Metal-Organic Frameworks with d–f Cyanide Bridges: Structural Diversity, Bonding Regime, and Magnetism

  • Marilena Ferbinteanu
  • Fanica Cimpoesu
  • Stefania TanaseEmail author
Part of the Structure and Bonding book series (STRUCTURE, volume 163)


We present a selection of metal-organic frameworks based on d–f and f–f linkages, discussing their structural features and properties from experimental and theoretical viewpoints. We give an overview of our own synthetic and modeling methodologies, highlighting the complexity of the interdisciplinary approach developed. Significant experimental and computational strategies of other researchers are also reviewed. The bonding regime of lanthanide units in MOFs is similar to those encountered in mono- or polynuclear f-type coordination compounds. However, the steric demands of constructing a three-dimensional network determine specific ligand composition and topologies at the local f nodes. Due to weak interaction propensity of the inner shell f orbitals, the electronic structure treatments of lanthanide units require certain conceptual and technical subtleties. With proper handling, multiconfiguration wave function approaches as well as density functional theory (DFT) treatments can be analyzed in terms of meaningful ligand field (LF) modeling. The interplay of LF and spin–orbit (SO) effects in determining the magnetic anisotropy is illustrated, after reviewing the experimental magnetic behavior of several d–f cyanide-bridged systems.


Computational chemistry Cyanide bridges Lanthanide ions Ligand field theory Magnetic anisotropy Prussian blue analogues 



Amsterdam density functional


Atomic orbital


Average of configurations






Complete active space self-consistent field


Density functional theory




Energy decomposition analysis


5-Methyl-2-pyrazine dicarboxylic acid






Isonicotinic acid


Ligand field theory


Ligand field density functional theory


Molecular orbital


Metal-organic framework


Prussian blue analogues


Second-order perturbation






Restricted open-shell Hartree–Fock







ST thanks the Netherlands Organisation for Scientific Research (NWO) for a Veni grant. FC and MF acknowledge support from the Romania-Italy cooperation grant of Romanian Academy and PCE 14/2013 UEFISCDI research grant. We thank Dr. Alessandro Stroppa for useful discussions.


