–4026

    Google Scholar 

  74. Mahata P, Ramya KV, Natarajan S (2008) Pillaring of CdCl2-like layers in lanthanide metal-organic frameworks: synthesis, structure, and photophysical properties. Chem Eur J 14:5839–5850

    Article  CAS  Google Scholar 

  75. Weng D, Zheng X, Jin L (2006) Assembly and upconversion properties of lanthanide coordination polymers based on hexanuclear building blocks with (μ3-OH) bridges. Eur J Inorg Chem 2006:4184–4190

    Article  Google Scholar 

  76. Sun C-Y, Zheng X-J, Chen X-B, Li L-C, Jin L-P (2009) Assembly and upconversion luminescence of lanthanide-organic frameworks with mixed acid ligands. Inorg Chim Acta 362:325–330

    Article  CAS  Google Scholar 

  77. Dong Y-B, Wang P, Ma J-P, Zhao X-X, Wang H-Y, Tang B, Huang R-Q (2007) Coordination-driven nanosized lanthanide “molecular lantern” with tunable luminescent properties. J Am Chem Soc 129:4872–4873

    Article  CAS  Google Scholar 

  78. Wang P, Ma J-P, Dong Y-B, Huang R-Q (2007) Tunable luminescent lanthanide coordination polymers based on reversible solid-state ion-exchange monitored by ion-dependent photoinduced emission spectra. J Am Chem Soc 129:10620–10621

    Article  CAS  Google Scholar 

  79. Wang P, Ma J-P, Dong Y-B (2009) Guest-driven luminescence: lanthanide-based host-guest systems with bimodal emissive properties based on a guest-driven approach. Chem Eur J 15:10432–10445

    Article  CAS  Google Scholar 

  80. An J, Shade CM, Chengelis-Czegan DA, Petoud S, Rosi NL (2011) Zinc-adeninate metal-organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations. J Am Chem Soc 133:1220–1223

    Article  CAS  Google Scholar 

  81. Ma M-L, Qin J-H, Ji C, Xu H, Wang R, Li B-J, Zang S-Q, Hou H-W, Batten SR (2014) Anionic porous metal-organic framework with novel 5-connected vbk topology for rapid adsorption of dyes and tunable white light emission. J Mater Chem C 2:1085–1093

    Article  CAS  Google Scholar 

  82. Qin J-S, Zhang S-R, Du D-Y, Shen P, Bao S-J, Lan Y-Q, Su Z-M (2014) A microporous anionic metal-organic framework for sensing luminescence of lanthanide(III) ions and selective absorption of dyes by ionic exchange. Chem Eur J 20:5625–5630

    Article  CAS  Google Scholar 

  83. Luo F, Batten SR (2010) Metal-organic framework (MOF): lanthanide(III)-doped approach for luminescence modulation and luminescent sensing. Dalton Trans 39:4485–4488

    Article  CAS  Google Scholar 

  84. Lan Y-Q, Jiang H-L, Li S-L, Xu Q (2011) Mesoporous metal-organic frameworks with size-tunable cages: selective CO2 uptake, encapsulation of Ln3+ cations for luminescence, and column-chromatographic dye separation. Adv Mater 23:5015–5020

    Article  CAS  Google Scholar 

  85. Wang Y, Yang J, Liu Y-Y, Ma J-F (2013) Controllable syntheses of porous metal-organic frameworks: encapsulation of Ln(III) cations for tunable luminescence and small drug molecules for efficient delivery. Chem Eur J 19:14591–14599

    Article  CAS  Google Scholar 

  86. He W-W, Li S-L, Yang G-S, Lan Y-Q, Su Z-M, Fu Q (2012) Controllable synthesis of a non-interpenetrating microporous metal-organic framework based on octahedral cage-like building units for highly efficient reversible adsorption of iodine. Chem Commun 48:10001–10003

    Article  CAS  Google Scholar 

  87. Li Y-A, Ren S-K, Liu Q-K, Ma J-P, Chen X, Zhu H, Dong Y-B (2012) Encapsulation and sensitization of UV–vis and near infrared lanthanide hydrate emitters for dual- and bimodal-emissions in both air and aqueous media based on a porous heteroatom-rich Cd(II)-framework. Inorg Chem 51:9629–9635

    Article  CAS  Google Scholar 

  88. Zhou Y, Yan B (2014) Imparting tunable and white-light luminescence to a nanosized metal-organic framework by controlled encapsulation of lanthanide cations. Inorg Chem 53:3456–3463

    Article  CAS  Google Scholar 

  89. Della Rocca J, Liu D, Lin W (2011) Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res 44:957–968

    Article  CAS  Google Scholar 

  90. Rieter WJ, Taylor KML, An H, Lin W, Lin W (2006) Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. J Am Chem Soc 128:9024–9025

    Article  CAS  Google Scholar 

  91. Rieter WJ, Taylor KML, Lin W (2007) Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing. J Am Chem Soc 129:9852–9853

    Article  CAS  Google Scholar 

  92. Foucault-Collet A, Gogick KA, White KA, Villettea S, Pallier A, Collet G, Kieda C, Li T, Geib SJ, Rosi NL, Petoud S (2013) Lanthanide near infrared imaging in living cells with Yb3+ nano metal organic frameworks. Proc Natl Acad Sci U S A 110:17199–17204

    Article  CAS  Google Scholar 

  93. Rosi NL, Kim J, Eddaoudi M, Chen B, O'Keeffe M, Yaghi OM (2005) Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J Am Chem Soc 127:1504–1518

    Article  CAS  Google Scholar 

  94. Liu K, You H, Zheng Y, Jia G, Song Y, Huang Y, Yang M, Jia J, Guo N, Zhang H (2010) Facile and rapid fabrication of metal-organic framework nanobelts and color-tunable photoluminescence properties. J Mater Chem 20:3272–3279

    Article  CAS  Google Scholar 

  95. Guo H, Zhu Y, Qiu S, Lercher JA, Zhang H (2010) Coordination modulation induced synthesis of nanoscale Eu1-xTbx-metal-organic frameworks for luminescent thin films. Adv Mater 22:4190–4192

    Article  CAS  Google Scholar 

  96. Yang W, Feng J, Song S, Zhang H (2012) Microwave-assisted modular fabrication of nanoscale luminescent metal-organic framework for molecular sensing. ChemPhysChem 13:2734–2738

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial aid from the National Natural Science Foundation of China (Grant Nos. 91122030, 21210001, 21221061, and 51372242) and the National Key Basic Research Program of China (No. 2014CB643802).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu-Yan Song or Hong-Jie Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Song, XZ., Song, SY., Zhang, HJ. (2014). Luminescent Lanthanide Metal–Organic Frameworks. In: Cheng, P. (eds) Lanthanide Metal-Organic Frameworks. Structure and Bonding, vol 163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2014_160

Download citation

Publish with us

Policies and ethics