Computation of Excited States of Transition Metal Complexes

  • Nuno M. S. Almeida
  • Russell G. McKinlay
  • Martin J. PatersonEmail author
Part of the Structure and Bonding book series (STRUCTURE, volume 167)


In this review we discuss the theory and application of methods of excited state quantum chemistry to excited states of transition metal complexes. We review important works in the field and, in more detail, discuss our own studies of electronic spectroscopy and reactive photochemistry. These include binary metal carbonyl photodissociation and subsequent non-adiabatic relaxation, Jahn–Teller and pseudo-Jahn–Teller effects, photoisomerization of transition metal complexes, and coupled cluster response theory for electronic spectroscopy. We aim to give the general reader an idea of what is possible from modern state-of-the-art computational techniques applied to transition metal systems.


Computational chemistry Excited states Photochemistry Electronic spectroscopy Non-adiabatic chemistry Jahn-Teller theory 



We thank the European Research Council for funding under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant No. 258990.


  1. 1.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B846–B871CrossRefGoogle Scholar
  2. 2.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138CrossRefGoogle Scholar
  3. 3.
    Pople JA, Gill PMW, Johnson BG (1992) Kohn-Sham density-functional theory within a finite basis set. Chem Phys Lett 199:557–560CrossRefGoogle Scholar
  4. 4.
    Moller C, Plesset MS (1934) Note on approximate treatment for many-electron systems. Phys Rev 46:618–622CrossRefGoogle Scholar
  5. 5.
    Pople JA, Seeger R, Krishnan R (1977) Variational configuration interaction methods and comparison with perturbation-theory. Int J Quan Chem 149–163Google Scholar
  6. 6.
    Coester F (1958) Bound states of a many-particle system. Nuc phys 7:421–424CrossRefGoogle Scholar
  7. 7.
    Coester F, Hummel H (1960) Short-range correlations in nuclear wavefunctions. Nuc phys 17:477–485CrossRefGoogle Scholar
  8. 8.
    Kummel H, Luhrmann KH (1972) Equations for linked clusters and energy variational principle. Nuc Phys A A191:525CrossRefGoogle Scholar
  9. 9.
    Christiansen O, Koch H, Jorgensen P (1995) Response functions in the CC3 iterative triple excitation model. J Chem Phys 103:7429–7441Google Scholar
  10. 10.
    Christiansen O, Koch H, Jorgensen P (1995) The 2nd-order approximate coupled-cluster singles and doubles model CC2. Chem Phys Lett 243:409–418Google Scholar
  11. 11.
    Taylor DJ, Paterson MJ (2010) Calculations of the low-lying excited states of the TiO2 molecule. J Chem Phys 133Google Scholar
  12. 12.
    Knowles PJ (1991) A full-CI study of the energetics of the reaction F + H2→HF + H. Chem Phys Lett 185:555–561Google Scholar
  13. 13.
    Roos BO, Taylor PR, Siegbahn PEM (1980) A complete active space SCF method (CASSCF) using a density-matrix formulated super-CI approach. Chem Phys 48:157–173CrossRefGoogle Scholar
  14. 14.
    Gagliardi L, Roos BO (2007) Multiconfigurational quantum chemical methods for molecular systems containing actinides. Chem Soc Rev 36:893–903CrossRefGoogle Scholar
  15. 15.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JJA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, shida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian 09, Revision A.1, Gaussian, Inc., WallingfordGoogle Scholar
  16. 16.
    Aquilante F, De Vico L, Ferre N, Ghigo G, Malmqvist P-A, Neogrady P, Pedersen TB, Pitonak M, Reiher M, Roos BO, Serrano-Andres L, Urban M, Veryazov V, Lindh R (2010) Software news and update molcas 7: the next generation. J Comput Chem 31:224–247CrossRefGoogle Scholar
  17. 17.
    Shepard R, Shavitt I, Pitzer RM, Comeau DC, Pepper M, Lischka H, Szalay PG, Ahlrichs R, Brown FB, Zhao JG (1988) A progress report on the status of the columbus MRCI program system. Int J Quan Chem 149–165Google Scholar
  18. 18.
    Lischka H, Shepard R, Shavitt I, Pitzer RM, Dallos M, Muller T, Szalay PG, Brown FB, Ahlrichs R, Bohm HJ, Chang A, Comeau DC, Gdanitz R, Dachsel H, Erhardt CME, Hochtl P, Irle S, Kedziora GS, Kovar T, Parasuk V, Pepper MJM, Scharf P, Schiffer H, Schindler M, Schuler M, Seth M, Stahlberg EA, Zhao J-G, Yabushita S, Zhang Z, Barbatti M, Matsika S, Schuurmann M, Yarkony DR, Brozell SR, Beck EV, Blaudeau M, Ruckenbauer M, Sellner B, Plasser F, Szymczak JJ (2012) Columbus, an ab initio electronic structure programGoogle Scholar
  19. 19.
    Lischka H, Shepard R, Pitzer RM, Shavitt I, Dallos M, Muller T, Szalay PG, Seth M, Kedziora GS, Yabushita S, Zhang ZY (2001) High-level multireference methods in the quantum-chemistry program system columbus: Analytic MR-CISD and MR-AQCC gradients and MR-AQCC-LRT for excited states, guga spin-orbit CI and parallel CI density. Phys Chem Chem Phys 3:664–673CrossRefGoogle Scholar
  20. 20.
    Lischka H, Shepard R, Brown FB, Shavitt I, (1981) New implementation of the graphical unitary-group approach for multi-reference direct configuration-interaction calculations. Int J Quan Chem 91–100Google Scholar
  21. 21.
    Lischka H, Mueller T, Szalay PG, Shavitt I, Pitzer RM, Shepard R (2011) Columbus-a program system for advanced multireference theory calculations. Wiley Interdisciplinary Rev Computat Mol Sci 1:191–199CrossRefGoogle Scholar
  22. 22.
    Guest MF, Bush IJ, Van Dam HJJ, Sherwood P, Thomas JMH, Van Lenthe JH, Havenith RWA, Kendrick J (2005) The Gamess-UK electronic structure package: algorithms, developments and applications. Mol Phys 103:719–747CrossRefGoogle Scholar
  23. 23.
    Andersson K, Malmqvist PA, Roos BO, Sadlej AJ, Wolinski K (1990) 2nd-Order perturbation-theory with a CASSCF reference function. J Phys Chem 94:5483–5488CrossRefGoogle Scholar
  24. 24.
    Andersson K, Malmqvist PA, Roos BO (1992) 2nd-Order perturbation-theory with a complete active space self-consistent field reference function. J Chem Phys 96:1218–1226CrossRefGoogle Scholar
  25. 25.
    Worth GA, Cederbaum LS (2004) Beyond Born-Oppenheimer: Molecular dynamics through a conical intersection. Ann Rev Phys Chem 55:127–158CrossRefGoogle Scholar
  26. 26.
    Althorpe SC, Worth GA (2004) Collaborative computational project on molecular quantum dynamics (CCP6). Daresbury Laboratory, DaresburyGoogle Scholar
  27. 27.
    van der Kamp MW, Mulholland AJ (2013) Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry 52:2708–2728CrossRefGoogle Scholar
  28. 28.
    Senn HM, Thiel W (2009) QM/MM methods for biomoleculr systems. Angew Chem Int Ed 48:1198–1229CrossRefGoogle Scholar
  29. 29.
    Garino C, Salassa L (2013) The photochemistry of transition metal complexes using density functional theory. Philos Trans R Soc A 371:20120134CrossRefGoogle Scholar
  30. 30.
    Daniel C (2003) Electronic spectroscopy and photoreactivity in transition metal complexes. Coord Chem Rev 238:143–166CrossRefGoogle Scholar
  31. 31.
    Rosa A, Ricciardi G, Baerends EJ, Stufkens DJ (1995) Density-functional study of ground and excited-states of Mn2(CO)10. Inorg Chem 34:3425–3432CrossRefGoogle Scholar
  32. 32.
    van Gisbergen SJA, Groeneveld JA, Rosa A, Snijders JG, Baerends EJ (1999) Excitation energies for transition metal compounds from time-dependent density functional theory. Applications to MnO4 -, Ni(CO)4, and Mn2(CO)10. J Phys Chem A 103:6835–6844CrossRefGoogle Scholar
  33. 33.
    Rosa A, Baerends EJ, van Gisbergen SJA, van Lenthe E, Groeneveld JA, Snijders JG (1999) Electronic spectra of M(CO)6 (M=Cr, Mo, W) revisited by a relativistic TD-DFT approach. J Am Chem Soc 121:10356–10365CrossRefGoogle Scholar
  34. 34.
    Pollak C, Rosa A, Baerends EJ (1997) Cr-CO photodissociation in Cr(CO)6: reassessment of the role of ligand-field excited states in the photochemical dissociation of metal-ligand bonds. J Am Chem Soc 119:7324–7329CrossRefGoogle Scholar
  35. 35.
    Gray HB, Beach NA (1963) The electronic structure of octahedral metal complexes. I. Metal hexacarbonyls and hexacynanides. J Am Chem Soc 85:2922–2927CrossRefGoogle Scholar
  36. 36.
    McKinlay RG, Zurek JM, Paterson MJ (2010) Vibronic coupling in inorganic systems: photochemistry, conical intersections, and the Jahn–Teller and pseudo-Jahn–Teller effects. Adv Inorg Chem 62:351–390CrossRefGoogle Scholar
  37. 37.
    McKinlay RG, Paterson MJ (2010) In: Köppel H, Barentzen H, Yarkony DR (eds) Jahn-Teller effect: fundamentals and implications for physics and chemistry. Springer-Verlag, Heidelberg, p 311Google Scholar
  38. 38.
    Aarnts MP, Stufkens DJ, Sola M, Baerends EJ (1997) Coordinative behavior of the CNCN ligand. Experimental and density functional study of spectroscopic properties and bonding in the Cr(CO)5CNCN complex. Organometallics 16:2254–2262CrossRefGoogle Scholar
  39. 39.
    Wilms MP, Baerends EJ, Rosa A, Stufkens DJ (1997) Density functional study of the primary photoprocesses of manganese pentacarbonyl chloride (MnCl(CO)5). Inorg Chem 36:1541–1551CrossRefGoogle Scholar
  40. 40.
    McKinlay RG, Paterson MJ (2012) A time-dependent density functional theory study of the structure and electronic spectroscopy of the group 7 mixed-metal carbonyls: MnTc(CO)10, MnRe(CO)10, and TcRe(CO)10. J Phys Chem A 116:9295–9304CrossRefGoogle Scholar
  41. 41.
    Goumans TPM, Ehlers AW, van Hemert MC, Rosa A, Baerends EJ, Lammertsma K (2003) Photodissociation of the phosphine-substituted transition metal carbonyl complexes Cr(CO)5L and Fe(CO)4L: a theoretical study. J Am Chem Soc 125:3558–3567CrossRefGoogle Scholar
  42. 42.
    Neugebauer J, Baerends EJ, Nooijen M (2005) Vibronic structure of the permanganate absorption spectrum from time-dependent density functional calculations. J Phys Chem A 109:1168–1179CrossRefGoogle Scholar
  43. 43.
    Gunaratne TC, Gusev AV, Peng XZ, Rosa A, Ricciardi G, Baerends EJ, Rizzoli C, Kenney ME, Rodgers MAJ (2005) Photophysics of octabutoxy phthalocyaninato-Ni(II) in toluene: Ultrafast experiments and DFT/TD-DFT studies. J Phys Chem A 109:2078–2089CrossRefGoogle Scholar
  44. 44.
    Rosa A, Ricciardi G, Gritsenko O, Baerends EJ (2004) Excitation energies of metal complexes with time-dependent density functional theory. Struc Bond 112:49–116CrossRefGoogle Scholar
  45. 45.
    Kuhn O, Hachey MRD, Rohmer MM, Daniel C (2000) A CASSCF/CASPT2 study of the low-lying excited states of Mn2(CO)10. Chem Phys Lett 322:199–206CrossRefGoogle Scholar
  46. 46.
    Zalis S, Ben Amor N, Daniel C (2004) Influence of the halogen ligand on the near-UV-visible spectrum of Ru(X)(Me)(CO)2((alpha-diimine) (X=Cl, L; alpha-diimine=Me-DAB, iPr-DAB; DAB=1,4-diaza-1,3-butadiene)): an ab initio and TD-DFT analysis. Inorg Chem 43:7978–7985CrossRefGoogle Scholar
  47. 47.
    Zakrzewski J, Delaire JA, Daniel C, Cote-Bruand I (2004) W(CO)5-pyridine Pi-acceptor complexes: theoretical calculations and a laser photolysis study. New J Chem 28:1514–1519CrossRefGoogle Scholar
  48. 48.
    Villaume S, Daniel C (2005) Emission spectroscopy of metal-to-ligand-charge-transfer states of HRe(CO)3(H-DAB), model system for alpha-diimine rhenium tricarbonyl complexes. Comptes Rendus Chimie 8:1453–1460CrossRefGoogle Scholar
  49. 49.
    Vallet V, Strich A, Daniel C (2005) Spin-orbit effects on the electronic spectroscopy of transition metal dihydrides H2M(CO)4 (M=Fe, Os). Chem Phys 311:13–18CrossRefGoogle Scholar
  50. 50.
    Ambrosek D, Villaume S, Gonzalez L, Daniel C (2006) A multi state-CASPT2 vs. TD-DFT study of the electronic excited states of RCo(CO)4 (R=H, CH3) organometallic complexes. Chem Phys Lett 417:545–549CrossRefGoogle Scholar
  51. 51.
    Bossert J, Daniel C (2006) Trans-cis photoisomerization of the styrylpyridine ligand in Re(CO)3(2,2 '-bipyridine)(t-4-styrylpyridine)+: Role of the metal-to-ligand charge-transfer excited states. Chem Eur J 12:4835–4843CrossRefGoogle Scholar
  52. 52.
    Ambrosek D, Villaume S, Daniel C, Gonzalez L (2007) Photoactivity and UV absorption spectroscopy of RCo(CO)4 (R=H, CH3) organometallic complexes. J Phys Chem A 111:4737–4742CrossRefGoogle Scholar
  53. 53.
    Villaume S, Strich A, Daniel C, Perera SA, Bartlett RJ (2007) A coupled cluster study of the electronic spectroscopy and photochemistry of Cr(CO)6. Phys Chem Chem Phys 9:6115–6122CrossRefGoogle Scholar
  54. 54.
    Ben Arnor N, Villaume S, Maynau D, Daniel C (2006) The electronic spectroscopy of transition metal carbonyls: the tough case of Cr(CO)6. Chem Phys Lett 421:378–382CrossRefGoogle Scholar
  55. 55.
    Koch H, Jørgensen P (1990) Coupled cluster response functions. J Chem Phys 93:3333–3344CrossRefGoogle Scholar
  56. 56.
    Stanton JF, Bartlett RJ (1993) Equation of motion coupled-cluster method: a systematic biorthogonal approach to molecular excitation energies, transition probabilties and excited state properties. J Chem Phys 98:7029–7039CrossRefGoogle Scholar
  57. 57.
    Trushin SA, Kosma K, Fuss W, Schmid WE (2008) Wavelength-independent ultrafast dynamics and coherent oscillation of a metal-carbon stretch vibration in photodissociation of Cr(CO)6 in the region of 270–345 nm. Chem Phys 347:309–323CrossRefGoogle Scholar
  58. 58.
    Trushin SA, Fuss W, Schmid WE, Kompa KL (1998) Femtosecond dynamics and vibrational coherence in gas-phase ultraviolet photodecomposition of Cr(CO)6. J Phys Chem A 102:4129–4137CrossRefGoogle Scholar
  59. 59.
    Trushin SA, Fuss W, Schmid WE (2000) Conical intersections, pseudorotation and coherent oscillations in ultrafast photodissociation of group-6 metal hexacarbonyls. Chem Phys 259:313–330CrossRefGoogle Scholar
  60. 60.
    Trushin SA, Fuss W, Kompa KL, Schmid WE (2000) Femtosecond dynamics of Fe(CO)5 photodissociation at 267 nm studied by transient ionization. J Phys Chem A 104:1997–2006CrossRefGoogle Scholar
  61. 61.
    Fuss W, Trushin SA, Schmid WE (2001) Ultrafast photochemistry of metal carbonyls. Res Chem Intermed 27:447–457CrossRefGoogle Scholar
  62. 62.
    Villaume S, Daniel C, Strich A, Perera SA, Bartlett RJ (2005) Quantum chemical study of the electronic structure of NiCH2 + in its ground state and low-lying electronic excited states. J Chem Phys 122(4):044313–044316CrossRefGoogle Scholar
  63. 63.
    Kayanuma M, Gindensperger E, Daniel C (2012) Inorganic photoisomerization: the case study of rhenium(I) complexes. Dalton Trans 41:13191–13203CrossRefGoogle Scholar
  64. 64.
    Kayanuma M, Daniel C, Koppel H, Gindensperger E (2011) Photophysics of isomerizable Re(I complexes: a theoretical analysis. Coord Chem Rev 255:2693–2703CrossRefGoogle Scholar
  65. 65.
    Gindensperger E, Koppel H, Daniel C (2010) Mechanism of visible-light photoisomerization of a Rhenium(I) carbonyl-diimine complex. Chem Comm 46:8225–8227CrossRefGoogle Scholar
  66. 66.
    Bakova R, Chergui M, Daniel C, Vlcek A Jr, Zalis S (2011) Relativistic effects in spectroscopy and photophysics of heavy-metal complexes illustrated by spin-orbit calculations of Re(imidazole)(CO)3(phen)+. Coord Chem Rev 255:975–989CrossRefGoogle Scholar
  67. 67.
    Pellegrin Y, Sandroni M, Blart E, Planchat A, Evain M, Bera NC, Kayanuma M, Sliwa M, Rebarz M, Poizat O, Daniel C, Odobel F (2011) New heteroleptic bis-phenanthroline copper(I) complexes with dipyridophenazine or imidazole fused phenanthroline ligands: spectral, electrochemical, and quantum chemical studies. Inorg Chem 50:11309–11322CrossRefGoogle Scholar
  68. 68.
    Seth M, Ziegler T (2005) Calculation of excitation energies of open-shell molecules with spatially degenerate ground states. I. Transformed reference via an intermediate configuration kohn-sham density-functional theory and applications to d1 and d2 systems with octahedral and tetrahedral symmetries. J Chem Phys 123Google Scholar
  69. 69.
    Wang F, Ziegler T (2005) Theoretical study of the electronic spectra of square-planar platinum(II) complexes based on the two-component relativistic time-dependent density-functional theory. J Chem Phys 123Google Scholar
  70. 70.
    Rudolph M, Ziegler T, Autschbach J (2011) Time-dependent density functional theory applied to ligand-field excitations and their circular dichroism in some transition metal complexes. Chem Phys 391:92–100CrossRefGoogle Scholar
  71. 71.
    Pierloot K (2005) In: Olivucci M (ed) Computational photochemistry. Elsevier, Heidelberg, pp 279–315Google Scholar
  72. 72.
    Pierloot K, Tsokos E, Vanquickenborne LG (1996) Optical spectra of Ni(CO)4 and Cr(CO)6 revisited. J Phys Chem 100:16545–16550CrossRefGoogle Scholar
  73. 73.
    Zurek JM, Paterson MJ (2009) Theoretical study of the pseudo-Jahn–Teller effect in the edge-sharing bioctahedral complex Mo-2(DXyIF)2(O2CCH3)22-O)2. Inorg Chem 48:10652–10657CrossRefGoogle Scholar
  74. 74.
    Cotton FA, Daniels LM, Murillo CA, Slaton JG (2002) A pseudo-Jahn–Teller distortion in an Mo22-O)2 ring having the shortest Mo-IV-Mo-IV double bond. J Am Chem Soc 124:2878–2879CrossRefGoogle Scholar
  75. 75.
    Bearpark MJ, Blancafort L, Robb MA (2002) The pseudo-Jahn–Teller effect: a CASSCF diagnostic. Mol Phys 100:1735–1739CrossRefGoogle Scholar
  76. 76.
    Zurek JM, Paterson MJ (2010) Photoisomerization in a platinum-amido pincer complex: an excited-state reaction pathway controlled by localized ligand photochemistry. J Phys Chem Lett 1:1301–1306CrossRefGoogle Scholar
  77. 77.
    Harkins SB, Peters JC (2006) Unexpected photoisomerization of a pincer-type amido ligand leads to facial coordination at Pt(IV). Inorg Chem 45:4316–4318CrossRefGoogle Scholar
  78. 78.
    Zurek JM, Paterson MJ (2012) Photostereochemistry and photoaquation reactions of Cr(tn)3 3+: theoretical studies show the importance of reduced coordination conical intersection geometries. J Phys Chem A 116:5375–5382CrossRefGoogle Scholar
  79. 79.
    Zurek JM, Paterson MJ (2012) Photoracemization and excited state relaxation through non-adiabatic pathways in chromium (III) oxalate ions. J Chem Phys 137Google Scholar
  80. 80.
    Levine BG, Chaehyuk K, Queenville J, Martinez TJ (2006) Conical intersections and double excitations in time-dependent density functional theory. Mol Phys 104:1039–1051CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Nuno M. S. Almeida
    • 1
  • Russell G. McKinlay
    • 1
  • Martin J. Paterson
    • 1
    Email author
  1. 1.Institute of Chemical Sciences, School of Engineering and Physical SciencesHeriot-Watt UniversityEdinburghUK

Personalised recommendations