  1. 1.
    Cable ML, Kirby JP, Gray HB, Ponce A (2013) Enhancement of anion binding in lanthanide optical sensors. Acc Chem Res 46(11):2576–2584. doi: 10.1021/ar400050t Google Scholar
  2. 2.
    Cui Y, Chen B, Qian G (2014) Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications. Coord Chem Rev 273:76–86. doi: 10.1016/j.ccr.2013.10.023 Google Scholar
  3. 3.
    Habib F, Murugesu M (2013) Lessons learned from dinuclear lanthanide nano-magnets. Chem Soc Rev 42(8):3278–3288. doi: 10.1039/c2cs35361j Google Scholar
  4. 4.
    Roy S, Chakraborty A, Maji TK (2014) Lanthanide-organic frameworks for gas storage and as magneto-luminescent materials. Coord Chem Rev 273:139–164. doi: 10.1016/j.ccr.2014.03.035 Google Scholar
  5. 5.
    Woodruff DN, Winpenny REP, Layfield RA (2013) Lanthanide single-molecule magnets. Chem Rev 113(7):5110–5148. doi: 10.1021/cr400018q Google Scholar
  6. 6.
    Tanase S, Reedijk J (2006) Chemistry and magnetism of cyanido-bridged d-f assemblies. Coord Chem Rev 250(19–20):2501–2510. doi: 10.1016/j.ccr.2006.03.021 Google Scholar
  7. 7.
    Beltran LMC, Long JR (2005) Directed assembly of metal-cyanide cluster magnets. Acc Chem Res 38(4):325–334. doi: 10.1021/ar040158e Google Scholar
  8. 8.
    Bleuzen A, Marvaud V, Mathoniere C, Sieklucka B, Verdaguer M (2009) Photomagnetism in clusters and extended molecule-based magnets. Inorg Chem 48(8):3453–3466. doi: 10.1021/ic802007g Google Scholar
  9. 9.
    Culp JT, Park JH, Frye F, Huh YD, Meisel MW, Talham DR (2005) Magnetism of metal cyanide networks assembled at interfaces. Coord Chem Rev 249(23):2642–2648. doi: 10.1016/j.ccr.2005.05.011 Google Scholar
  10. 10.
    Newton GN, Nihei M, Oshio H (2011) Cyanide-bridged molecular squares – the building units of prussian blue. Eur J Inorg Chem 20:3031–3042. doi: 10.1002/ejic.201100407 Google Scholar
  11. 11.
    Shatruk M, Avendano C, Dunbar KR (2009) Cyanide-bridged complexes of transition metals: a molecular magnetism perspective. In: Karlin KD (ed) Progress in inorganic chemistry, vol 56. Progress in inorganic chemistry. pp 155–334. doi:10.1002/9780470440124.ch3
  12. 12.
    Sieklucka B, Podgajny R, Korzeniak T, Nowicka B, Pinkowicz D, Koziel M (2011) A decade of octacyanides in polynuclear molecular materials. Eur J Inorg Chem 3:305–326. doi: 10.1002/ejic.201001055 Google Scholar
  13. 13.
    Wang S, Ding X-H, Zuo J-L, You X-Z, Huang W (2011) Tricyanometalate molecular chemistry: a type of versatile building blocks for the construction of cyano-bridged molecular architectures. Coord Chem Rev 255(15–16):1713–1732. doi: 10.1016/j.ccr.2011.01.057 Google Scholar
  14. 14.
    Newman DJ, Ng B (2000) Crystal field handbook. Cambridge University Press, CambridgeGoogle Scholar
  15. 15.
    Ferbinteanu M, Cimpoesu F (2014) Magnetic anisotropy in case studies. In: Putz M (ed) Quantum nanosystems: structure, properties and interactions. Apple Academics, Toronto, pp 254–294. ISBN 978-1-926895-90-1Google Scholar
  16. 16.
    Sorace L, Sangregorio C, Figuerola A, Benelli C, Gatteschi D (2009) Magnetic interactions and magnetic anisotropy in exchange coupled 4f-3d systems: a case study of a heterodinuclear Ce3+−Fe3+ cyanide-bridged complex. Chem Eur J 15(6):1377–1388. doi: 10.1002/chem.200801638 Google Scholar
  17. 17.
    Tanase S, Ferbinteanu M, Cimpoesu F (2011) Rationalization of the lanthanide-ion-driven magnetic properties in a series of 4f-5d cyano-bridged chains. Inorg Chem 50(19):9678–9687. doi: 10.1021/ic201427w Google Scholar
  18. 18.
    Hulliger F, Landolt M, Vetsch H (1976) Rare-earth ferricyanides and chromicyanides LNT(CN)6.NH2O. J Solid State Chem 18(3):283–291. doi: 10.1016/0022-4596(76)90107-9 Google Scholar
  19. 19.
