Molecular Nanomagnets and Related Phenomena pp 143-184 | Cite as
Single-Chain Magnets and Related Systems
- 60 Citations
- 1.9k Downloads
Abstract
In this chapter, the static and dynamic magnetic properties of single-chain magnets and related systems are reviewed. We will particularly focus on the so-called Ising limit for which the magnetic anisotropy energy is much larger than the energy of the intrachain exchange interactions. The simple regular chain of ferromagnetically coupled spins will be first described. Static properties will be summarized to introduce the dominant role of domain walls at low temperature. The slow relaxation of the magnetization will be then discussed using a stochastic description. The deduced dynamic critical behavior will be analyzed in detail to explain the observed magnet behavior. In particular, the effect of applying a magnetic field, often ignored in the literature, will be discussed. Then, more complicated structures including chains of antiferromagnetically coupled magnetic sites will be discussed. Finally, the importance of interchain couplings will be introduced to discriminate between a “real” single-chain magnet and a sample presenting both a magnet-type property and a three-dimensional antiferromagnetic ordered state at low temperature.
Keywords
Ising model Low-dimensional magnetic systems Magnetic phase transition Magnetically ordered phase Single-chain magnet Slow dynamics of the magnetizationAbbreviations
- 1-D
One-dimensional
- 2-D
Two-dimensional
- 3-D
Three-dimensional
- ac
Alternating current
- C
Curie constant
- dc
Direct current
- eiao−
1-Ethylimidazole-2-aldoximate
- H
Magnetic field
- Hhmp
2-Hydroxymethylpyridine
- JT
Jahn-Teller
- LEA
Local equilibrium approximation
- LZ
Landau-Zener
- M
Magnetization
- miao−
1-Methylimidazole-2-aldoximate
- pao−
Pyridine-2-aldoximate
- py
Pyridine
- Rsaltmen2−
N,N′–(1,1,2,2-Tetramethylethylene)-bis(5-Rsalicylideneiminate)
- saltmen2−
N,N′–(1,1,2,2-Tetramethylethylene)-bis(salicylideneiminate)
- SCM
Single-chain magnet
- SMM
Single-molecule magnet
- T
Temperature
- ξ
Correlation length
- χ
Magnetic susceptibility
Notes
Acknowledgements
We are grateful to all our co-workers, past students, and friends who have contributed to our scientific adventures. In addition, the authors thank the Conseil Régional d’Aquitaine, the University of Bordeaux, the CNRS, and the ANR.
References
- 1.Boyd PDW, Li Q, Vincent JB, Folting K, Chang H-R, Streib WE, Huffman JC, Christou G, Hendrickson DN (1988) J Am Chem Soc 110:8537CrossRefGoogle Scholar
- 2.Caneschi A, Gatteschi D, Sessoli R (1991) J Am Chem Soc 113:5873CrossRefGoogle Scholar
- 3.Sessoli R, Tsai H-L, Schake AR, Wang S, Vincent JB, Folting K, Gatteschi D, Christou G, Hendrickson DN (1993) J Am Chem Soc 115:1804CrossRefGoogle Scholar
- 4.Sessoli R, Gatteschi D, Caneschi A, Novak MA (1993) Nature 365:141CrossRefGoogle Scholar
- 5.Thomas L, Lionti F, Ballou R, Gatteschi D, Sessoli R, Barbara B (1996) Nature 383:145CrossRefGoogle Scholar
- 6.Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomagnets. Oxford University Press, OxfordCrossRefGoogle Scholar
- 7.Pedersen KS, Bendix J, Clérac R (2014) Chem Commun 50:4396CrossRefGoogle Scholar
- 8.Leuenberger MN, Loss D (2001) Nature 410:789CrossRefGoogle Scholar
- 9.Bogani L, Wernsdorfer W (2008) Nat Mater 7:179CrossRefGoogle Scholar
- 10.Afronte M (2008) J Mater Chem 19:1731CrossRefGoogle Scholar
- 11.Winpenny REP (2008) Angew Chem Int Ed 47:7992CrossRefGoogle Scholar
- 12.Wernsdorfer W (2008) CR Chimie 11:1086CrossRefGoogle Scholar
- 13.Mannini M, Pineider F, Sainctavit P, Danieli C, Otero E, Sciancalepore C, Talarico AM, Arrio MA, Cornia A, Gatteschi D, Sessoli R (2009) Nat Mater 8:194CrossRefGoogle Scholar
- 14.Caneschi A, Gatteschi D, Lalioti N, Sangregorio C, Sessoli R, Venturi G, Vindigni A, Rettori A, Pini MG, Novak MA (2001) Angew Chem Int Ed 40:1760CrossRefGoogle Scholar
- 15.Clérac R, Miyasaka H, Yamashita M, Coulon C (2002) J Am Chem Soc 124:12837CrossRefGoogle Scholar
- 16.Coulon C, Miyasaka H, Clérac R (2006) Struct Bond 122:163CrossRefGoogle Scholar
- 17.Miyasaka H, Clérac R (2005) Bull Chem Soc Jpn 78:1725CrossRefGoogle Scholar
- 18.Xu G, Wang Q, Liao D, Yang G (2005) Prog Chem 17:970Google Scholar
- 19.Lescouëzec R, Toma LM, Vaissermann J, Verdaguer M, Delgado FS, Ruiz-Pérez C, Lloret F, Julve M (2005) Coord Chem Rev 249:2691CrossRefGoogle Scholar
- 20.Bogani L, Vindigni A, Sessoli R, Gatteschi D (2008) J Mater Chem 18:4750CrossRefGoogle Scholar
- 21.Miyasaka H, Julve M, Yamashita M, Clérac R (2009) Inorg Chem 48:3420CrossRefGoogle Scholar
- 22.Brooker S, Kitchen JA (2009) Dalton Trans 7331Google Scholar
- 23.Sun H-L, Wang Z-M, Gao S (2010) Coord Chem Rev 254:1081CrossRefGoogle Scholar
- 24.Zhang W-X, Ishikawa R, Breedlove B, Yamashita M (2013) RSC Adv 3:3772CrossRefGoogle Scholar
- 25.Glauber J (1963) J Math Phys 4:294CrossRefGoogle Scholar
- 26.Miyasaka H, Clérac R, Mizushima K, Sugiura K, Yamashita M, Wernsdorfer W, Coulon C (2003) Inorg Chem 42:8203CrossRefGoogle Scholar
- 27.Saitoh A, Miyasaka H, Yamashita M, Clérac R (2007) J Mater Chem 17:2002CrossRefGoogle Scholar
- 28.Miyasaka H, Saitoh A, Yamashita M, Clérac R (2008) Dalton Trans 2422Google Scholar
- 29.Lecren L, Roubeau O, Coulon C, Li Y-G, Le Goff XF, Wernsdorfer W, Miyasaka H, Clérac R (2005) J Am Chem Soc 127:17353CrossRefGoogle Scholar
- 30.Lecren L, Roubeau O, Li Y-G, Le Goff XF, Miyasaka H, Richard F, Wernsdorfer W, Coulon C, Clérac R (2008) Dalton Trans 755Google Scholar
- 31.Coulon C, Clérac R, Wernsdorfer W, Colin T, Miyasaka H (2009) Phys Rev Lett 102:167204CrossRefGoogle Scholar
- 32.Miyasaka H, Takayama K, Saitoh A, Furukawa S, Yamashita M, Clérac R (2010) Chem Eur J 16:3656CrossRefGoogle Scholar
- 33.Bhowmick I, Hillard EA, Dechambenoit P, Coulon C, Harris TD, Clérac R (2012) Chem Commun 48:9717CrossRefGoogle Scholar
- 34.Barbara B (1994) J Magn Magn Mater 129:79CrossRefGoogle Scholar
- 35.Lajzerowicz J, Niez JJ (1979) J Phys Lett 40:L165CrossRefGoogle Scholar
- 36.Fisher ME (1964) Am J Phys 32:343CrossRefGoogle Scholar
- 37.Nakamura K, Sasada T (1978) J Phys C 11:331CrossRefGoogle Scholar
- 38.Nakamura K, Sasada T (1977) Solid State Commun 21:891CrossRefGoogle Scholar
- 39.Sakai T, Matsumoto M, Asakura K, Sato M (2005) Progr Theor Phys Suppl 159:308CrossRefGoogle Scholar
- 40.Billoni O, Pianet V, Pescia D, Vindigni A (2011) Phys Rev B 84:064415CrossRefGoogle Scholar
- 41.Coulon C, Clérac R, Lecren L, Wernsdorfer W, Miyasaka H (2004) Phys Rev B 69:132408CrossRefGoogle Scholar
- 42.Cole KS, Cole RH (1941) J Chem Phys 9:341CrossRefGoogle Scholar
- 43.Sun Z-M, Prosvirin AV, Zhao H-H, Mao J-G, Dunbar KR (2005) J Appl Phys 97:10B305Google Scholar
- 44.Huang HW (1973) Phys Rev A 8:2553CrossRefGoogle Scholar
- 45.Saito Y, Kubo R (1976) J Stat Phys 15:233CrossRefGoogle Scholar
- 46.Boukheddaden K, Shteto I, Hoo B, Varret F (2000) Phys Rev B 62:14806CrossRefGoogle Scholar
- 47.Cordery R, Sarker S, Tobochnik J (1981) Phys Rev B 24:5402CrossRefGoogle Scholar
- 48.Wortis M (1974) Phys Rev B 10:4665CrossRefGoogle Scholar
- 49.Matsubara F, Yoshimura K (1973) Can J Phys 51:1053CrossRefGoogle Scholar
- 50.Luscombe JH, Luban M, Reynolds JP (1996) Phys Rev E 53:5852CrossRefGoogle Scholar
- 51.Dhar D, Barma M (1980) J Stat Phys 22:259CrossRefGoogle Scholar
- 52.Schwarz G (1965) J Mol Biol 11:64CrossRefGoogle Scholar
- 53.Pipkin AC, Gibbs JH (1996) Biopolymers 4:3CrossRefGoogle Scholar
- 54.Craig ME, Crothers DM (1968) Biopolymers 6:385CrossRefGoogle Scholar
- 55.Schwarz G (1968) Biopolymers 6:873CrossRefGoogle Scholar
- 56.Schwarz G (1968) Rev Mod Phys 40:206CrossRefGoogle Scholar
- 57.Schwarz G (1972) J Theor Biol 36:569CrossRefGoogle Scholar
- 58.Schwarz M Jr, Poland D (1976) J Chem Phys 65:2620CrossRefGoogle Scholar
- 59.Baumgärtner A, Binder K (1979) J Chem Phys 70:429CrossRefGoogle Scholar
- 60.Coulon C, Clérac R, Wernsdorfer W, Colin T, Saitoh A, Motokawa N, Miyasaka H (2007) Phys Rev B 76:214422CrossRefGoogle Scholar
- 61.Suzuki M, Kubo R (1968) J Phys Soc Jpn 24:51CrossRefGoogle Scholar
- 62.Wernsdorfer W, Clérac R, Coulon C, Lecren L, Miyasaka H (2005) Phys Rev Lett 95:237203CrossRefGoogle Scholar
- 63.Toma LM, Lescouëzec R, Pasan J, Ruiz-Perez C, Vaissermann J, Cano J, Carrasco R, Wernsdorfer W, Lloret F, Julve M (2006) J Am Chem Soc 128:4842CrossRefGoogle Scholar
- 64.Roubeau O, Clérac R (2008) Eur J Inorg Chem 4313:4480Google Scholar
- 65.Jeon IR, Clérac R (2012) Dalton Trans 41:9569CrossRefGoogle Scholar
- 66.Miyasaka H, Nezu T, Sugimoto K, Sugiura K-I, Yamashita M, Clérac R (2005) Chem Eur J 11:1592CrossRefGoogle Scholar
- 67.Zener C (1932) Proc R Soc A 137:696CrossRefGoogle Scholar
- 68.Wernsdorfer W, Bhaduri S, Vinslava A, Christou G (2005) Phys Rev B 72:4429Google Scholar
- 69.Wernsdorfer W, Sessoli R (1999) Science 284:133CrossRefGoogle Scholar
- 70.Lecren L, Wernsdorfer W, Li Y-G, Roubeau O, Miyasaka H, Clérac R (2005) J Am Chem Soc 127:11311CrossRefGoogle Scholar
- 71.Wernsdorfer W, Bonet Orozco E, Hasselbach K, Benoit A, Barbara B, Demoncy N, Loiseau A (1997) Phys Rev Lett 78:1791CrossRefGoogle Scholar
- 72.Wernsdorfer W, Murugesu M, Tasiopoulos T, Christou G (2005) Phys Rev B 72:212406CrossRefGoogle Scholar
- 73.Miyagawa K, Kanoda K, Kawamoto A (2004) Chem Rev 104:5635CrossRefGoogle Scholar
- 74.Miyasaka H, Madanbashi T, Sugimoto K, Nakazawa Y, Wernsdorfer W, Sugiura K-I, Yamashita M, Coulon C, Clérac R (2006) Chem Eur J 12:7028CrossRefGoogle Scholar
- 75.Harris TD, Bennett MV, Clérac R, Long JR (2010) J Am Chem Soc 132:3980CrossRefGoogle Scholar
- 76.Feng X, Harris TD, Long JR (2011) Chem Sci 2:1688CrossRefGoogle Scholar
- 77.Ishikawa R, Katoh K, Breedlove BK, Yamashita M (2012) Inorg Chem 51:9123CrossRefGoogle Scholar
- 78.Tomkowicz Z, Rams M, Balanda M, Foro S, Nojiri H, Krupskaya Y, Kataev V, Bücher B, Nayak SK, Yakhmi JV, Haase W (2012) Inorg Chem 51:9983CrossRefGoogle Scholar
- 79.Zhang Y-Q, Luo C-L, Wu X-B, Wang B-W, Gao S (2014) Inorg Chem 53:3503CrossRefGoogle Scholar