Skip to main content

MOFs of Uranium and the Actinides

  • Chapter
  • First Online:

Part of the book series: Structure and Bonding ((STRUCTURE,volume 163))

Abstract

Although the transition d- or 4f-block elements are the most used metals for the construction of metal–organic frameworks (MOFs), actinide cations were also involved in the elaboration of various hybrid organic–inorganic assemblies. The actinide elements with progressively filled 5f orbitals are a unique series, not only due to their radioactivity, but also because most of them have varied oxidation states. Uranium as the most important actinide element was exploited primarily to manufacture nuclear weapons due to its ability of nuclear fission. Besides its nuclear physics, the rich chemical state of this element also realizes rich chemistry and the formation of various compounds with other elements. Among the uranyl–organic frameworks (UOFs), uranyl UO2 2+ with the oxidation state of +6 for the metal is the most common structural unit, considering its reactivity with the different types of carboxylic acids. The construction of UOFs is always based on the coordination of organic ligands on the bipyramidal polyhedral structures of UO2 2+ species as primary building units. To date, multidimensional extended uranium-bearing coordination complexes have been studied, and an important library of UOFs have been developed and well defined. In this chapter, we describe efforts to synthesize MOFs of uranium and other actinides with desired structures. The basic building units and the strategies to construct different UOFs are addressed here, especially for the impact of organic ligands, structure-direct agent, and incorporation of heterometal ions. Although most of the actinide–organic frameworks are based on the uranium element due to its coordination advantages and long research history, increasing other actinide–organic frameworks with different organic ligands and structures have been developed. The typical MOFs of other actinides (actinide oxalates, actinide carboxylate, and actinide carboxyphosphonate) are also reviewed in this chapter. This work may contribute to the understanding of MOFs with actinide cations and provide a valuable reference for the development of novel MOFs materials with advanced functions.

This is a preview of subscription content, log in via an institution.

References

  1. Liu Y, Xuan WM, Cui Y (2010) Engineering homochiral metal-organic frameworks for heterogeneous asymmetric 215 catalysis and enantioselective separation. Adv Mater 22:4112–4135

    CAS  Google Scholar 

  2. Li JR, Kuppler RJ, Zhou HC (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38:1477–1504

    CAS  Google Scholar 

  3. Dinca M, Long JR (2008) Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. Angew Chem Int Ed 47:6766–6779

    CAS  Google Scholar 

  4. Rowsell JLC, Yaghi OM (2005) Strategies for hydrogen storage in metal-organic frameworks. Angew Chem Int Ed 44:4670–4679

    CAS  Google Scholar 

  5. Lee J, Farha OK, Roberts J et al (2009) Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chem Soc Rev 38:1450–1459

    CAS  Google Scholar 

  6. Ma LQ, Abney C, Lin WB (2009) Enantioselective catalysis with homochiral metal-organic frameworks. Chem Soc Rev 38:1248–1256

    CAS  Google Scholar 

  7. Ma LQ, Falkowski JM, Abney C et al (2010) A series of isoreticular chiral metal-organic frameworks as a tunable platform for asymmetric catalysis. Nat Chem 2:838–846

    CAS  Google Scholar 

  8. Evans OR, Lin WB (2002) Crystal engineering of NLO materials based on metal-organic coordination networks. Acc Chem Res 35:511–522

    CAS  Google Scholar 

  9. Chen B, Xiang S, Qiang G (2010) Metal-organic frameworks with functional pores for recognition of small molecules. Acc Chem Res 43:1115–1124

    CAS  Google Scholar 

  10. Xie ZG, Ma LQ, Dekrafft KE et al (2010) Porous phosphorescent coordination polymers for oxygen sensing. J Am Chem Soc 132:922–923

    CAS  Google Scholar 

  11. Liu D, Lin WB (2011) Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res 44:957–968

    Google Scholar 

  12. Wang KX, Chen JS (2011) Extended structures and physicochemical properties of uranyl–organic compounds. Acc Chem Res 44:531–540

    CAS  Google Scholar 

  13. Chen W, Yuan HM, Wang JY et al (2003) Synthesis, structure and photoelectronic effects of a uranium–zinc–organic coordination polymer containing infinite metal oxide sheets. J Am Chem Soc 125:9266–9267

    CAS  Google Scholar 

  14. Adelani PO, Albrecht-Schmitt TE (2010) Differential ion exchange in elliptical uranyl diphosphonate nanotubules. Angew Chem Int Ed 49:8909–8911

    CAS  Google Scholar 

  15. Wang S, Alekseev EV, Diwu J et al (2010) NDTB-1: a supertetrahedral cationic framework that removes TcO4 from solution. Angew Chem Int Ed 49:1057–1060

    Google Scholar 

  16. Wang S, Alekseev EV, Ling J et al (2010) Polarity and chirality in uranyl borates: insights into understanding the vitrification of nuclear waste and the development of nonlinear optical materials. Chem Mater 22:2155–2163

    Google Scholar 

  17. Alsobrook AN, Hauser BG, Hupp JT et al (2010) Cubic and rhombohedral heterobimetallic networks constructed from uranium, transition metals, and phosphonoacetate: new methods for constructing porous materials. Chem Commun 46:9167–9169

    CAS  Google Scholar 

  18. Liao ZL, Li GD, Wei X, Yu Y et al (2010) Construction of three-dimensional uranyl–organic frameworks with benzenetricarboxylate ligands. Eur J Inorg Chem 2010:3780–3788

    Google Scholar 

  19. Kim JY, Norquist AJ, O’Hare D (2003) [(Th2F5)(NC7H5O4)2(H2O)][NO3]: an actinide–organic open framework. J Am Chem Soc 125:12688–12689

    CAS  Google Scholar 

  20. Ok KM, Sung J, Hu G et al (2008) TOF-2: a large 1D channel thorium organic framework. J Am Chem Soc 130:3762–3763

    CAS  Google Scholar 

  21. Burns PC (2005) U6+ minerals and inorganic compounds: Insights into an expanded structural hierarchy of crystal structures. Can Mineral 43:1839–1894