    Hulliger F, Landolt M, Vetsch H (1976) Rare-earth cobalticyanides LNCO(CN)6.NH2O. J Solid State Chem 18(4):307–312. doi: 10.1016/0022-4596(76)90111-0 Google Scholar
  20. 20.
    Mullica DF, Perkins HO, Sappenfield EL, Grossie DA (1988) Synthesis and structural study of samarium hexacyanoferrate (III) tetrahydrate, SMFE(CN)6.4H2O. J Solid State Chem 74(1):9–15. doi: 10.1016/0022-4596(88)90324-6 Google Scholar
  21. 21.
    Dechambenoit P, Long JR (2011) Microporous magnets. Chem Soc Rev 40(6):3249–3265. doi: 10.1039/c0cs00167h Google Scholar
  22. 22.
    Uemura T, Ohba M, Kitagawa S (2004) Size and surface effects of Prussian blue nanoparticles protected by organic polymers. Inorg Chem 43(23):7339–7345. doi: 10.1021/ic0488435 Google Scholar
  23. 23.
    Sun HL, Shi HT, Zhao F, Qi LM, Gao S (2005) Shape-dependent magnetic properties of low-dimensional nanoscale Prussian blue (PB) analogue SmFe(CN)(6)center dot 4H(2)O. Chem Commun 34:4339–4341. doi: 10.1039/b507240a Google Scholar
  24. 24.
    Guari Y, Larionova J, Corti M, Lascialfari A, Marinone M, Poletti G, Molvinger K, Guerin C (2008) Cyano-bridged coordination polymer nanoparticles with high nuclear relaxivity: toward new contrast agents for MRI. Dalton Trans 28:3658–3660. doi: 10.1039/b808221a Google Scholar
  25. 25.
    Yamada M, Yonekura S (2009) Nanometric metal-organic framework of Ln Fe(CN)(6): morphological analysis and thermal conversion dynamics by direct TEM observation. J Phys Chem C 113(52):21531–21537. doi: 10.1021/jp907180e Google Scholar
  26. 26.
    Mullica DF, Hayward PK, Sappenfield EL (1996) Structural analyses of two hexacyanoruthenate(II) complexes. Inorg Chim Acta 253(1):97–101. doi: 10.1016/s0020-1693(96)05113-4 Google Scholar
  27. 27.
    Goubard F, Tabuteau A (2003) Synthesis, spectroscopic, thermal, and structural characterization of complex ferrocyanides KLnFe((II))(CN)(6)center dot 3.5H(2)O (Ln=Gd-Ho). Struct Chem 14(3):257–262. doi: 10.1023/a:1023807728378 Google Scholar
  28. 28.
    Artemkina SB, Naumov NG, Virovets AV, Gromilov SA, Fenske D, Fedorov VE (2001) New polymeric structure of rhenium octahedral chalcocyanide complex: Ln(3+)-derived network with one-dimensional channels. Inorg Chem Commun 4(8):423–426. doi: 10.1016/s1387-7003(01)00230-1 Google Scholar
  29. 29.
    Artemkina SB, Naumov NG, Virovets AV, Fedorov VE (2005) 3D-coordination cluster polymers Ln(H2O)(3)Re6Te8(CN)(6) center dot nH(2)O (Ln=La3+, Nd3+): direct structural analogy with the mononuclear LnM(CN)(6)center dot nH(2)O family. Eur J Inorg Chem 1:142–146. doi: 10.1002/ejic.200400139 Google Scholar
  30. 30.
    Efremova OA, Mironov YV, Kuratieva NV, Fedorov VE (2011) Two types of coordination polymers based on cluster anions Re(4)Q(4)(CN)(12) (4-) (Q=S, Se) and cations of rare-earth metals Ln(3+): syntheses and crystal structures. Polyhedron 30(8):1404–1411. doi: 10.1016/j.poly.2011.02.051 Google Scholar
  31. 31.
    Tarasenko MS, Naumov NG, Virovets AV, Kim SJ, Fedorov VE (2008) Crystal structure of Cs Gd(H2O)(4)Re6Te8(CN)(6) center dot 4H(2)O. J Struct Chem 49(6):1128–1131. doi: 10.1007/s10947-008-0191-4 Google Scholar
  32. 32.
    Tarasenko MS, Naumov NG, Naumov DY, Kim SJ, Fedorov VE (2008) A series of three-dimensional coordination polymers with general formula {Ln(H(2)O)(n)}{Re(6)Te(8)(CN)(6)} center dot xH(2)O (Ln=Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb; n=3, 4, x=0, 2.5). Polyhedron 27(11):2357–2364. doi: 10.1016/j.poly.2008.04.054 Google Scholar
  33. 33.
    Tarasenko MS, Naumov NG, Virovets AV, Naumov DY, Kuratieva NV, Mironov YV, Ikorskii VN, Fedorov VE (2005) New coordination polymers based on paramagnetic cluster anions Re6Se8(Cn)(6) (3-) and rare earth cations: the synthesis and structure of {Ln(H2O)(3))}{Re6Se8(CN)(6)} center dot 3.5H(2)O. J Struct Chem 46:S137–S144. doi: 10.1007/s10947-006-0164-4 Google Scholar
  34. 34.
    Compain JD, Nakabayashi K, Ohkoshi S (2012) A polyoxometalate-cyanometalate multilayered coordination network. Inorg Chem 51(9):4897–4899. doi: 10.1021/ic300263f Google Scholar
  35. 35.
    Compain JD, Nakabayashi K, Ohkoshi S (2013) Multilayered networks built from polyoxometalates and cyanometalates. Polyhedron 66:116–122. doi: 10.1016/j.poly.2013.03.004 Google Scholar
  36. 36.
    Plecnik CE, Liu SM, Shore SG (2003) Lanthanide-transition-metal complexes: from ion pairs to extended arrays. Acc Chem Res 36(7):499–508. doi: 10.1021/ar010050o Google Scholar
  37. 37.
    Liu SM, Plecnik CE, Meyers EA, Shore SG (2005) Two distinct Ln(III)-Cu(I) cyanide extended arrays: structures and synthetic methodology for inclusion and layer complexes. Inorg Chem 44(2):282–292. doi: 10.1021/ic040113+ Google Scholar
  38. 38.
    Liu SM, Meyers EA, Shore SG (2002) An inclusion complex with Gd(dmf)(8) (3+) ions encapsulated in pockets of an anionic array of {Cu-6(CN)(9)}(3-) (infinity)units; a cyanide-bridged Cu-Gd layer structure. Angew Chem Int Ed 41(19):3609–3611. doi:10.1002/1521-3773(20021004)41:19<3609::aid-anie3609>;2-# Google Scholar
  39. 39.
    Wang ZX, Shen XF, Wang J, Zhang P, Li YZ, Nfor EN, Song Y, Ohkoshi SI, Hashimoto K, You XZ (2006) A sodalite-like framework based on octacyanomolybdate and neodymium with guest methanol molecules and neodymium octahydrate ions. Angew Chem Int Ed 45(20):3287–3291. doi: 10.1002/anie.200600455 Google Scholar
  40. 40.
    Shiga T, Okawa H, Kitagawa S, Ohba M (2006) Stepwise synthesis and magnetic control of trimetallic magnets Co(2)Ln(L)(2)(H2O)(4) Cr(CN)(6) center dot nH(2)O (Ln = La, Gd; H2L=2,6-di(acetoacetyl)pyridine) with 3-D pillared-layer structure. J Am Chem Soc 128(51):16426–16427. doi: 10.1021/ja066434x Google Scholar
  41. 41.
    Tanase S, Prins F, Smits JMM, de Gelder R (2006) Three-dimensional Ln(III)-W-IV complexes with cyanido and carboxylato bridges. Crystengcomm 8(12):863–865. doi: 10.1039/b614215j Google Scholar
  42. 42.
    Tanase S, Mittelmeijer-Hazeleger MC, Rothenberg G, Mathoniere C, Jubera V, Smits JMM, de Gelder R (2011) A facile building-block synthesis of multifunctional lanthanide MOFs. J Mater Chem 21(39):15544–15551. doi: 10.1039/c1jm12789f Google Scholar
  43. 43.
    Zhou H, Diao GW, Qian SY, Yang XZ, Yuan AH, Song Y, Li YZ (2012) Lanthanide-ion-tuned magnetic properties in a series of three-dimensional cyano-bridged Ln(III)W(V) assemblies. Dalton Trans 41(35):10690–10697. doi: 10.1039/c2dt30615h Google Scholar
  44. 44.
    Zhou H, Yuan AH, Qian SY, Song Y, Diao GW (2010) Efficient synthetic strategy to construct three-dimensional 4f-5d networks using neutral two-dimensional layers as building blocks. Inorg Chem 49(13):5971–5976. doi: 10.1021/ic100518b Google Scholar
  45. 45.
    Bowes CL, Ozin GA (1996) Self-assembling frameworks: beyond microporous oxides. Advanced Materials 8 (1):13. doi:10.1002/adma.19960080103
  46. 46.
    Ma Y-Z, Zhang L-M, Peng G, Zhao C-J, Dong R-T, Yang C-F, Deng H (2014) A series of three-dimensional 3d-4f cyanide heterometallic coordination polymers: synthesis, crystal structure, photoluminescent and magnetic properties. Crystengcomm 16(4):667–683. doi: 10.1039/c3ce42025f Google Scholar
  47. 47.
    Herrera JM, Baca SG, Adams H, Ward MD (2006) Syntheses and structures of two- and three-dimensional cyanide-bridged coordination networks derived from crystallization of diimine-tetracyanoruthenate anions with gadolinium(III) cations. Polyhedron 25(4):869–875. doi: 10.1016/j.poly.2005.09.013 Google Scholar
  48. 48.
    Figuerola A, Diaz C, Ribas J, Tangoulis V, Granell J, Lloret F, Mahia J, Maestro M (2003) Synthesis and characterization of heterodinuclear Ln(3+)-Fe3+ and Ln(3+)-Co3+ complexes, bridged by cyanide ligand (Ln(3+)=lanthanide ions). Nature of the magnetic interaction in the Ln(3+)-Fe3+ complexes. Inorg Chem 42(2):641–649. doi: 10.1021/ic025669g Google Scholar
  49. 49.
    Figuerola A, Diaz C, Ribas J, Tangoulis V, Sangregorio C, Gatteschi D, Maestro M, Mahia J (2003) Magnetism of cyano-bridged hetero-one-dimensional Ln(3+)-M3+ complexes (Ln(3+)=Sm, Gd, Yb; M3+=Fe-LS, Co). Inorg Chem 42(17):5274–5281. doi: 10.1021/ic034051j Google Scholar
  50. 50.
    Figuerola A, Ribas J, Casanova D, Maestro M, Alvarez S, Diaz C (2005) Magnetism of cyano-bridged Ln(3+)-M3+ complexes. Part II: one-dimensional complexes (Ln(3+)=Eu, Tb, Dy, Ho, Er, Tm; M3+=Fe or Co) with bpy as blocking ligand. Inorg Chem 44(20):6949–6958. doi: 10.1021/ic050650+ Google Scholar
  51. 51.
    Figuerola A, Ribas J, Llunell M, Casanova D, Maestro M, Alvarez S, Diaz C (2005) Magnetic properties of cyano-bridged Ln(3+)-M3+ complexes. Part I: trinuclear complexes (Ln(3+) = La, Ce, Pr, Nd, Sm; M3+ = Fe-LS, Co) with bpy as blocking ligand. Inorg Chem 44(20):6939–6948. doi: 10.1021/ic050648i Google Scholar
  52. 52.
    Tangoulis V, Estrader M, Figuerola A, Ribas J, Diaz C (2007) Anisotropic exchange interactions in hetero-one-dimensional Ln(3+)-M3+ systems (Ln(3+)=Er, Yb; M3+=Cr, Fe-LS): magnetometry and dual mode X-band electron paramagnetic resonance spectroscopic studies. Chem Phys 336(1):74–82. doi: 10.1016/j.chemphys.2007.05.016 Google Scholar
  53. 53.
    Nowicka B, Korzeniak T, Stefanczyk O, Pinkowicz D, Chorazy S, Podgajny R, Sieklucka B (2012) The impact of ligands upon topology and functionality of octacyanidometallate-based assemblies. Coord Chem Rev 256(17–18):1946–1971. doi: 10.1016/j.ccr.2012.04.008 Google Scholar
  54. 54.
    Przychodzen P, Lewinski K, Pelka R, Balanda M, Tomala K, Sieklucka B (2006) Ln(terpy) (3+) (Ln=Sm, Gd) entity forms isolated magnetic chains with W(CN)(8) (3-). Dalton Trans 4:625–628. doi: 10.1039/b511788g Google Scholar
  55. 55.
    Przychodzen P, Pelka R, Lewinski K, Supel J, Rams M, Tomala K, Sieklucka B (2007) Tuning of magnetic properties of polynuclear lanthanide(III)-octacyanotungstate(V) systems: determination of ligand-field parameters and exchange interaction. Inorg Chem 46(21):8924–8938. doi: 10.1021/ic700795q Google Scholar
  56. 56.
    Hozumi T, Ohkoshi S, Arimoto Y, Seino H, Mizobe Y, Hashimoto K (2003) Cooling-rate dependent ferromagnetism in a two-dimensional cyano-bridged Sm(III)-W(V) complex. J Phys Chem B 107(42):11571–11574. doi: 10.1021/jp0356057 Google Scholar
  57. 57.
    Pasca E, Roscilde T, Evangelisti M, Burzuri E, Luis F, de Jongh LJ, Tanase S (2012) Realization of the one-dimensional anisotropic XY model in a Tb(III)-W(V) chain compound. Phys Rev B 85(18). doi:10.1103/PhysRevB.85.184434
  58. 58.
    Prins F, Pasca E, de Jongh LJ, Kooijman H, Spek AL, Tanase S (2007) Long-range magnetic ordering in a Tb-III-Mo-V cyanido-bridged quasi-one-dimensional complex. Angew Chem Int Ed 46(32):6081–6084. doi: 10.1002/anie.200701847 Google Scholar
  59. 59.
    Tanase S, de Jongh LJ, Prins F, Evangelisti M (2008) Ferrimagnetic Heisenberg chains derived from M(CN)(8) (3-) (M=MOV, W-V) building-blocks. ChemPhysChem 9(14):1975–1978. doi: 10.1002/cphc.200800345 Google Scholar
  60. 60.
    Tanase S, Evangelisti M, de Jongh LJ (2011) Short-range correlations in d-f cyanido-bridged assemblies with XY and XY-Heisenberg anisotropy. Dalton Trans 40(33):8407–8413. doi: 10.1039/c1dt10310e Google Scholar
  61. 61.
    Tanase S, Evangelisti M, de Jongh LJ, Smits JMM, de Gelder R (2008) Crystal structure, magnetic and thermal properties of the one-dimensional complex Nd(pzam)(3)(H(2)O)Mo(CN)(8) center dot H(2)O. Inorg Chim Acta 361(12–13):3548–3554. doi: 10.1016/j.ica.2008.03.026 Google Scholar
  62. 62.
    Hüfner S (1978) Optical spectra of transparent rare earth compounds. Academic, New YorkGoogle Scholar
  63. 63.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  64. 64.
    Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory. Wiley-VCH, BerlinGoogle Scholar
  65. 65.
    ADF Code (2012), Scientific computing & modelling (SCM), theoretical chemistry, Vrije Universiteit, Amsterdam.
  66. 66.
    Guerra CF, Snijders JG, te Velde G, Baerends EJ (1998) Towards an order-N DFT method. Theor Chem Accounts 99(6):391–403. doi: 10.1007/s002140050021 Google Scholar
  67. 67.
    Cotton S (2006) Lanthanide and actinide chemistry. Wiley, New YorkGoogle Scholar
  68. 68.
    Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry, 5th edn. Wiley, New YorkGoogle Scholar
  69. 69.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys Rev A 38(6):3098–3100. doi: 10.1103/PhysRevA.38.3098 Google Scholar
  70. 70.
    Perdew JP (1986) Density-functional approximation for the correlation-energy of the inhomogeneous electron-gas. Phys Rev B 33(12):8822–8824. doi: 10.1103/PhysRevB.33.8822 Google Scholar
  71. 71.
    Perdew JP, Sahni V, Harbola MK, Pathak RK (1986) 4th-Order gradient expansion of the fermion kinetic-energy – extra terms for nonanalytic densities. Phys Rev B 34(2):686–691. doi: 10.1103/PhysRevB.34.686 Google Scholar
  72. 72.
    von Hopffgarten M, Frenking G (2012) Energy decomposition analysis. Wiley Interdisciplinary Rev Computat Mol Sci 2(1):43–62. doi: 10.1002/wcms.71 Google Scholar
  73. 73.
    Ziegler T, Rauk A (1977) Calculation of bonding energies by Hartree–Fock slater method. 1. Transition-state method. Theor Chim Acta 46(1):1–10. doi: 10.1007/bf02401406 Google Scholar
  74. 74.
    Dykstra CE, Frenking G, Kim KS, Scuseria GE (2005) Theory and applications of computational chemistry. Elsevier BV, AmsterdamGoogle Scholar
  75. 75.
    Gritsenko OV, Schipper PRT, Baerends EJ (1998) Effect of Pauli repulsion on the molecular exchange-correlation Kohn-Sham potential: a comparative calculation of Ne-2 and N-2. Phys Rev A 57(5):3450–3457. doi: 10.1103/PhysRevA.57.3450 Google Scholar
  76. 76.
    Ferbinteanu M, Zaharia A, Girtu MA, Cimpoesu F (2010) Noncovalent effects in the coordination and assembling of the Fe(bpca)(2) Er(NO3)(3)(H2O)(4) NO3 system. Central Eur J Chem 8(3):519–529. doi: 10.2478/s11532-010-0019-x Google Scholar
  77. 77.
    te Velde G, Bickelhaupt FM, Baerends EJ, Guerra CF, Van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22(9):931–967. doi: 10.1002/jcc.1056 Google Scholar
  78. 78.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3):864–871. doi: 10.1103/PhysRev.136.B864 Google Scholar
  79. 79.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev A 140:1133–1138. doi: 10.1103/PhysRev.140.A1133 Google Scholar
  80. 80.
    Atanasov M, Busche C, Comba P, El Hallak F, Martin B, Rajaraman G, van Slageren J, Wadepohl H (2008) Trinuclear {M-1}CN{M-2}(2) complexes (M-1 = Cr-III, Fe-III, Co-III; M-2 = Cu-II, Ni-II, Mn-II). Are single molecule magnets predictable? Inorg Chem 47(18):8112–8125. doi: 10.1021/ic800556c Google Scholar
  81. 81.
    Atanasov M, Daul CA, Rauzy C (2003) New insights into the effects of covalency on the ligand field parameters: a DFT study. Chem Phys Lett 367(5–6):737–746. doi:10.1016/s0009-2614(02)01762-1
  82. 82.
    Atanasov M, Comba P, Daul CA (2008) Combined ligand field and density functional theory analysis of the magnetic anisotropy in oligonuclear complexes based on Fe-III-CN-M-II exchange-coupled pairs. Inorg Chem 47(7):2449–2463. doi: 10.1021/ic701702x Google Scholar
  83. 83.
    Atanasov M, Daul C, Gudel HU, Wesolowski TA, Zbiri M (2005) Ground states, excited states, and metal-ligand bonding in rare earth hexachloro complexes: a DFT-based ligand field study. Inorg Chem 44(8):2954–2963. doi: 10.1021/ic040105t Google Scholar
  84. 84.
    Zbiri M, Atanasov M, Daul C, Garcia-Lastra JM, Wesolowski TA (2004) Application of the density orbital-free embedding potential functional theory derived to calculate the splitting energies of lanthanide cations in chloroelpasolite crystals. Chem Phys Lett 397(4–6):441–446. doi: 10.1016/j.cplett.2004.09.010 Google Scholar
  85. 85.
    Reinen D, Atanasov M (2004) The angular overlap model and vibronic coupling in treating s-p and d-s mixing – a DFT study. Struct Bond 107:159–178Google Scholar
  86. 86.
    Gross EKU, Oliveira LN, Kohn W (1988) Density-functional theory for ensembles of fractionally occupied states. 1. Basic formalism. Phys Rev A 37(8):2809–2820. doi: 10.1103/PhysRevA.37.2809 Google Scholar
  87. 87.
    Ullrich CA, Kohn W (2001) Kohn-Sham theory for ground-state ensembles. Phys Rev Lett 87(9). doi:10.1103/PhysRevLett.87.093001
  88. 88.
    Jensen F (2002) Introduction to quantum chemistry. Wiley, New YorkGoogle Scholar
  89. 89.
    Roos BO (2007) The complete active space self-consistent field method and its applications in electronic structure calculations. In: Lawley KP (ed) Advances in chemical physics: ab initio methods in quantum chemistry part 2, vol 69. Wiley, New JerseyGoogle Scholar
  90. 90.
    Daul C (1994) Density-functional theory applied to the excited-states of coordination-compounds. Int J Quantum Chem 52(4):867–877. doi: 10.1002/qua.560520414 Google Scholar
  91. 91.
    Minerva T, Goursot A, Daul C (2001) Chem Phys Lett 350:147–154. doi: 10.1016/S0009-2614(01)01264-7 Google Scholar
  92. 92.
    Nagao H, Nishino M, Shigeta Y, Soda T, Kitagawa Y, Onishi T, Yoshioka Y, Yamaguchi K (2000) Theoretical studies on effective spin interactions, spin alignments and macroscopic spin tunneling in polynuclear manganese and related complexes and their mesoscopic clusters. Coord Chem Rev 198:265–295. doi: 10.1016/s0010-8545(00)00231-9 Google Scholar
  93. 93.
    Noodleman L, Peng CY, Case DA, Mouesca JM (1995) Orbital interactions, electron delocalization and spin coupling in iron-sulfur clusters. Coord Chem Rev 144:199–244. doi: 10.1016/0010-8545(95)07011-l Google Scholar
  94. 94.
    Ramanantoanina H, Urland W, Garcia-Fuente A, Cimpoesu F, Daul C (2013) Calculation of the 4f(1) -> 4f(0)5d(1) transitions in Ce3+−doped systems by Ligand Field Density Functional Theory. Chem Phys Lett 588:260–266. doi: 10.1016/j.cplett.2013.10.012 Google Scholar
  95. 95.
    Ferbinteanu M, Cimpoesu F, Girtu MA, Enachescu C, Tanase S (2012) Structure and magnetism in Fe-Gd based dinuclear and chain systems. The interplay of weak exchange coupling and zero field splitting effects. Inorg Chem 51(1):40–50. doi: 10.1021/ic1023289 Google Scholar
  96. 96.
    Cimpoesu F, Dahan F, Ladeira S, Ferbinteanu M, Costes J-P (2012) Chiral crystallization of a heterodinuclear Ni-Ln series: comprehensive analysis of the magnetic properties. Inorg Chem 51(21):11279–11293. doi: 10.1021/ic3001784 Google Scholar
  97. 97.
    Pierloot K, Cundari T (2001) Computational organometallic chemistry. Marcel Dekker Inc., New YorkGoogle Scholar
  98. 98.
    Nakano H, Nakayama K, Hirao K, Dupuis M (1997) Transition state barrier height for the reaction H2CO->H-2+CO studied by multireference Moller-Plesset perturbation theory. J Chem Phys 106(12):4912–4917. doi: 10.1063/1.473540 Google Scholar
  99. 99.
    Roos BO, Andersson K, Fulscher MP, Malmqvist PA, SerranoAndres L, Pierloot K, Merchan M (1996) Multiconfigurational perturbation theory: applications in electronic spectroscopy. Adv Chem Phys 93:219–331. doi: 10.1002/9780470141526.ch5 Google Scholar
  100. 100.
    Andersson K, Malmqvist PA, Roos BO, Sadlej AJ, Wolinski K (1990) 2nd-Order perturbation-theory with a casscf reference function. J Phys Chem 94(14):5483–5488. doi: 10.1021/j100377a012 Google Scholar
  101. 101.
    Angeli C, Cimiraglia R, Evangelisti S, Leininger T, Malrieu JP (2001) Introduction of n-electron valence states for multireference perturbation theory. J Chem Phys 114(23):10252–10264. doi: 10.1063/1.1361246 Google Scholar
  102. 102.
    Cimpoesu F, Dragoe N, Ramanantoanina H, Urland W, Daul C (2014) The theoretical account of the ligand field bonding regime and magnetic anisotropy in the DySc2N@C-80 single ion magnet endohedral fullerene. Phys Chem Chem Phys 16(23):11337–11348. doi: 10.1039/c4cp00953c Google Scholar
  103. 103.
    Paulovic J, Cimpoesu F, Ferbinteanu M, Hirao K (2004) Mechanism of ferromagnetic coupling in copper(II)-gadolinium(II) complexes. J Am Chem Soc 126(10):3321–3331. doi: 10.1021/ja030628k Google Scholar
  104. 104.
    Ferbinteanu M, Kajiwara T, Choi K-Y, Nojiri H, Nakamoto A, Kojima N, Cimpoesu F, Fujimura Y, Takaishi S, Yamashita M (2006) A binuclear Fe(III)Dy(III) single molecule magnet. Quantum effects and models. J Am Chem Soc 128(28):9008–9009. doi: 10.1021/ja062399i Google Scholar
  105. 105.
    Schäffer CE (1966) A ligand field approach to orthoaxial complexes. Theor Chim Acta 4(2):166–173Google Scholar
  106. 106.
    Schäffer CE (1967) The angular overlap model applied to chiral chromophores and the parentage interrelation of absolute configurations. Proc Roy Soc A 297:96–133. doi: 10.1098/rspa.1967.0055 Google Scholar
  107. 107.
    Ramanantoanina H, Urland W, Cimpoesu F, Daul C (2014) The angular overlap model extended for two-open-shell f and d electrons. Phys Chem Chem Phys 16(24):12282–12290. doi: 10.1039/c4cp01193g Google Scholar
  108. 108.
    Martin WC, Zalubas R, Hagan L (1978) Atomic energy levels – the rare-earth elements. Nat 1432, Stand Ref Data Ser NSRDS-NBS 60, U.S. Gov. Printing Office, WashingtonGoogle Scholar
  109. 109.
    Aravena D, Ruiz E (2013) Shedding light on the single-molecule magnet behavior of mononuclear Dy-III complexes. Inorg Chem 52(23):13770–13778. doi: 10.1021/ic402367c Google Scholar
  110. 110.
    Gatteschi D, Sessoli R (2003) Quantum tunneling of magnetization and related phenomena in molecular materials. Angew Chem Int Ed 42(3):268–297. doi: 10.1002/anie.200390099 Google Scholar
  111. 111.
    Sessoli R, Powell AK (2009) Strategies towards single molecule magnets based on lanthanide ions. Coord Chem Rev 253(19–20):2328–2341. doi: 10.1016/j.ccr.2008.12.014 Google Scholar
  112. 112.
    Wang X-Y, Avendano C, Dunbar KR (2011) Molecular magnetic materials based on 4d and 5d transition metals. Chem Soc Rev 40(6):3213–3238. doi: 10.1039/c0cs00188k Google Scholar
  113. 113.
    Zhang P, Guo Y-N, Tang J (2013) Recent advances in dysprosium-based single molecule magnets: structural overview and synthetic strategies. Coord Chem Rev 257(11–12):1728–1763. doi: 10.1016/j.ccr.2013.01.012 Google Scholar
  114. 114.
    Di Sante D, Stroppa A, Jain P, Picozzi S (2013) Tuning the ferroelectric polarization in a multiferroic metal-organic framework. J Am Chem Soc 135(48):18126–18130. doi: 10.1021/ja408283a Google Scholar
  115. 115.
    Stroppa A, Barone P, Jain P, Perez-Mato JM, Picozzi S (2013) Hybrid improper ferroelectricity in a multiferroic and magnetoelectric metal-organic framework. Adv Mater 25(16):2284–2290. doi: 10.1002/adma.201204738 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Marilena Ferbinteanu
    • 1
  • Fanica Cimpoesu
    • 2
  • Stefania Tanase
    • 3
    Email author
  1. 1.Faculty of Chemistry, Inorganic Chemistry DepartmentUniversity of BucharestBucharestRomania
  2. 2.Institute of Physical ChemistryBucharestRomania
  3. 3.Van’t Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations