Advertisement

Single-Chain Magnets and Related Systems

Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 164)

Abstract

In this chapter, the static and dynamic magnetic properties of single-chain magnets and related systems are reviewed. We will particularly focus on the so-called Ising limit for which the magnetic anisotropy energy is much larger than the energy of the intrachain exchange interactions. The simple regular chain of ferromagnetically coupled spins will be first described. Static properties will be summarized to introduce the dominant role of domain walls at low temperature. The slow relaxation of the magnetization will be then discussed using a stochastic description. The deduced dynamic critical behavior will be analyzed in detail to explain the observed magnet behavior. In particular, the effect of applying a magnetic field, often ignored in the literature, will be discussed. Then, more complicated structures including chains of antiferromagnetically coupled magnetic sites will be discussed. Finally, the importance of interchain couplings will be introduced to discriminate between a “real” single-chain magnet and a sample presenting both a magnet-type property and a three-dimensional antiferromagnetic ordered state at low temperature.

Keywords

Ising model Low-dimensional magnetic systems Magnetic phase transition Magnetically ordered phase Single-chain magnet Slow dynamics of the magnetization 

Abbreviations

1-D

One-dimensional

2-D

Two-dimensional

3-D

Three-dimensional

ac

Alternating current

C

Curie constant

dc

Direct current

eiao

1-Ethylimidazole-2-aldoximate

H

Magnetic field

Hhmp

2-Hydroxymethylpyridine

JT

Jahn-Teller

LEA

Local equilibrium approximation

LZ

Landau-Zener

M

Magnetization

miao

1-Methylimidazole-2-aldoximate

pao

Pyridine-2-aldoximate

py

Pyridine

Rsaltmen2−

N,N′–(1,1,2,2-Tetramethylethylene)-bis(5-Rsalicylideneiminate)

saltmen2−

N,N′–(1,1,2,2-Tetramethylethylene)-bis(salicylideneiminate)

SCM

Single-chain magnet

SMM

Single-molecule magnet

T

Temperature

ξ

Correlation length

χ

Magnetic susceptibility

Notes

Acknowledgements

We are grateful to all our co-workers, past students, and friends who have contributed to our scientific adventures. In addition, the authors thank the Conseil Régional d’Aquitaine, the University of Bordeaux, the CNRS, and the ANR.

References

  1. 1.
    Boyd PDW, Li Q, Vincent JB, Folting K, Chang H-R, Streib WE, Huffman JC, Christou G, Hendrickson DN (1988) J Am Chem Soc 110:8537CrossRefGoogle Scholar
  2. 2.
    Caneschi A, Gatteschi D, Sessoli R (1991) J Am Chem Soc 113:5873CrossRefGoogle Scholar
  3. 3.
    Sessoli R, Tsai H-L, Schake AR, Wang S, Vincent JB, Folting K, Gatteschi D, Christou G, Hendrickson DN (1993) J Am Chem Soc 115:1804CrossRefGoogle Scholar
  4. 4.
    Sessoli R, Gatteschi D, Caneschi A, Novak MA (1993) Nature 365:141CrossRefGoogle Scholar
  5. 5.
    Thomas L, Lionti F, Ballou R, Gatteschi D, Sessoli R, Barbara B (1996) Nature 383:145CrossRefGoogle Scholar
  6. 6.
    Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomagnets. Oxford University Press, OxfordCrossRefGoogle Scholar
  7. 7.
    Pedersen KS, Bendix J, Clérac R (2014) Chem Commun 50:4396CrossRefGoogle Scholar
  8. 8.
    Leuenberger MN, Loss D (2001) Nature 410:789CrossRefGoogle Scholar
  9. 9.
    Bogani L, Wernsdorfer W (2008) Nat Mater 7:179CrossRefGoogle Scholar
  10. 10.
    Afronte M (2008) J Mater Chem 19:1731CrossRefGoogle Scholar
  11. 11.
    Winpenny REP (2008) Angew Chem Int Ed 47:7992CrossRefGoogle Scholar
  12. 12.
    Wernsdorfer W (2008) CR Chimie 11:1086CrossRefGoogle Scholar
  13. 13.
    Mannini M, Pineider F, Sainctavit P, Danieli C, Otero E, Sciancalepore C, Talarico AM, Arrio MA, Cornia A, Gatteschi D, Sessoli R (2009) Nat Mater 8:194CrossRefGoogle Scholar
  14. 14.
    Caneschi A, Gatteschi D, Lalioti N, Sangregorio C, Sessoli R, Venturi G, Vindigni A, Rettori A, Pini MG, Novak MA (2001) Angew Chem Int Ed 40:1760CrossRefGoogle Scholar
  15. 15.
    Clérac R, Miyasaka H, Yamashita M, Coulon C (2002) J Am Chem Soc 124:12837CrossRefGoogle Scholar
  16. 16.
    Coulon C, Miyasaka H, Clérac R (2006) Struct Bond 122:163CrossRefGoogle Scholar
  17. 17.
    Miyasaka H, Clérac R (2005) Bull Chem Soc Jpn 78:1725CrossRefGoogle Scholar
  18. 18.
    Xu G, Wang Q, Liao D, Yang G (2005) Prog Chem 17:970Google Scholar
  19. 19.
    Lescouëzec R, Toma LM, Vaissermann J, Verdaguer M, Delgado FS, Ruiz-Pérez C, Lloret F, Julve M (2005) Coord Chem Rev 249:2691CrossRefGoogle Scholar
  20. 20.
    Bogani L, Vindigni A, Sessoli R, Gatteschi D (2008) J Mater Chem 18:4750CrossRefGoogle Scholar
  21. 21.
    Miyasaka H, Julve M, Yamashita M, Clérac R (2009) Inorg Chem 48:3420CrossRefGoogle Scholar
  22. 22.
    Brooker S, Kitchen JA (2009) Dalton Trans 7331Google Scholar
  23. 23.
    Sun H-L, Wang Z-M, Gao S (2010) Coord Chem Rev 254:1081CrossRefGoogle Scholar
  24. 24.
    Zhang W-X, Ishikawa R, Breedlove B, Yamashita M (2013) RSC Adv 3:3772CrossRefGoogle Scholar
  25. 25.
    Glauber J (1963) J Math Phys 4:294CrossRefGoogle Scholar
  26. 26.
    Miyasaka H, Clérac R, Mizushima K, Sugiura K, Yamashita M, Wernsdorfer W, Coulon C (2003) Inorg Chem 42:8203CrossRefGoogle Scholar
  27. 27.
    Saitoh A, Miyasaka H, Yamashita M, Clérac R (2007) J Mater Chem 17:2002CrossRefGoogle Scholar
  28. 28.
    Miyasaka H, Saitoh A, Yamashita M, Clérac R (2008) Dalton Trans 2422Google Scholar
  29. 29.
    Lecren L, Roubeau O, Coulon C, Li Y-G, Le Goff XF, Wernsdorfer W, Miyasaka H, Clérac R (2005) J Am Chem Soc 127:17353CrossRefGoogle Scholar
  30. 30.
    Lecren L, Roubeau O, Li Y-G, Le Goff XF, Miyasaka H, Richard F, Wernsdorfer W, Coulon C, Clérac R (2008) Dalton Trans 755Google Scholar
  31. 31.
    Coulon C, Clérac R, Wernsdorfer W, Colin T, Miyasaka H (2009) Phys Rev Lett 102:167204CrossRefGoogle Scholar
  32. 32.
    Miyasaka H, Takayama K, Saitoh A, Furukawa S, Yamashita M, Clérac R (2010) Chem Eur J 16:3656CrossRefGoogle Scholar
  33. 33.
    Bhowmick I, Hillard EA, Dechambenoit P, Coulon C, Harris TD, Clérac R (2012) Chem Commun 48:9717CrossRefGoogle Scholar
  34. 34.
    Barbara B (1994) J Magn Magn Mater 129:79CrossRefGoogle Scholar
  35. 35.
    Lajzerowicz J, Niez JJ (1979) J Phys Lett 40:L165CrossRefGoogle Scholar
  36. 36.
    Fisher ME (1964) Am J Phys 32:343CrossRefGoogle Scholar
  37. 37.
    Nakamura K, Sasada T (1978) J Phys C 11:331CrossRefGoogle Scholar
  38. 38.
    Nakamura K, Sasada T (1977) Solid State Commun 21:891CrossRefGoogle Scholar
  39. 39.
    Sakai T, Matsumoto M, Asakura K, Sato M (2005) Progr Theor Phys Suppl 159:308CrossRefGoogle Scholar
  40. 40.
    Billoni O, Pianet V, Pescia D, Vindigni A (2011) Phys Rev B 84:064415CrossRefGoogle Scholar
  41. 41.
    Coulon C, Clérac R, Lecren L, Wernsdorfer W, Miyasaka H (2004) Phys Rev B 69:132408CrossRefGoogle Scholar
  42. 42.
    Cole KS, Cole RH (1941) J Chem Phys 9:341CrossRefGoogle Scholar
  43. 43.
    Sun Z-M, Prosvirin AV, Zhao H-H, Mao J-G, Dunbar KR (2005) J Appl Phys 97:10B305Google Scholar
  44. 44.
    Huang HW (1973) Phys Rev A 8:2553CrossRefGoogle Scholar
  45. 45.
    Saito Y, Kubo R (1976) J Stat Phys 15:233CrossRefGoogle Scholar
  46. 46.
    Boukheddaden K, Shteto I, Hoo B, Varret F (2000) Phys Rev B 62:14806CrossRefGoogle Scholar
  47. 47.
    Cordery R, Sarker S, Tobochnik J (1981) Phys Rev B 24:5402CrossRefGoogle Scholar
  48. 48.
    Wortis M (1974) Phys Rev B 10:4665CrossRefGoogle Scholar
  49. 49.
    Matsubara F, Yoshimura K (1973) Can J Phys 51:1053CrossRefGoogle Scholar
  50. 50.
    Luscombe JH, Luban M, Reynolds JP (1996) Phys Rev E 53:5852CrossRefGoogle Scholar
  51. 51.
    Dhar D, Barma M (1980) J Stat Phys 22:259CrossRefGoogle Scholar
  52. 52.
    Schwarz G (1965) J Mol Biol 11:64CrossRefGoogle Scholar
  53. 53.
    Pipkin AC, Gibbs JH (1996) Biopolymers 4:3CrossRefGoogle Scholar
  54. 54.
    Craig ME, Crothers DM (1968) Biopolymers 6:385CrossRefGoogle Scholar
  55. 55.
    Schwarz G (1968) Biopolymers 6:873CrossRefGoogle Scholar
  56. 56.
    Schwarz G (1968) Rev Mod Phys 40:206CrossRefGoogle Scholar
  57. 57.
    Schwarz G (1972) J Theor Biol 36:569CrossRefGoogle Scholar
  58. 58.
    Schwarz M Jr, Poland D (1976) J Chem Phys 65:2620CrossRefGoogle Scholar
  59. 59.
    Baumgärtner A, Binder K (1979) J Chem Phys 70:429CrossRefGoogle Scholar
  60. 60.
    Coulon C, Clérac R, Wernsdorfer W, Colin T, Saitoh A, Motokawa N, Miyasaka H (2007) Phys Rev B 76:214422CrossRefGoogle Scholar
  61. 61.
    Suzuki M, Kubo R (1968) J Phys Soc Jpn 24:51CrossRefGoogle Scholar
  62. 62.
    Wernsdorfer W, Clérac R, Coulon C, Lecren L, Miyasaka H (2005) Phys Rev Lett 95:237203CrossRefGoogle Scholar
  63. 63.
    Toma LM, Lescouëzec R, Pasan J, Ruiz-Perez C, Vaissermann J, Cano J, Carrasco R, Wernsdorfer W, Lloret F, Julve M (2006) J Am Chem Soc 128:4842CrossRefGoogle Scholar
  64. 64.
    Roubeau O, Clérac R (2008) Eur J Inorg Chem 4313:4480Google Scholar
  65. 65.
    Jeon IR, Clérac R (2012) Dalton Trans 41:9569CrossRefGoogle Scholar
  66. 66.
    Miyasaka H, Nezu T, Sugimoto K, Sugiura K-I, Yamashita M, Clérac R (2005) Chem Eur J 11:1592CrossRefGoogle Scholar
  67. 67.
    Zener C (1932) Proc R Soc A 137:696CrossRefGoogle Scholar
  68. 68.
    Wernsdorfer W, Bhaduri S, Vinslava A, Christou G (2005) Phys Rev B 72:4429Google Scholar
  69. 69.
    Wernsdorfer W, Sessoli R (1999) Science 284:133CrossRefGoogle Scholar
  70. 70.
    Lecren L, Wernsdorfer W, Li Y-G, Roubeau O, Miyasaka H, Clérac R (2005) J Am Chem Soc 127:11311CrossRefGoogle Scholar
  71. 71.
    Wernsdorfer W, Bonet Orozco E, Hasselbach K, Benoit A, Barbara B, Demoncy N, Loiseau A (1997) Phys Rev Lett 78:1791CrossRefGoogle Scholar
  72. 72.
    Wernsdorfer W, Murugesu M, Tasiopoulos T, Christou G (2005) Phys Rev B 72:212406CrossRefGoogle Scholar
  73. 73.
    Miyagawa K, Kanoda K, Kawamoto A (2004) Chem Rev 104:5635CrossRefGoogle Scholar
  74. 74.
    Miyasaka H, Madanbashi T, Sugimoto K, Nakazawa Y, Wernsdorfer W, Sugiura K-I, Yamashita M, Coulon C, Clérac R (2006) Chem Eur J 12:7028CrossRefGoogle Scholar
  75. 75.
    Harris TD, Bennett MV, Clérac R, Long JR (2010) J Am Chem Soc 132:3980CrossRefGoogle Scholar
  76. 76.
    Feng X, Harris TD, Long JR (2011) Chem Sci 2:1688CrossRefGoogle Scholar
  77. 77.
    Ishikawa R, Katoh K, Breedlove BK, Yamashita M (2012) Inorg Chem 51:9123CrossRefGoogle Scholar
  78. 78.
    Tomkowicz Z, Rams M, Balanda M, Foro S, Nojiri H, Krupskaya Y, Kataev V, Bücher B, Nayak SK, Yakhmi JV, Haase W (2012) Inorg Chem 51:9983CrossRefGoogle Scholar
  79. 79.
    Zhang Y-Q, Luo C-L, Wu X-B, Wang B-W, Gao S (2014) Inorg Chem 53:3503CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.CNRS, CRPP, UPR 8641PessacFrance
  2. 2.Univ. Bordeaux, CRPP, UPR 8641PessacFrance
  3. 3.London Centre for NanotechnologyUniversity College LondonLondonUK

Personalised recommendations