d10-ML2 Complexes: Structure, Bonding, and Catalytic Activity

  • Lando P. Wolters
  • F. Matthias BickelhauptEmail author
Part of the Structure and Bonding book series (STRUCTURE, volume 167)


Our goal in this chapter is to show how one can obtain a better understanding of the decisive factors for the selectivity and efficiency of catalytically active metal complexes. This ongoing research project has been designated the ‘Fragment-oriented Design of Catalysts’ and aims at providing design principles for a more rational development of catalysts. To this end, we have performed a series of studies in which we systematically investigate the effect of a specific variation on the reactivity of the catalyst. Thus, we will summarize previous results on not only how the reaction barrier varies when different bonds are activated by palladium, different ligands are attached to palladium but also how different metal centers perform compared to palladium. In a final section, we present a case study on newly obtained results about the effect of adding substituents with different electronegativity to the phosphine ligands at the metal center. A red thread throughout the chapter, and our methodology in general, is the application of the activation strain model of chemical reactivity. This is a predictive model that provides a quantitative relationship between trends in barrier heights and variation of geometric and electronic properties of the reactants.


Activation strain model Bond activation Bond theory Catalysis Density functional calculations Halogenated phosphine ligands Ligands Transition metal complexes 


  1. 1.
    Diederich F, Stang PJ (1998) Metal-catalyzed cross-coupling reactions. Weinheim, Wiley-VCHCrossRefGoogle Scholar
  2. 2.
    Hartwig JF (2010) Organotransition metal chemistry: from bonding to catalysis, 1st edn. University Science Books, SausalitoGoogle Scholar
  3. 3.
    The Nobel Prize in Chemistry (2010) Press Release. 6 Oct 2010
  4. 4.
    Suzuki A (2011) Cross-coupling reactions of organoboranes: an easy way to construct C–C bonds (Nobel lecture). Angew Chem Int Ed 50:6722CrossRefGoogle Scholar
  5. 5.
    Negishi E-I (2011) Magical power of transition metals: past, present, and future (Nobel lecture). Angew Chem Int Ed 50:6738CrossRefGoogle Scholar
  6. 6.
    Shilov AE, Shul’pin GB (1997) Activation of C–H bonds by metal complexes. Chem Rev 97:2879CrossRefGoogle Scholar
  7. 7.
    Beletskaya IP, Cheprakov AV (2000) The Heck reaction as a sharpening stone of palladium catalysis. Chem Rev 100:2009CrossRefGoogle Scholar
  8. 8.
    Van Der Boom ME, Milstein D (2003) Cyclometalated phosphine-based pincer complexes: mechanistic insight in bond activation. Chem Rev 103:1759CrossRefGoogle Scholar
  9. 9.
    Crabtree RH (2004) Organometallic alkane CH activation. J Organomet Chem 689:4083CrossRefGoogle Scholar
  10. 10.
    Weisshaar JC (1993) Bare transition metal atoms in the gas phase: reactions of M, M+, and M2+ with hydrocarbons. Acc Chem Res 26:213CrossRefGoogle Scholar
  11. 11.
    Ziegler T (1991) Approximate density functional theory as a practical tool in molecular energetics and dynamics. Chem Rev 91:651CrossRefGoogle Scholar
  12. 12.
    Niu SQ, Hall MB (2000) Theoretical studies on reactions of transition-metal complexes. Chem Rev 100:353CrossRefGoogle Scholar
  13. 13.
    Torrent M, Solà M, Frenking G (2000) Theoretical studies of some transition-metal-mediated reactions of industrial and synthetic importance. Chem Rev 100:439Google Scholar
  14. 14.
    Dedieu A (2000) Theoretical studies in palladium and platinum molecular chemistry. Chem Rev 100:543CrossRefGoogle Scholar
  15. 15.
    Diefenbach A, De Jong GT, Bickelhaupt FM (2005) Fragment-oriented design of catalysts based on the activation strain model. Mol Phys 103:995Google Scholar
  16. 16.
    Bickelhaupt FM (1999) Understanding reactivity with Kohn–Sham molecular orbital theory: E2-SN2 mechanistic spectrum and other concepts. J Comp Chem 20:114CrossRefGoogle Scholar
  17. 17.
    Diefenbach A, De Jong GT, Bickelhaupt FM (2005) Activation of H–H, C–H, C–C and C–Cl bonds by Pd and PdCl. Understanding anion assistance in C–X bond activation. J Chem Theory Comput 1:286Google Scholar
  18. 18.