    CAS  Google Scholar 

  22. Forbes TZ, McAlpin JG, Murphy R et al (2008) Metal-oxygen isopolyhedra assembled into fullerene topologies. Angew Chem Int Ed 47:2824–2827

    CAS  Google Scholar 

  23. Ling J, Qiu J, Sigmon GE et al (2010) Uranium pyrophosphate/methylenediphosphonate polyoxometalate cage clusters. J Am Chem Soc 132:13395–13402

    CAS  Google Scholar 

  24. Ling J, Wallace CM, Szymanowski JES et al (2010) Hybrid uranium–oxalate fullerene topology cage clusters. Angew Chem Int Ed 49:7271–7273

    CAS  Google Scholar 

  25. Sigmon GE, Burns PC (2011) Rapid self-assembly of uranyl polyhedra into crown clusters. J Am Chem Soc 133:9137–9139

    CAS  Google Scholar 

  26. Liao ZL, Li GD, Bi MH et al (2008) Preparation, structures, and photocatalytic properties of three new uranyl–organic assembly compounds. Inorg Chem 47:4844–4853

    CAS  Google Scholar 

  27. Zheng YZ, Tong ML, Chen XM (2005) Synthesis, structure and photoluminescent studies of two novel layered uranium coordination polymers constructed from UO(OH) polyhedra and pyridinedicarboxylates. Eur J Inorg Chem 4109–4117

    Google Scholar 

  28. Edelstein NM, Fuger J, Katz JJ (2006) The chemistry of the actinide and transactinide elements. Spring, The Netherlands

    Google Scholar 

  29. Bergerhoff G, Brown ID (1987) In: Allen FH et al. (ed) Crystallographic databases. International Union of Crystallography, Chester

    Google Scholar 

  30. Natrajan LS (2012) Developments in the photophysics and photochemistry of actinide ions and their coordination compounds. Coord Chem Rev 256:1583–1603

    CAS  Google Scholar 

  31. Baldovi JJ, Cardona-Serra S, Clemente JM et al (2013) Modeling the properties of uranium-based single ion magnets. Chem Sci 4:938–946

    CAS  Google Scholar 

  32. Mougel V, Chatelain L, Pécaut J et al (2012) Uranium and manganese assembled in a wheel-shaped nanoscale single-molecule magnet with high spin-reversal barrier. Nat Chem 4:1011–1017

    CAS  Google Scholar 

  33. Fox AR, Bart SC, Meyer K et al (2008) Towards uranium catalysts. Nature 455:341–349

    CAS  Google Scholar 

  34. Arnold PL (2011) Uranium-mediated activation of small molecules. Chem Commun 47:9005–9010

    CAS  Google Scholar 

  35. Yaghi OM, O’Keeffe M, Ockwig NW et al (2003) Reticular synthesis and the design of new materials. Nature 423:705–714

    CAS  Google Scholar 

  36. Kitagawa S, Kitaura R, Noro SI (2004) Functional porous coordination polymers. Angew Chem Int Ed 43:2334–2375

    CAS  Google Scholar 

  37. Férey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37:191–214

    Google Scholar 

  38. Zhou HC, Long JR, Yaghi OM (2012) Introduction to metal−organic frameworks. Chem Rev 112:673–674

    Google Scholar 

  39. Yu ZT, Liao ZL, Jiang YS et al (2005) Water-insoluble Ag-U-organic assemblies with photocatalytic activity. Chem Eur J 11:2642–2650

    CAS  Google Scholar 

  40. Polly LA, Jason BL, Dipti P (2009) Pentavalent uranyl complexes. Coord Chem Rev 253:1973–1978

    Google Scholar 

  41. Allen FH (2002) The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Cryst B 58:380–388

    Google Scholar 

  42. Jiang YS, Yu ZT, Liao ZL et al (2006) Syntheses and photoluminescent properties of two uranyl-containing compounds with extended structures. Polyhedron 25:1359–1366

    CAS  Google Scholar 

  43. Walker SM, Halasyamani PS, Allen S et al (1999) From molecules to frameworks: variable dimensionality in the UO2(CH3COO)2 · 2H2O/HF(aq)/piperazine system. Syntheses, structures, and characterization of zero-dimensional (C4N2H12)UO2F4 · 3H2O, one-dimensional (C4N2H12)2U2F12 · H2O, two-dimensional (C4N2H12)2(U2O4F5)4 · 11H2O, and three-dimensional (C4N2H12)U2O4F6. J Am Chem Soc 121:10513–10521

    CAS  Google Scholar 

  44. Zhang Y, Livens FR, Collison D et al (2002) Synthesis and characterisation of uranyl substituted malonato complexes: part I. Structural diversity with dimethylmalonate and different counter-cations. Polyhedron 21:69–96

    CAS  Google Scholar 

  45. Bean AC, Ruf M, Albrecht-Schmitt TE (2001) Excision of uranium oxide chains and ribbons in the novel one-dimensional uranyl iodates K2[(UO2)3(IO3)4O2] and Ba[(UO2)2(IO3)2O2](H2O). Inorg Chem 40:3959–3963

    CAS  Google Scholar 

  46. Krivovichev SV, Kahlenberg V, Kaindl R et al (2005) Nanoscale tubules in uranyl selenates. Angew Chem Int Ed 44:1134–1136

    CAS  Google Scholar 

  47. Albrecht-Schmitt TE (2005) Actinide materials adopt curvature: nanotubules and nanospheres. Angew Chem Int Ed 44:4836–4838

    CAS  Google Scholar 

  48. Yaghi OM, Li GM, Li HL (1995) Selective binding and removal of guests in a microporous metal-organic framework. Nature 378:703–706

    CAS  Google Scholar 

  49. Kim J, Whang D, Lee JI (1993) Guest-dependent [Cd(CN)2]n host structures of cadmium cyanide–alcohol clathrates: two new [Cd(CN)2]n frameworks formed with PrnOH and PriOH guests. J Chem Soc Chem Commun 1400–1402

    Google Scholar 

  50. Fujita M, Kwon YJ, Washzu S et al (1994) Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium(II) and 4,4′-bipyridine. J Am Chem Soc 116:1151–1152

    CAS  Google Scholar 

  51. Rajan KS, Martell AE (1965) Equilibrium studies of uranyl complexes. III. Interaction of uranyl ion with citric acid. Inorg Chem 4:462–469

    CAS  Google Scholar 

  52. Bailey EH, Mosselmans JFW, Schofield PF (2005) Uranyl-citrate speciation in acidic aqueous solutions – an XAS study between 25 and 200 °C. Chem Geol 216:1–16

    CAS  Google Scholar 

  53. Clark DL, Conradson SD, Donohoe RJ et al (1999) Chemical speciation of the uranyl ion under highly alkaline conditions. Synthesis, structures, and oxo ligand exchange dynamics. Inorg Chem 38:1456–1466

    CAS  Google Scholar 

  54. Rowland CE, Cahill CL (2010) Capturing hydrolysis products in the solid state: effects of pH on uranyl squarates under ambient conditions. Inorg Chem 49:8668–8673

    CAS  Google Scholar 

  55. Jiang YS, Li GH, Tian Y et al (2006) Uranyl pyridine-dicarboxylate compounds with clustered water molecules. Inorg Chem Commun 9:595–598

    CAS  Google Scholar 

  56. Thuéry P, Masci B (2008) Uranyl-organic frameworks with 1,2,3,4-butanetetracarboxylate and 1,2,3,4-cyclobutanetetracarboxylate ligands. Cryst Growth Des 8:3430–3436

    Google Scholar 

  57. Masci B, Thuéry P (2005) Uranyl complexes with the pyridine-2,6-dicarboxylato ligand: new dinuclear species with μ-η2, η2-peroxide, μ2-hydroxide or μ2-methoxide bridges. Polyhedron 24:229–237

    CAS  Google Scholar 

  58. Lintvedt RL, Heeg MJ, Ahmad N et al (1982) Uranyl complexes of b-polyketonates. Crystal and molecular structure of a mononuclear uranyl 1,3,5-triketonate and a novel trinuclear uranyl 1,3,5-triketonate with a trigonal-planar bridging oxide. Inorg Chem 21:2350–2356

    CAS  Google Scholar 

  59. Szabo Z, Furo I, Csoregh I (2005) Combinatorial multinuclear NMR and X-ray diffraction studies of uranium(VI)-nucleotide complexes. J Am Chem Soc 127:15236–15247

    CAS  Google Scholar 

  60. Yu ZT, Li GH, Jiang YS et al (2003) A uranium-zinc-organic molecular compound containing planar tetranuclear uranyl units. Dalton Trans 2013:4219–4220

    Google Scholar 

  61. Borkowski LA, Cahill CL (2006) Crystal engineering with the uranyl cation II. Mixed aliphatic carboxylate/aromatic pyridyl coordination polymers: synthesis, crystal structures, and sensitized luminescence. Cryst Growth Des 6:2248–2259

    CAS  Google Scholar 

  62. Thuéry P, Nierlich M, Souley B et al (1999) Complexation of a hexameric uranium(VI) cluster by p-benzylcalix[7]arene. J Chem Soc Dalton Trans 1999:2589–2594

    Google Scholar 

  63. Ionut M, Natacha H, Thierry L et al (2011) Revisiting the uranyl-phthalate system: isolation and crystal structures of two types of uranyl-organic frameworks (UOF). Cryst Growth Des 11:1940–1947

    Google Scholar 

  64. Villa EM, Marr CJ, Jouffret LJ et al (2012) Systematic evolution from uranyl (VI) phosphites to uranium (IV) phosphates. Inorg Chem 51:6548–6558

    Google Scholar 

  65. Norquist AJ, Doran MB, O’Hare D (2005) The role of amine sulfates in hydrothermal uranium chemistry. Inorg Chem 44:3837–3843

    CAS  Google Scholar 

  66. Lee CS, Wang SL, Lii KH (2009) Cs2K(UO)2Si4O12: a mixed-valence uranium(IV, V) silicate. J Am Chem Soc 131:15116–15117

    CAS  Google Scholar 

  67. Wang SA, Alekseev EV, Stritzinger JT et al (2010) Structure–property relationships in lithium, silver, and cesium uranyl borates. Chem Mater 22:5983–5991

    CAS  Google Scholar 

  68. Yu ZT, Liao ZL, Jiang YS et al (2004) Water–insoluble Ag–U–organic assemblies with photocatalytic activity. Chem Commun 2004:1814–1815

    Google Scholar 

  69. Mihalcea I, Henry N, Volkringer C et al (2012) Series of mixed uranyl–lanthanide (Ce, Nd) organic coordination polymers with aromatic polycarboxylates linkers. Cryst Growth Des 12:526–535

    CAS  Google Scholar 

  70. Olchowka J, Falaise C, Volkringer C et al (2013) Structural observations of heterometallic uranyl copper(II) carboxylates and their solid-state topotactic transformation upon dehydration. Chem Eur J 19:2012–2022

    CAS  Google Scholar 

  71. Wu HY, Yang WT, Sun ZM (2012) Tailor-made zinc uranyl diphosphonates from layered to framework structures. Cryst Growth Des 12:4669–4675

    CAS  Google Scholar 

  72. Yang WT, Wu HY, Wang RX et al (2012) From 1D chain to 3D framework uranyl diphosphonates: syntheses, crystal structures, and selective ion exchange. Inorg Chem 51:11458–11465

    CAS  Google Scholar 

  73. Diwu J, Albrecht-Schmitt TE (2012) Chiral uranium phosphonates constructed from achiral units with three-dimensional frameworks. Chem Commun 48:3827–3829

    CAS  Google Scholar 

  74. Yang WT, Tian T, Wu HY et al (2013) Syntheses and structures of a series of uranyl phosphonates and sulfonates: an insight into their correlations and discrepancies. Inorg Chem 52:2736–2743

    CAS  Google Scholar 

  75. Thuéry P (2013) Sulfonate complexes of actinide ions: structural diversity in uranyl complexes with 2-sulfobenzoate. Inorg Chem 52:435–447

    Google Scholar 

  76. Thuéry P (2012) Uranyl–lanthanide heterometallic assemblies with 1,2-ethanedisulfonate and cucurbit[6]uril ligands. Cryst Eng Comm 14:3363–3366

    Google Scholar 

  77. Tian T, Yang W, Pan QJ et al (2012) The first uranyl arsonates featuring heterometallic cation–cation interactions with UVI═O–ZnII bonding. Inorg Chem 51:11150–11154

    CAS  Google Scholar 

  78. Adelani PO, Jouffret LJ, Szymanowski JES et al (2012) Correlations and differences between uranium (VI) arsonates and phosphonates. Inorg Chem 51:12032–12040

    CAS  Google Scholar 

  79. Mal SS, Dickman MH, Kortz U (2008) Actinide polyoxometalates: incorporation of uranyl–peroxo in U-shaped 36-tungsto-8-phosphate. Chem Eur J 14:9851–9855

    CAS  Google Scholar 

  80. Miro P, Ling J, Qiu J et al (2012) Experimental and computational study of a new wheel-shaped {[W5O21]3[(UVIO2)2(μ-O2)]3}30− polyoxometalate. Inorg Chem 51:8784–8790

    CAS  Google Scholar 

  81. Adelani PO, Albrecht-Schmitt TE (2011) Metal-controlled assembly of uranyl diphosphonates toward the design of functional uranyl nanotubules. Inorg Chem 50:12184–12191

    CAS  Google Scholar 

  82. Adelani PO, Albrecht-Schmitt TE (2009) Uranyl diphosphonates with pillared structures. Inorg Chem 48:2732–2734

    CAS  Google Scholar 

  83. Grohol D, Subramanian MA, Poojary DM et al (1996) Synthesis, crystal structures, and proton conductivity of two linear-chain uranyl phenylphosphonates. Inorg Chem 35:5264–5271

    CAS  Google Scholar 

  84. Yu ZT, Li GH, Jiang YS et al (2003) A uranium–zinc–organic molecular compound containing planar tetranuclear uranyl units. Dalton Trans 2003:4219–4220

    Google Scholar 

  85. Thuéry P (2011) Uranyl–organic assemblies with acetate-bearing phenyl- and cyclohexyl-based ligands. Cryst Growth Des 11:347–355

    Google Scholar 

  86. Knope KE, Cahill CL (2009) Homometallic uranium (VI) phosphonoacetates containing interlayer dipyridines. Inorg Chem 48:6845–6851

    CAS  Google Scholar 

  87. Kerr AT, Cahill CL (2011) Crystal engineering with the uranyl cation III. Mixed aliphatic dicarboxylate/aromatic dipyridyl coordination polymers: synthesis, structures, and speciation. Cryst Growth Des 11:5634–5641

    CAS  Google Scholar 

  88. Thuéry P (2009) Two novel uranyl–organic frameworks with cyclohexane-1,3-dicarboxylate ligands. Cryst Eng Comm 11:232–234

    Google Scholar 

  89. Borkowski LA, Cahill CL (2003) A novel uranium-containing coordination polymer: poly [dioxouranium (VI)-4-n-pentane-1, 5-dicarboxylato]. Inorg Chem 42:7041–7045

    CAS  Google Scholar 

  90. Lhoste J, Henry N, Roussel P et al (2011) An uranyl citrate coordination polymer with a 3D open-framework involving uranyl cation–cation interactions. Dalton Trans 40:2422–2424

    CAS  Google Scholar 

  91. Li H, Eddaoudi M, O’Keeffe M et al (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279

    CAS  Google Scholar 

  92. Eddaoudi M, Kim J, Rossi N et al (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295:469–472

    CAS  Google Scholar 

  93. Wu HY, Wang RX, Yang WT et al (2012) From 1D chain to 3D framework uranyl diphosphonates: syntheses, crystal structures, and selective ion exchange. Inorg Chem 51:3103–3107

    CAS  Google Scholar 

  94. Yang WT, Dang S, Wang H, Tian T et al (2013) Synthesis, structures, and properties of uranyl hybrids constructed by a variety of mono-and polycarboxylic acids. Inorg Chem 52:12394–12402

    CAS  Google Scholar 

  95. Immirzi A, Bombieri G, Degetto S et al (1975) The crystal and molecular structure of pyridine-2,6-dicarboxylatodioxouranium(VI) monohydrate. Sect B 31:1023–1028

    Google Scholar 

  96. Xie YR, Zhao H, Wang XS et al (2003) 2D chiral uranyl (VI) coordination polymers with second‐harmonic generation response and ferroelectric properties. Eur J Inorg Chem 2003:3712–3715

    Google Scholar 

  97. Harrowfield JM, Lugan N, Shahverdizadeh GH et al (2006) Solid-state luminescence and π-stacking in crystalline uranyl dipicolinates. Eur J Inorg Chem 2006:389–396

    Google Scholar 

  98. Frisch M, Cahill CL (2006) Synthesis, structure and fluorescent studies of novel uranium coordination polymers in the pyridinedicarboxylic acid system. Dalton Trans 2006:4679–4690

    Google Scholar 

  99. Thuéry P (2009) Two uranyl–organic frameworks with pyridinecarboxylate ligands. A novel heterometallic uranyl–copper(II) complex with a cation–cation interaction. Inorg Chem Commun 12:800–803

    Google Scholar 

  100. Lis S, Glatty Z, Meinrath G et al (2010) Poly (isonicotinic acid N-oxide–isonicotinate-N-oxide-chloro-uranyl): the interpenetrating grids created by coordination and hydrogen bonds. J Chem Crystallogr 40:646–649

    CAS  Google Scholar 

  101. Cantos PM, Frisch M, Cahill CL (2010) Synthesis, structure and fluorescence properties of a uranyl-2,5-pyridinedicarboxylic acid coordination polymer: the missing member of the UO22 + -2, n-pyridinedicarboxylic series. Inorg Chem Commun 13:1036–1039

    CAS  Google Scholar 

  102. Masci B, Thuéry P (2008) Pyrazinetetracarboxylic acid as an assembler ligand in uranyl–organic frameworks. Cryst Growth Des 8:1689–1696

    CAS  Google Scholar 

  103. Masci B, Thuéry P (2008) Hydrothermal synthesis of uranyl–organic frameworks with pyrazine-2,3-dicarboxylate linkers. Cryst Eng Comm 10:1082–1087

    CAS  Google Scholar 

  104. Frisch M, Cahill CL (2005) Syntheses, structures and fluorescent properties of two novel coordination polymers in the U–Cu–H3pdc system. Dalton Trans 2005:1518–1523

    Google Scholar 

  105. Thuéry PA (2010) Lanthanide ion-decorated uranyl–organic two-dimensional assembly with all-cis 1,2,3,4,5,6-cyclohexanehexacarboxylic acid. Cryst Growth Des 10:2061–2063

    Google Scholar 

  106. Kim JY, Norquist AJ, O’Hare D (2003) Incorporation of uranium(VI) into metal-organic framework solids, [UO2(C4H4O4)] · H2O, [UO2F(C5H6O4)] · 2H2O, and [(UO2)1.5(C8H4O4)2]2[(CH3)2NCOH2] · H2O. Dalton Trans 2003:2813–2814

    Google Scholar 

  107. Borkowski LA, Cahill CL (2004) A novel uranium-containing coordination polymer: poly [[aqua (benzene-1, 3, 5-tricarboxylato) dioxouranium (VI)] monohydrate]. Acta Crystallogr Sect E 60:m198–m200

    CAS  Google Scholar 

  108. Go YB, Wang X, Jacobson AJ (2007) (6,3)-Honeycomb Structures of Uranium(VI) Benzenedicarboxylate Derivatives: The Use of Noncovalent Interactions to Prevent Interpenetration. Inorg Chem 46:6594–6600

    CAS  Google Scholar 

  109. Borkowski LA, Cahill CL (2005) A novel uranium-containing coordination polymer: poly [dioxouranium (VI)-4-n-pentane-1, 5-dicarboxylato]. Acta Crystallogr Sect E 61:m816–m817

    CAS  Google Scholar 

  110. Thuéry P (2007) Reaction of uranyl nitrate with carboxylic diacids under hydrothermal conditions. Crystal structure of complexes with l (+)-tartaric and oxalic acids. Polyhedron 26:101–106

    Google Scholar 

  111. Thuéry P (2006) Uranyl ion complexation by citric and tricarballylic acids: hydrothermal synthesis and structure of two- and three-dimensional uranium–organic frameworks. Chem Commun 2006:853–855

    Google Scholar 

  112. Thuéry P (2007) Uranyl ion complexation by citric and citramalic acids in the presence of diamines. Inorg Chem 46:2307–2315

    Google Scholar 

  113. Thuéry P (2008) Novel two-dimensional uranyl–organic assemblages in the citrate and D(−)-citramalate families. Cryst Eng Comm 10:79–85

    Google Scholar 

  114. Liang L, Cai Y, Weng NS et al (2009) A novel uranyl complex UO2(tci)(C3H5N2) · H2O: synthesis, crystal structure and characterization. Inorg Chem Commun 12:86–88

    CAS  Google Scholar 

  115. Thuéry P (2008) One-dimensional uranium-organic framework in catena-poly[[di-μ2-hydroxido-bis[dioxouranium(VI)]]-di-μ2–2-pyridylacetato-χ3O, N:O';χ3O:O', N]. Acta Crystallogr Sect C 64:m50–m52

    Google Scholar 

  116. Thuéry P (2009) Uranyl–organic bilayer assemblies with flexible aromatic di-, tri- and tetracarboxylic acids. Cryst Eng Comm 11:1081–1088

    Google Scholar 

  117. Andrews MB, Cahill CL (2013) Uranyl bearing hybrid materials: synthesis, speciation, and solid-state structures. Chem Rev 113:1121–1136

    CAS  Google Scholar 

  118. Leciejewicz J, Alcock N, Kemp TJ (1995) Coordination chemistry, vol 82. Springer, Berlin, Heidelberg, pp 43–84

    Google Scholar 

  119. Mihalcea I, Volkringer C, Henry N et al (2012) Series of mixed uranyl–lanthanide (Ce, Nd) organic coordination polymers with aromatic polycarboxylates linkers. Inorg Chem 51:9610–9618

    CAS  Google Scholar 

  120. Severance RC, Vaughn SA, Smith MD et al (2011) Structures and luminescent properties of new uranyl-based hybrid materials. Solid State Sci 13:1344–1353

    CAS  Google Scholar 

  121. Thuéry P (2011) Uranyl ion complexation by aliphatic dicarboxylic acids in the presence of cucurbiturils as additional ligands or structure-directing agents. Cryst Growth Des 11:2606–2620

    Google Scholar 

  122. Loiseau T, Mihalcea I, Henry N et al (2014) The crystal chemistry of uranium carboxylates. Coord Chem Rev 266–267:69–109

    Google Scholar 

  123. Andrews MB, Cahill CL (2012) Utilizing hydrogen bonds and halogen–halogen interactions in the design of uranyl hybrid materials. Dalton Trans 41:3911–3914

    Google Scholar 

  124. Deifel NP, Cahill CL (2011) Combining coordination and supramolecular chemistry for the formation of uranyl-organic hybrid materials. Chem Commun 47:6114–6116

    CAS  Google Scholar 

  125. Masci B, Gabrielli M, Mortera S et al (2002) Hydrogen bonded supramolecular assemblies from uranyl ion complexes of tetrahomodioxacalix[4]arenes with various counterions. Polyhedron 21:1125–1131

    CAS  Google Scholar 

  126. Cantos PM, Pope SJA, Cahill CL (2013) An exploration of homo- and heterometallic UO2 2+ hybrid materials containing chelidamic acid: synthesis, structure, and luminescence studies. Cryst Eng Commun 15:9039–9051

    CAS  Google Scholar 

  127. Wu HY, Ma YQ, Zhang XW et al (2013) Syntheses, structures and luminescent properties of two organic templated uranyl phosphonates. Inorg Chem Commun 34:55–57

    CAS  Google Scholar 

  128. Thuéry P (2013) 2,2′-Bipyridine and 1,10-phenanthroline as coligands or structure-directing agents in uranyl–organic assemblies with polycarboxylic acids. Eur J Inorg Chem 2013:4563–4573

    Google Scholar 

  129. Jouffret LJ, Wylie EM, Burns PC (2013) Amine templating effect absent in uranyl sulfates synthesized with 1,4-n-butyldiamine. J Solid State Chem 197:160–165

    CAS  Google Scholar 

  130. Norquist AJ, Doran MB, Thomas PM et al (2003) Controlled structural variations in templated uranium sulfates. Inorg Chem 42:5949–5953

    CAS  Google Scholar 

  131. Krivovichev SV, Gurzhiy VV, Tananaev IG et al (2009) Full view uranyl selenates with organic templates: principles of structure and characteristics of self-organization. Russ J Gen Chem 79:2723–2730

    CAS  Google Scholar 

  132. Davis ME, Lobo RF (1992) Zeolite and molecular sieve synthesis. Chem Mater 4:756–768

    CAS  Google Scholar 

  133. de Lill DT, Bozzuto DJ, Cahill CL (2005) Templated metal-organic frameworks: synthesis, structures, thermal properties and solid-state transformation of two novel calcium–adipate frameworks. Dalton Trans 2005:2111–2115

    Google Scholar 

  134. de Lill DT, Gunning NS, Cahill CL (2005) Toward templated metal-organic frameworks: synthesis, structures, thermal properties, and luminescence of three novel lanthanide-adipate frameworks. Inorg Chem 44:258–266

    Google Scholar 

  135. Burrows AD, Cassar K, Friend RMW et al (2005) Solvent hydrolysis and templating effects in the synthesis of metal-organic frameworks. Cryst Eng Comm 7:548–550

    CAS  Google Scholar 

  136. Liu YL, Kravtsov VC, Eddaoudi M (2008) Template-directed assembly of zeolite-like metal-organic frameworks (ZMOFs): A usf-ZMOF with an unprecedented zeolite topology. Angew Chem Int Ed 47:8446–8449

    CAS  Google Scholar 

  137. Halper SR, Do L, Stork JR et al (2006) Topological control in heterometallic metal-organic frameworks by anion templating and metalloligand design. J Am Chem Soc 128:15255–15268

    CAS  Google Scholar 

  138. Mihalcea I, Henry N, Loiseau T (2014) Crystal chemistry of uranyl carboxylate coordination networks obtained in the presence of organic amine molecules. Eur J Inorg Chem 8:1322–1332

    Google Scholar 

  139. Paula M, Cantos, Christopher L et al (2014) A family of UO2 2+–5-Nitro-1,3-dicarboxylate hybrid materials: structural variation as a function of pH and structure directing species. Cryst Growth Des 14:3044–3053

    Google Scholar 

  140. Thuéry P (2013) Uranyl–3d block metal ion heterometallic carboxylate complexes including additional chelating nitrogen donors. Cryst Eng Comm 15:6533–6545

    Google Scholar 

  141. Thuéry P, Rivière E (2013) Uranyl–copper(II) heterometallic oxalate complexes: coordination polymers and frameworks. Dalton Trans 42:10551–10558

    Google Scholar 

  142. Kemp DS, Petrakis KS (1981) Synthesis and conformational analysis of cis,cis-1,3,5-trimethylcyclohexane-1,3,5-tricarboxylic acid. J Org Chem 46:5140–5143

    CAS  Google Scholar 

  143. Thuéry PA (2014) Highly adjustable coordination system: nanotubular and molecular cage species in uranyl ion complexes with Kemp’s Triacid. Cryst Growth Des 14:901–904

    Google Scholar 

  144. Wang CM, Liao CH, Kao HM et al (2005) Hydrothermal synthesis and characterization of (UO2)2F8(H2O)2Zn2(4,4′-bpy)2 · (4,4′-bpy), a mixed-metal uranyl aquofluoride with a pillared layer structure. Inorg Chem 44:6294–6298

    CAS  Google Scholar 

  145. Cahill CL, de Lill DT, Frisch M et al (2007) Homo- and heterometallic coordination polymers from the f elements. Cryst Eng Comm 9:15–26

    CAS  Google Scholar 

  146. Pierre T (2014) Increasing complexity in the uranyl Ion–Kemp’s triacid system: from one- and two-dimensional polymers to uranyl–copper(II) dodeca- and hexadecanuclear species. Cryst Growth Des 14:2665–2676

    Google Scholar 

  147. Xia Y, Wang KX, Chen JS (2010) Synthesis, structure characterization and photocatalytic properties of two new uranyl naphthalene-dicarboxylate coordination polymer compounds. Inorg Chem Commun 13:1542–1547

    CAS  Google Scholar 

  148. Thuéry PA (2009) Nanosized uranyl camphorate cage and its use as a building unit in a metal-organic framework. Cryst Growth Des 9:4592–4594

    Google Scholar 

  149. Wang X, Simard M, Wuest JD (1994) Molecular tectonics. Three-dimensional organic networks with zeolitic properties. J Am Chem Soc 116:12119–12120

    CAS  Google Scholar 

  150. Ghadiri MR, Granja JR, Miligan RA (1993) Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366:324–327

    CAS  Google Scholar 

  151. Copp SB, Subramanian S, Zaworotko MJ (1992) Supramolecular chemistry of manganese complex [Mn(CO)3(.mu.3-OH)]4: assembly of a cubic hydrogen-bonded diamondoid network with 1,2-diaminoethane. J Am Chem Soc 114:8719–8720

    CAS  Google Scholar 

  152. Yaghi OM, Richardson DA, Li G et al (1994) Open-framework solids with diamond-like structures prepared from clusters and metal-organic building blocks. Mater Res Soc Symp Proc 371:15–19

    Google Scholar 

  153. Yaghi OM, Li G (1995) Mutually interpenetrating sheets and channels in the extended structure of [Cu(4,4′-bpy)Cl]. Angew Chem Int Ed 34:207–209

    CAS  Google Scholar 

  154. Hoskins BF, Robson R et al (1990) Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4″,4″′-tetracyanotetraphenylmethane]BF4.xC6H5NO2. J Am Chem Soc 112:1546–1554

    CAS  Google Scholar 

  155. Ferey G (2001) Microporous solids: from organically templated inorganic skeletons to hybrid frameworks…ecumenism in chemistry. Chem Mater 13:3084–3098

    CAS  Google Scholar 

  156. Hernandez-Molina M, lorenzo-Luis PA, Ruiz-Perez C (2001) Contrasting crystal supramolecularity for [Fe(phen)3]I8 and [Mn(phen)3]I8: complementary orthogonality and complementary helicity. Cryst Eng Commun 16:1–8

    Google Scholar 

  157. Rao CNR, Natarajan S, Vaidhyanathan R (2004) Metal carboxylates with open architectures. Angew Chem Int Ed 43:1466–1496

    CAS  Google Scholar 

  158. Runde W, Brodnax LF, Goff G et al (2009) Directed synthesis of crystalline plutonium(III) and (IV) oxalates: accessing redox-controlled separations in acidic solutions. Inorg Chem 48:5967–5972

    CAS  Google Scholar 

  159. Favas MC, Kepert DL, Patrick JM et al (1983) Structure and stereochemistry in f-block complexes of high co-ordination number. Part 5. Ten-co-ordination: the crystal structures of tetrapotassium tetraoxalatouranate(IV) tetrahydrate(orthorhombic and triclinic phases), bicapped square antiprismatic and sphenocoronal stereochemistries. J Chem Soc Dalton Trans 1983:571–581

    Google Scholar 

  160. Akhtar MN, Smith AJ (1975) The crystal structure of tetrapotassium tetraoxalatothorium(IV) tetrahydrate, K4Th(C2O4)4.4H2O. Acta Crystallogr B31:1361–1366

    CAS  Google Scholar 

  161. Imaz I, Bravic G, Sutter JP (2005) Structural and zeolitic features of a 3D heterometallic porous architecture constructed from a {M(oxalate)4}4− building unit. Chem Commun 2005:993–995

    Google Scholar 

  162. Clavier N, Hingant N, Rivenet M et al (2010) X-Ray diffraction and μ-Raman investigation of the monoclinic-orthorhombic phase transition in Th1−xUx(C2O4)2 · 2H2O solid solutions. Inorg Chem 49:1921–1931

    CAS  Google Scholar 

  163. Yeon J, Smith MK, Sefat AS et al (2013) Crystal growth, structural characterization, and magnetic properties of new uranium(IV) containing mixed metal oxalates: Na2U2M(C2O4)6(H2O)4 (M=Mn2+, Fe2+, Co2+, and Zn2+). Inorg Chem 52:2199–2207

    Google Scholar 

  164. Thuéry P (2011) Solid state structure of thorium(IV) complexes with common aminopolycarboxylate ligands. Inorg Chem 50:1898–1904

    Google Scholar 

  165. Chapelet-Arab B, Nowogrocki G, Abraham F et al (2005) U(IV)/Ln(III) unexpected mixed site in polymetallic oxalato complexes. Part I. Substitution of Ln(III) for U(IV) from the new oxalate (NH4)2U2(C2O4)5 · 0.7H2O. J Solid State Chem 178:3046–3054

    CAS  Google Scholar 

  166. Andreev G, Budantseva FA (2011) Moist, polymeric structure of oxalato-bridged complexes of tetravalent actinides Th, U, Np and Pu. Inorg Chem 50:11481–11486

    CAS  Google Scholar 

  167. Bean AC, Garcia E, Scott BL et al (2004) Structural variability in neptunium(V) oxalate compounds: synthesis and structural characterization of Na2NpO2(C2O4)OH · H2O. Inorg Chem 43:6145–6147

    CAS  Google Scholar 

  168. Sokolov MN, Gushchin AL, Kovalenko KA et al (2007) Triangular oxalate clusters [W33-S)(μ2-S2)3(C2O4)3]2− as building blocks for coordination polymers and nanosized complexes. Inorg Chem 46:2115–2123

    CAS  Google Scholar 

  169. Andreev GB, Budantseva NA, Tananaev IG et al (2008) Organically templated Np(IV) coordination polymer with in situ formed oxalate anion (ImidazoleH)[Np(C2O4)(CH3SO3)3(H2O)2]. Inorg Chem Commun 11:802–804

    CAS  Google Scholar 

  170. Chackraburtty DM (1963) X-ray evidence of plutonium (III) oxalate decahydrate. Acta Crystallogr 16:834

    CAS  Google Scholar 

  171. Choppin GR, Thakur P, Mathur JN (2006) Complexation thermodynamics and structural aspects of actinide–aminopolycarboxylates. Coord Chem Rev 250:936–947

    CAS  Google Scholar 

  172. Cartwright AJ, May CC, Worsfold PJ et al (2007) Characterisation of thorium–ethylenediaminetetraacetic acid and thorium–nitrilotriacetic acid species by electrospray ionisation-mass spectrometry. Anal Chim Acta 590:125–131

    CAS  Google Scholar 

  173. Bonin L, Guillaumont D, Jeanson A et al (2009) Thermodynamics and structure of actinide (IV) complexes with nitrilotriacetic acid. Inorg Chem 48:3943–3953

    CAS  Google Scholar 

  174. Jeanson A, Dahou S, Guillaumont D et al (2009) A comparative study of actinide complexation in three ligand systems with increasing complexity. J Phys Conf Ser 190:012185

    Google Scholar 

  175. Xia Y, Felmy AR, Rao L et al (2003) Thermodynamic model for the solubility of ThO2(am) in the aqueous Na+-H+-OH-NO3 -H2O-EDTA system. Radiochim Acta 91:751–760

    CAS  Google Scholar 

  176. Frisch M, Cahill CL (2008) Thorium (IV) coordination polymers in the pyridine and pyrazinedicarboxylic acid systems. Cryst Growth Des 8:2921–2928

    CAS  Google Scholar 

  177. Ok KM, O'Hare D (2008) Synthesis, structure, and characterization of a new thorium–organic framework material, Th3F5[(C10H14)(CH2CO2)2]3(NO3). Dalton Trans 2008:5560–5562

    Google Scholar 

  178. Adelani PO, Albrecht-Schmitt TE (2010) Comparison of thorium (IV) and uranium (VI) carboxyphosphonates. Inorg Chem 49:5701–5705

    CAS  Google Scholar 

  179. Grohol D, Clearfield A (1997) Solid-state water-catalyzed transformation at room temperature of a nonluminescent linear-chain uranyl phenylphosphonate into a luminescent one. J Am Chem Soc 119:4662–4668

    CAS  Google Scholar 

  180. Martin KJ, Squarttrito PJ, Clearfield A (1989) The crystal and molecular structure of zinc phenylphosphonate. Inorg Chim Acta 155:7–9

    CAS  Google Scholar 

  181. Zhang Y, Clearfield A (1992) Synthesis, crystal structures, and coordination intercalation behavior of two copper phosphonates. Inorg Chem 31:2821–2826

    CAS  Google Scholar 

  182. Clearfield A (1996) Recent advances in metal phosphonate chemistry. Curr Opin Solid State Mater Sci 1:268–278

    CAS  Google Scholar 

  183. Clearfield A (2002) Recent advances in metal phosphonate chemistry II. Curr Opin Solid State Mater Sci 6:495–506

    CAS  Google Scholar 

  184. Clearfield A (1998) Organically pillared micro-and mesoporous materials. Chem Mater 10:2801–2810

    CAS  Google Scholar 

  185. Clearfield A (2008) Unconventional metal organic frameworks: porous cross-linked phosphonates. Dalton Trans 44:6089–6102

    Google Scholar 

  186. Clearfield A (1990) Layered phosphates, phosphites and phosphonates of groups 4 and 14 metals. Comments Inorg Chem 10:89–128

    CAS  Google Scholar 

  187. Chen Z, Zhou Y, Weng L et al (2007) Zeolite-like zinc phosphonocarboxylate framework and its transformation into two- and three-dimensional structures. Chem Asian J 2:1549–1554

    CAS  Google Scholar 

  188. Maeda K (2004) Metal phosphonate open-framework materials. Microporous Mesoporous Mater 73:47–55

    CAS  Google Scholar 

  189. Zhang XM (2004) A microporous zinc phosphonocarboxylate with a zeolite ABW framework via the trialkyl phosphonocarboxylate route: in situ synthesis and characterization of Na[Zn(O3PC2H4CO2)] · H2O. Eur J Inorg Chem 3:544–548

    Google Scholar 

  190. Zhang XM, Hou JJ, Zhang WX et al (2006) Two mixed-valence vanadium(III, IV) phosphonoacetates with 16-ring channels: H2(DABCO)[VIVO(H2O)VIII(OH)(O3PCH2CO2)2] · 2.5H2O and H2(PIP)[VIVO(H2O)VIII(OH)(O3PCH2CO2)2] · 2.5H2O. Inorg Chem 45:8120–8125

    Google Scholar 

  191. Chen Z, Zhou Y, Weng L et al (2008) Mixed-solvothermal syntheses and structures of six new zinc phosphonocarboxylates with zeolite-type and pillar-layered frameworks. Cryst Growth Des 8:4045–4053

    CAS  Google Scholar 

  192. Stock N, Karaghiosoff K, Bein TZ (2004) Synthesis and structure of the phosphonocarboxylic acid H2O3PCH2-NC5H9-COOH · 2H2O and the manganese phosphonocarboxylate Mn[O3PCH2-N(H)C5H9-COO]. Anorg Allg Chem 630:2535–2540

    CAS  Google Scholar 

  193. Stock N, Frey SA, Stucky GD et al (2000) Synthesis and characterization of two manganese phosphonocarboxylates: Mn3(O3PCH2COO)2 and Mn3(O3PCH2CH2COO)2. J Chem Soc Dalton Trans 2000:4292–4296

    Google Scholar 

  194. Alsobrook AN, Zhan W, Albrecht-Schmitt TE (2008) Use of bifunctional phosphonates for the preparation of heterobimetallic 5f−3d systems. Inorg Chem 47:5177–5183

    CAS  Google Scholar 

  195. Knope KE, Cahill CL (2008) Structural variation within homometallic uranium(VI) carboxyphosphonates: in situ ligand synthesis, directed assembly, metal–ligand coordination and hydrogen bonding. Inorg Chem 47:7660–7672

    CAS  Google Scholar 

  196. Alsobrook AN, Albrecht-Schmitt TE (2009) Phosphonoacetate as a ligand for constructing layered and framework alkali metal uranyl compounds. Inorg Chem 48:11079–11084

    CAS  Google Scholar 

  197. Knope KE, Cahill CL (2010) Synthesis and characterization of 1-, 2-, and 3-dimensional bimetallic UO2 2+/Zn2+ phosphonoacetates. Eur J Inorg Chem 8:1177–1185

    Google Scholar 

  198. Nash KL (1997) f-Element complexation by diphosphonate ligands. J Alloy Cmpd 249:33–40

    CAS  Google Scholar 

  199. Jensen MP, Beitz JV, Rogers RD et al (2000) Thermodynamics and hydration of the europium complexes of a nitrogen heterocycle methane-1,1-diphosphonic acid. J Chem Soc Dalton Trans 18:3058–3064

    Google Scholar 

  200. Padmini R, Ramanath P, Srinivasan N (2010) Synthesis, structure, and solid-state transformation studies of phosphonoacetate based hybrid compounds of uranium and thorium. Inorg Chem 49:7927–7934

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Su, J., Chen, J. (2014). MOFs of Uranium and the Actinides. In: Cheng, P. (eds) Lanthanide Metal-Organic Frameworks. Structure and Bonding, vol 163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2014_158

Download citation

Publish with us

Policies and ethics