    De Jong GT, Bickelhaupt FM (2007) Transition-state energy and position along the reaction coordinate in an extended activation strain model. ChemPhysChem 8:1170Google Scholar
  19. 19.
    Van Zeist W-J, Bickelhaupt FM (2010) The activation strain model of chemical reactivity. Org Biomol Chem 8:3118CrossRefGoogle Scholar
  20. 20.
    Amatore C, Jutand A (1999) Mechanistic and kinetic studies of palladium catalytic sytems. J Organomet Chem 576:254CrossRefGoogle Scholar
  21. 21.
    Kozuch S, Amatore C, Jutand A, Shaik S (2005) What makes for a good catalytic cycle? A theoretical study of the role of an anionic palladium(0) complex in the cross-coupling of an aryl halide with an anionic nucleophile. Organometallics 24:2319CrossRefGoogle Scholar
  22. 22.
    Kozuch S, Shaik S (2011) How to conceptualize catalytic cycles? The energetic span model. Acc Chem Res 44:101CrossRefGoogle Scholar
  23. 23.
    Kozuch S (2012) A refinement of everyday thinking: the energetic span model for kinetic assessment of catalytic cycles. WIREs Comput Mol Sci 2:795CrossRefGoogle Scholar
  24. 24.
    Legault CY, Garcia Y, Merlic CA, Houk KN (2007) Origin of regioselectivity in palladium-catalyzed cross-coupling reactions of polyhalogenated heterocycles. J Am Chem Soc 129:12664CrossRefGoogle Scholar
  25. 25.
    Galabov B, Nikolova V, Wilke JJ, Schaefer HF III, Allen WD (2008) Origin of the SN2 benzylic effect. J Am Chem Soc 130:9887CrossRefGoogle Scholar
  26. 26.
    Bento AP, Bickelhaupt FM (2008) Nucleophilicity and leaving-group ability in frontside and backside SN2 reactions. J Org Chem 73:7290CrossRefGoogle Scholar
  27. 27.
    Ess DH, Houk KN (2008) Theory of 1,3-dipolar. Cycloadditions: distortion/interaction and frontier molecular orbital models. J Am Chem Soc 130:10187CrossRefGoogle Scholar
  28. 28.
    Wolters LP, Bickelhaupt FM (2012) Halogen bonding versus hydrogen bonding: a molecular orbital perspective. Chem Open 1:96Google Scholar
  29. 29.
    Bickelhaupt FM, Baerends EJ (2003) The case for steric repulsion causing the staggered conformation of ethane. Angew Chem Int Ed 42:4183CrossRefGoogle Scholar
  30. 30.
    Poater J, Sola M, Bickelhaupt FM (2006) Hydrogen-hydrogen bonding in planar biphenyl, predicted by atoms-in-molecules theory, does not exist. Chem Eur J 12:2889CrossRefGoogle Scholar
  31. 31.
    Fernández I, Bickelhaupt FM, Cossío FP (2012) Type-I dyotropic reactions: understanding trends in barriers. Chem Eur J 18:12395Google Scholar
  32. 32.
    Van Zeist W-J, Koers AH, Wolters LP, Bickelhaupt FM (2008) Reaction coordinates and the transition-vector approximation to the IRC. J Chem Theory Comput 4:920CrossRefGoogle Scholar
  33. 33.
    Bickelhaupt FM, Baerends EJ (2000) Kohn–Sham density functional theory: predicting and understanding chemistry. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry. Wiley-VCH, New YorkGoogle Scholar
  34. 34.
    Baerends EJ, Gritsenko OV (1997) A quantum chemical view of density functional theory. J Phys Chem A 101:5383CrossRefGoogle Scholar
  35. 35.
    Ziegler T, Rauk A (1979) A theoretical study of the ethylene-metal bond in complexes between Cu+, Ag+, Au+, Pt0 or Pt2+ and ethylene, based on the Hartree–Fock–Slater transition-state method. Inorg Chem 18:1558CrossRefGoogle Scholar
  36. 36.
    Te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca GC, Van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931CrossRefGoogle Scholar
  37. 37.
    Fonseca GC, Snijders JG, Te Velde G, Baerends EJ (1998) Towards an order-N DFT method. Theor Chem Acc 99:391Google Scholar
  38. 38.
    Baerends EJ, Ziegler T, Autschbach J, Bashford D, Bérces A, Bickelhaupt FM, Bo C, Boerrigter PM, Cavallo L, Chong DP, Deng L, Dickson RM, Ellis DE, Van Faassen M, Fan L, Fischer TH, Fonseca Guerra C, Ghysels A, Giammona A, Van Gisbergen SJA, Götz AW, Groeneveld JA, Gritsenko OV, Grüning M, Gusarov S, Harris FE, Van Den Hoek P, Jacob CR, Jacobson H, Jensen L, Kaminski JW, Van Kessel G, Kootstra F, Kovalenko A, Krykunov MV, Van Lenthe E, McCormack DA, Michalak A, Mitoraj M, Neugebauer J, Nicu VP, Noodleman L, Osinga VP, Patchkovskii S, Philipsen PHT, Post D, Pye CC, Ravenek W, Rodríguez JI, Ros P, Schipper PRT, Schreckenbach G, Seldenthuis JS, Seth M, Snijders JG, Solà M, Swart M, Swerhone D, Te Velde G, Vernooijs P, Versluis L, Visscher L, Visser O, Wang F, Wesolowski TA, Van Wezenbeek EM, Wiesenekker G, Wolff SK, Woo TK, Yakovlev AL, SCM, Theoretical Chemistry; Vrije Universiteit, Amsterdam, The Netherlands.
  39. 39.
    Van Zeist W-J, Fonseca GC, Bickelhaupt FM (2008) PyFrag – streamlining your reaction path analysis. J Comput Chem 29:312CrossRefGoogle Scholar
  40. 40.
    Diefenbach A, Bickelhaupt FM (2004) Activation of H–H, C–H, C–C, and C–Cl Bonds by Pd(0). Insight from the activation strain model. J Phys Chem A 108:8460CrossRefGoogle Scholar
  41. 41.
    De Jong GT, Kovács A, Bickelhaupt FM (2006) Oxidative addition of hydrogen halides and dihalogens to Pd. Trends in reactivity and relativistic effects. J Phys Chem A 110:7943Google Scholar
  42. 42.
    Diefenbach A, Bickelhaupt FM (2005) Activation of C–H, C–C and C–I bonds by Pd and cis-Pd(CO)2I2. Catalyst–substrate adaptation. J Organomet Chem 690:2191CrossRefGoogle Scholar
  43. 43.
    De Jong GT, Bickelhaupt FM (2007) Catalytic carbon–halogen bond activation: trends in reactivity, selectivity, and solvation. J Chem Theory Comput 3:514Google Scholar
  44. 44.
    Low JJ, Goddard WA III (1986) Theoretical studies of oxidative addition and reductive elimination. 2. Reductive coupling of H–H, H–C, and C–C bonds from palladium and platinum complexes. Organometallics 5:609CrossRefGoogle Scholar
  45. 45.
    Low JJ, Goddard WA III (1986) Theoretical studies of oxidative addition and reductive elimination. 3. C–H and C–C reductive coupling from palladium and platinum bis(phosphine) complexes. J Am Chem Soc 108:6115CrossRefGoogle Scholar
  46. 46.
    Blomberg MRA, Brandemark U, Siegbahn PEM (1983) Theoretical investigation of the elimination and addition reactions of methane and ethane with nickel. J Am Chem Soc 105:5557CrossRefGoogle Scholar
  47. 47.
    Siegbahn PEM, Blomberg MRA (1992) Theoretical study of the activation of C–C bonds by transition metal atoms. J Am Chem Soc 114:10548CrossRefGoogle Scholar
  48. 48.
    Saillard JY, Hoffmann R (1984) C–H and H–H activation in transition-metal complexes and on surfaces. J Am Chem Soc 106:2006CrossRefGoogle Scholar
  49. 49.
    Forster D (1975) Halide catalysis of the oxidative addition of alkyl halides to rhodium(1) complexes. J Am Chem Soc 97:951CrossRefGoogle Scholar
  50. 50.
    Blomberg MRA, Schüle J, Siegbahn PEM (1989) Ligand effects on metal-R bonding, where R is hydrogen or alkyl. A quantum chemical study. J Am Chem Soc 111:6156CrossRefGoogle Scholar
  51. 51.
    Amatore C, Jutand A, Suarez A (1993) Intimate mechanism of oxidative addition to zerovalent palladium complexes in the presence of halide-ions and its relevance to the mechanism of palladium-catalyzed nucleophilic substitutions. J Am Chem Soc 115:9531CrossRefGoogle Scholar
  52. 52.
    Siegbahn PEM, Blomberg MRA (1994) Halide ligand effects on the oxidative addition reaction of methane and hydrogen to second row transition metal complexes. Organometallics 13:354CrossRefGoogle Scholar
  53. 53.
    Amatore C, Jutand A (2000) Anionic Pd(0) and Pd(II) intermediates in palladium-catalyzed heck and cross-coupling reactions. Acc Chem Res 33:314CrossRefGoogle Scholar
  54. 54.
    Hammond GS (1955) A correlation of reaction rates. J Am Chem Soc 77:334CrossRefGoogle Scholar
  55. 55.
    Fazaeli R, Ariafard A, Jamshidi S, Tabatabaie ES, Pishro KA (2007) Theoretical studies of the oxidative addition of PhBr to Pd(PX3)2 and Pd(X2PCH2CH2PX2) (X=Me, H, Cl). J Organomet Chem 692:3984CrossRefGoogle Scholar
  56. 56.
    Van Zeist W-J, Visser R, Bickelhaupt FM (2009) The steric nature of the bite angle. Chem Eur J 15:6112CrossRefGoogle Scholar
  57. 57.
    Van Zeist W-J, Bickelhaupt FM (2011) Steric nature of the bite angle. A closer and a broader look. Dalton Trans 40:3028CrossRefGoogle Scholar
  58. 58.
    Jover J, Fey N, Purdie M, Lloyd-Jones GC, Harvey JN (2010) A computational study of phosphine ligand effects in Suzuki–Miyaura coupling. J Mol Catal A Chem 324:39CrossRefGoogle Scholar
  59. 59.
    Besora M, Gourlaouen C, Yates B, Maseras F (2011) Phosphine and solvent effects on oxidative addition of CH3Br to Pd(PR3) and Pd(PR3)2 complexes. Dalton Trans 40:11089CrossRefGoogle Scholar
  60. 60.
    Su M, Chu S (1998) Theoretical study of oxidative addition and reductive elimination of 14-electron d10 ML2 complexes: a ML2 + CH4 (M=Pd, Pt; L=CO, PH3, L2=PH′2CH2CH2PH2) case study. Inorg Chem 37:3400CrossRefGoogle Scholar
  61. 61.
    Dierkes P, Van Leeuwen PWNM (1999) The bite angle makes the difference: a practical ligand parameter for diphosphine ligands. J Chem Soc Dalton 1999:1519–1529CrossRefGoogle Scholar
  62. 62.
    Van Leeuwen PWNM, Kamer P, Reek JNH, Dierkes P (2000) Ligand bite angle effects in metal-catalyzed C–C bond formation. Chem Rev 100:2741CrossRefGoogle Scholar
  63. 63.
    Freixa Z, Van Leeuwen PWNM (2003) Bite angle effects in diphosphine metal catalysts: steric or electronic? Dalton T 2003:1890CrossRefGoogle Scholar
  64. 64.
    Birkholz (née Gensow) M-N, Freixa Z, Van Leeuwen PWNM (2009) Bite angle effects of diphosphines in C–C and C–X bond forming cross coupling reactions. Chem Soc Rev 38:1099Google Scholar
  65. 65.
    Hofmann P, Heiss H, Müller G (1987) Synthesis and molecular-structure of dichloro[η2-bis(di-t-butylphosphino)methane]platinum(II), Pt(dtbpm)Cl2. The electronic structure of 1,3-diphosphaplatinacyclobutane fragments. Z Naturforsch 42b:395Google Scholar
  66. 66.
    Koga N, Morokuma K (1991) Ab initio molecular orbital studies of catalytic elementary reactions and catalytic cycles of transition-metal complexes. Chem Rev 91:823CrossRefGoogle Scholar
  67. 67.
    Eller K, Schwarz H (1991) Organometallic chemistry in the gas phase. Chem Rev 91:1121CrossRefGoogle Scholar
  68. 68.
    Wittborn ACM, Costas M, Blomberg MRA, Siegbahn PEM (1997) The C–H activation reaction of methane for all transition metal atoms from the three transition rows. J Chem Phys 107:4318–4328CrossRefGoogle Scholar
  69. 69.
    De Jong GT, Bickelhaupt FM (2009) Bond activation by group-11 transition-metal cations. Can J Chem 87:806Google Scholar
  70. 70.
    Wolters LP, Van Zeist W-J, Bickelhaupt FM (2014) d-regime, s-regime and intrinsic bite-angle flexibility: new concepts for designing d10-MLn catalysts. Submitted for publicationGoogle Scholar
  71. 71.
    Wolters LP, Bickelhaupt FM (2013) Nonlinear d10-ML2 transition-metal complexes. Chem Open 2:106Google Scholar
  72. 72.
    Otsuka S (1980) Chemistry of platinum and palladium compounds of bulky phosphines. J Organomet Chem 200:191CrossRefGoogle Scholar
  73. 73.
    Ziegler T (1985) Theoretical study on the stability of M(PH3)2(O2), M(PH3)2(C2H2), and M(PH3)2(C2H4) (M=Ni, Pd, Pt) and M(PH3)4(O2)+, M(PH3)4(C2H2)+, and M(PH3)4(C2H4)+ (M=Co, Rh, Ir) by the HFS-transition-state method. Inorg Chem 24:1547CrossRefGoogle Scholar
  74. 74.
    King RB (2000) Atomic orbitals, symmetry, and coordination polyhedra. Coord Chem Rev 197:141CrossRefGoogle Scholar
  75. 75.
    Carvajal MA, Novoa JJ, Alvarez S (2004) Choice of coordination number in d10 complexes of group 11 metals. J Am Chem Soc 126:1465CrossRefGoogle Scholar
  76. 76.
    Albright TA, Burdett JK, Whangbo MH (2013) Orbital interactions in chemistry, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  77. 77.
    Zhou M, Andrews L (1998) Matrix infrared spectra and density functional calculations of Ni(CO)x , x = 1–3. J Am Chem Soc 120:11499CrossRefGoogle Scholar
  78. 78.
    Manceron L, Alikhani ME (1999) Infrared spectrum and structure of Ni(CO)2 – a matrix isolation and DFT study. Chem Phys 244:215CrossRefGoogle Scholar
  79. 79.
    Jolly CA, Marynick DS (1989) Ground-state geometries and inversion barriers for simple complexes of early transition metals. Inorg Chem 28:2893CrossRefGoogle Scholar
  80. 80.
    Kaupp M (2001) “Non-VSEPR” structures and bonding in d0 systems. Angew Chem Int Ed 40:3534CrossRefGoogle Scholar
  81. 81.
    Gillespie RJ, Bytheway I, DeWitte RS, Bader RFW (1994) Trigonal bipyramidal and related molecules of the main group elements: investigation of apparent exceptions to the VSEPR model through the analysis of the laplacian of the electron density. Inorg Chem 33:2115CrossRefGoogle Scholar
  82. 82.
    Kaupp M, Schleyer PVR (1992) The structural variations of monomeric alkaline earth MX2 compounds (M=Ca, Sr, Ba; X = Li, BeH, BH2, CH3, NH2, OH, F). An ab initio pseudopotential study. J Am Chem Soc 114:491Google Scholar
  83. 83.
    Kaupp M (1999) On the relation between π bonding, electronegativity, and bond angles in high-valent transition metal complexes. Chem Eur J 5:3631CrossRefGoogle Scholar
  84. 84.
    Ogasawara M, Macgregor SA, Streib WE, Folting K, Eisenstein O, Caulton KG (1995) Isolable, unsaturated Ru(0) in Ru(CO)2(PtBu2Me)2: not isostructural with Rh(I) in Rh(CO)2(PR3)2 +. J Am Chem Soc 117:8869CrossRefGoogle Scholar
  85. 85.
    Ogasawara M, Macgregor SA, Streib WE, Folting K, Eisenstein O, Caulton KG (1996) Characterization and reactivity of an unprecedented unsaturated zero-valent ruthenium species: isolable, yet highly reactive. J Am Chem Soc 118:10189CrossRefGoogle Scholar
  86. 86.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104CrossRefGoogle Scholar
  87. 87.
    Bickelhaupt FM, DeKock RL, Baerends EJ (2002) The short N–F bond in N2F+ and how Pauli repulsion influences bond lengths. Theoretical study of N2X+, NF3X+, and NH3X+ (X = F, H). J Am Chem Soc 124:1500CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Theoretical Chemistry and Amsterdam Center for Multiscale ModelingVU UniversityAmsterdamThe Netherlands
  2. 2.Institute for Molecules and MaterialsRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations