Advertisement

Silylium Ions

  • Thomas MüllerEmail author
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 155)

Abstract

The chemistry of silylium ions and related silyl cations is reviewed. The discussion is focused on work since 2005 with recourse on investigation since the early 1990s. Structural and spectroscopic aspects of silylium ions are emphasized. Included is also survey of methods for their preparation and of their applications in organic synthesis and catalysis.

Keywords

Bond activation Silicon NMR Silylium ion Lewis acid XRD Low coordinated compounds Main group chemistry Organosilicon chemistry Hydrosilylation Silicon cation Small-molecule activation Silyliumylidene 

Abbreviations

AE

Association energy

Ar

Aryl

Bu

Butyl

cat

Catalyst

Cp

Cyclopentadienyl

d

Day(s)

DFT

Density functional theory

Dipp

2,6-Diisopropylphenyl

Duryl

2,3,5,6-Tetramethylphenyl

Et

Ethyl

h

Hour(s)

iPr

Isopropyl

L

Litrer(s)

Me

Methyl

Mes

Mesityl, 2,4,6-trimethylphenyl (not methanesulfonyl)

min

Minute(s)

mol

Mole(s)

NICS

Nucleus independent chemical shift

Nu

Nucleophile

odcb

Ortho-dichlorobenzene

Pemp

Pentamethylphenyl

Ph

Phenyl

Pr

Propyl

py

Pyridine

r.t.

Room temperature

s

Second(s)

tBu

Tert butyl

THF

Tetrahydrofuran

Tipp

2,4,6-Tri-iso-propylphenyl

Tol

4-Methylphenyl

Tr

Triphenylmethyl (trityl)

XRD

X-ray diffraction

Xylyl

2,6-Dimethylphenyl

References

  1. 1.
    Corriu RJP, Henner M (1974) The siliconium ion question. J Organomet Chem 74:1CrossRefGoogle Scholar
  2. 2.
    Lambert JB, Schulz WJ (1989) Trivalent silyl ions. In: Patai S, Rappoport Z (eds) The chemistry of organic silicon compounds. Wiley, ChichesterGoogle Scholar
  3. 3.
    Lickiss PD (1992) Do R3Si+ Ions exist in Solution? J Chem Soc Dalton Trans 1333Google Scholar
  4. 4.
    Lambert JB, Kania L, Zhang S (1995) Modern approaches to silylium cations in condensed phase. Chem Rev 95:1191CrossRefGoogle Scholar
  5. 5.
    Maerker C, Schleyer PvR (1998) Silicenium ions: quantum chemical computations. In: Rappoport Z, Apeloig Y (eds) The chemistry of organic silicon compounds, vol 2. Wiley, ChichesterGoogle Scholar
  6. 6.
    Lickiss PD (1998) Silicenium ions – experimental aspects. In: Rappoport Z, Apeloig Y (eds) The chemistry of organic silicon compounds, vol 2. Wiley, ChichesterGoogle Scholar
  7. 7.
    Reed CA (1998) Carboranes: a new class of weakly coordinating anions for strong electrophiles, oxidants, and superacids. Acc Chem Res 31:133CrossRefGoogle Scholar
  8. 8.
    Lambert JB, Zhao Y, Zhang SM (2001) Preparation of the first tricoordinate silyl cation. J Phys Org Chem 14:370CrossRefGoogle Scholar
  9. 9.
    Müller T (2005) Cations of Group 14 organometallics. Adv Organomet Chem 53:155Google Scholar
  10. 10.
    Reed CA (2005) Carborane acids. Chem Commun 1669Google Scholar
  11. 11.
    Kochina TA, Vrazhnov DV, Sinotova EN, Voronkov MG (2006) Silylium ions. Russ Chem Rev 75:95CrossRefGoogle Scholar
  12. 12.
    Lee VY, Sekiguchi A (2007) Stable silyl, germyl, and stannyl cations, radicals, and anions: heavy versions of carbocations carbon radicals, and carbanions. Acc Chem Res 40:410CrossRefGoogle Scholar
  13. 13.
    Kochina TA, Vrazhanov DV (2009) Silylium cations and their analogs: radiochemical approach. Glass Phys Chem 35:443CrossRefGoogle Scholar
  14. 14.
    Klare HFT, Oestreich M (2010) Silylium ions in catalysis. Dalton Trans 39:9176CrossRefGoogle Scholar
  15. 15.
    Lee VY, Sekiguchi A (2010) Organometallic compounds of low-coordinate Si, Ge, Sn and Pb. Wiley, ChichesterCrossRefGoogle Scholar
  16. 16.
    Kehrmann F, Wentzel F (1901) Ueber die basischen Eigenschaften des Kohlenstoffs und die Constitution des sogenannten Triphenylmethyls. Ber Dtsch Chem Ges 34:3815CrossRefGoogle Scholar
  17. 17.
    Lambert JB, Zhao Y (1997) The trimesitylsilylium cation. Angew Chem Int Ed Engl 36:400CrossRefGoogle Scholar
  18. 18.
    Müller T, Zhao Y, Lambert JB (1998) Computational evidence for a free silylium ion. Organometallics 17:278CrossRefGoogle Scholar
  19. 19.
    Lambert JB, Zhao Y, Wu H, Tse WC, Kuhlmann B (1999) The allyl leaving group approach to tricoordinate silyl, germyl and stannyl cations. J Am Chem Soc 121:5001CrossRefGoogle Scholar
  20. 20.
    Kim KC, Reed CA, Elliott DW, Mueller LJ, Tham F, Lin L, Lambert JB (2002) Crystallographic evidence for a free silylium ion. Science 297:825CrossRefGoogle Scholar
  21. 21.
    Schäfer A, Reißmann M, Schäfer A, Saak W, Haase D, Müller T (2011) A new synthesis of triarylsilylium ions and their application in dihydrogen activation. Angew Chem Int Ed 50:12636CrossRefGoogle Scholar
  22. 22.
    Schäfer A, Reißmann M, Jung S, Schäfer A, Saak W, Brendler E, Müller T (2013) Synthesis of silylium and germylium ions by a substituent exchange reaction. Organometallics 32:4713CrossRefGoogle Scholar
  23. 23.
    Sekiguchi A, Matsuno T, Ichinohe M (2000) The homocyclotrisilenylium ion: a free silyl cation in the condensed phase. J Am Chem Soc 122:11250CrossRefGoogle Scholar
  24. 24.
    Ichinohe M, Igarashi M, Sanuki K, Sekiguchi A (2005) Cyclotrisilenylium ion: the persilaaromatic compound. J Am Chem Soc 127:9978CrossRefGoogle Scholar
  25. 25.
    Igarashi M, Ichinohe M, Sekiguchi A (2007) Air-stable disilacyclopropene with a Si=C bond and its conversion to disilacyclopropenylium ion: silicon–carbon hybrid 2π-electron systems. J Am Chem Soc 129:12660CrossRefGoogle Scholar
  26. 26.
    Ishida S, Nishinaga T, West R, Komatsu K (2005) Generation and aromaticity of 2-silaimidazolium ion, a new π-conjugated silylium ion. Chem Commun 778Google Scholar
  27. 27.
    Schäfer A, Schäfer A, Müller T (2010) Silaimidazolium and silaimidazolidinium ions. Dalton Trans 39:9296CrossRefGoogle Scholar
  28. 28.
    Kost D, Kalikhman I (1998) Hypervalent silicon compounds. In: Rappoport Z, Apeloig Y (eds) The chemistry of organic silicon compounds, vol 2. Wiley, ChichesterGoogle Scholar
  29. 29.
    Kost D, Kalikhman I (2009) Hypercoordinate silicon complexes based on hydrazide ligands. A remarkably flexible molecular system. Acc Chem Res 42:303CrossRefGoogle Scholar
  30. 30.
    Ibad MF, Langer P, Schulz A, Villinger A (2011) Silylium – Arene Adduct: an experimental and theoretical study. J Am Chem Soc 133:21016CrossRefGoogle Scholar
  31. 31.
    Kessler M, Knapp C, Sagawe V, Scherer H, Uzun R (2010) Synthesis, characterization, and crystal structures of silylium compounds of the weakly coordinating dianion [B12Cl12]2−. Inorg Chem 49:5223CrossRefGoogle Scholar
  32. 32.
    Avelar A, Tham FS, Reed CA (2009) Superacidity of boron acids H2(B12X12) (X = Cl, Br). Angew Chem Int Ed 48:3491CrossRefGoogle Scholar
  33. 33.
    Meyer R, Werner K, Müller T (2002) Persistent bissilylated arenium ions. Chem Eur J 8:1163Google Scholar
  34. 34.
    Duttwyler S, Do QQ, Linden A, Baldridge KK, Siegel JS (2008) Synthesis of 2,6-diarylphenyldimethylsilyl cations: polar-π distribution of cation character. Angew Chem Int Ed 47:1719CrossRefGoogle Scholar
  35. 35.
    Müller T (2003) A model system for the generation of silyl cationic species of different reactivity and stability. In: Auner N, Weis J (eds) Organosilicon chemistry V, Wiley-VCH, WeinheimGoogle Scholar
  36. 36.
    Hoffmann SP, Kato T, Tham FS, Reed CA (2006) Novel weak coordination to silylium ions: formation of nearly linear Si–H–Si bonds. Chem Commun 767Google Scholar
  37. 37.
    Schäfer A, Saak W, Haase D, Müller T (2012) Silyl cation mediated conversion of CO2 into benzoic acid, formic acid, and methanol. Angew Chem Int Ed 51:2981CrossRefGoogle Scholar
  38. 38.
    Nava M, Reed CA (2011) Triethylsilyl perfluoro-tetraphenylborate, [Et3Si+][F20-BPh4 -], a widely used nonexistent compound. Organometallics 30:4798CrossRefGoogle Scholar
  39. 39.
    Nishinaga T, Izukawa Y, Komatsu K (2000) The first cyclic π-conjugated silylium ion. The silatropylium ion annelated with rigid σ-frameworks. J Am Chem Soc 122:9312CrossRefGoogle Scholar
  40. 40.
    Nishinaga T, Izukawa Y, Komatsu K (2001) The first silatropylium ion stabilized by rigid s-frameworks: preparation, properties, and some reactions. Tetrahedron 57:3645CrossRefGoogle Scholar
  41. 41.
    Klare HFT, Bergander K, Oestreich M (2009) Taming the silylium ion for low-temperature Diels Alder reactions. Angew Chem Int Ed 48:9077CrossRefGoogle Scholar
  42. 42.
    Müther K, Fröhlich R, Mück-Lichtenfeld C, Grimme S, Oestreich M (2011) A unique transition metal-stabilized silicon cation. J Am Chem Soc 133:12442CrossRefGoogle Scholar
  43. 43.
    Krossing I, Raabe I (2004) Noncoordinating anions – fact or fiction? A survey of likely candidates. Angew Chem Int Ed 43:2066CrossRefGoogle Scholar
  44. 44.
    Küppers T, Bernhardt E, Eujen, R, Willner H, Lehmann CW (2007) [Me3Si] [R-CB11F11] – synthesis and Properties. Angew Chem In. Ed 46:6346Google Scholar
  45. 45.
    Bartlett PD, Condon FE, Schneider A (1944) Exchange of halogen and hydrogen between organic halides and isoparaffins in the presence of aluminum halides. J Am Chem Soc 66:1531Google Scholar
  46. 46.
    Corey JY (1975) Generation of a silicenium ion in solution. J Am Chem Soc 97:3237CrossRefGoogle Scholar
  47. 47.
    Xie Z, Manning J, Reed RW, Mathur R, Boyd PDW, Benesi A, Reed CA (1996) Approaching the silylium (R3Si+) ion: trends with hexahalo (Cl, Br, I) carboranes as counterions. J Am Chem Soc 118:2922CrossRefGoogle Scholar
  48. 48.
    Panisch R, Bolte M, Müller T (2006) Hydrogen and fluorine-bridged disilyl cations and their use in catalytic C-F activation. J Am Chem Soc 128:9676CrossRefGoogle Scholar
  49. 49.
    Lühmann N, Hirao H, Shaik S, Müller T (2011) Disilylfluoronium ions – synthesis, structure, and bonding. Organometallics 30:4087CrossRefGoogle Scholar
  50. 50.
    Wagner H, Baumgartner J, Müller T, Marschner C (2009) Shuttling germanium atoms into branched polysilanes. J Am Chem Soc 131:5022CrossRefGoogle Scholar
  51. 51.
    Ishikawa M, Iyoda J, Ikeda H, Kotake K, Hashimoto T, Kumada M (1981) Aluminum chloride catalyzed skeletal rearrangement of permethylated acyclic polysilanes. J Am Chem Soc 81:4845CrossRefGoogle Scholar
  52. 52.
    Blinka TA, West R (1986) Metal halide catalyzed rearrangements of alkylcyclosilanes. Organometallics 5:128CrossRefGoogle Scholar
  53. 53.
    Ichinohe M, Fukui H, Sekiguchi A (2000) Synthesis of tBu3E+ nitrile complexes by oxidative cleavage of tBu3E-EtBu3 (E=Si,Ge,Sn). Chem Lett 600Google Scholar
  54. 54.
    Filippou AC, Chernov O, Schnakenburg G (2009) SiBr2(Idipp): a stable N-heterocyclic carbene adduct of dibromosilylene. Angew Chem Int Ed 48:5687CrossRefGoogle Scholar
  55. 55.
    Ghadwal RS, Roesky HW, Merkel S, Henn J, Stalke D (2009) Lewis base stabilized dichlorosilylene. Angew Chem Int Ed 48:5683CrossRefGoogle Scholar
  56. 56.
    Jutzi P, Bunte EA (1992) [(π-Me5C5)2SiH]+ – a novel silyl cation. Angew Chem Int Ed Engl 31:1605Google Scholar
  57. 57.
    Müller T, Jutzi P, Kühler T (2001) The nature of protonated decamethylsilicocene, (Me5C5)2Si+H. Organometallics 20:5619CrossRefGoogle Scholar
  58. 58.
    Schäfer A (2012) Silyliumionen und Silylkationische Lewispaare. Dissertation. Carl von Ossietzky Universität OldenburgGoogle Scholar
  59. 59.
    Lambert JB, Lin L (2001) The tridurylsilylium and tridurylstannylium cations: free and not so free. J Org Chem 66:8537CrossRefGoogle Scholar
  60. 60.
    Scherer W, McGrady GS (2004) Agostic interactions in d0 metal alkyl complexes. Angew Chem Int Ed 43:1782CrossRefGoogle Scholar
  61. 61.
    Sekiguchi A, Tsukamoto M, Ichinohe M (1997) A free cyclotrigermenium cation with a 2π-electron system. Science 275:60CrossRefGoogle Scholar
  62. 62.
    Li XW, Pennington W, Robinson GH (1995) A metallic system with aromatic character. Synthesis and molecular structure of Na2[(Mes2C6H3)Ga]3: the first cyclogallane. J Am Chem Soc 117:7578CrossRefGoogle Scholar
  63. 63.
    Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2005) Nucleus independent chemical shifts (NICS) as an aromaticity criterion. Chem Rev 105:3842CrossRefGoogle Scholar
  64. 64.
    Inoue S, Ichinohe M, Yamaguchi T, Sekiguchi A (2008) A free silylium ion: a cyclotetrasilenylium ion with allylic character. Organometallics 27:6056CrossRefGoogle Scholar
  65. 65.
    Olah GA, Staral JS, Spear RJ, Liang G (1975) Novel aromatic systems. 11. Cyclobutenyl cations and the question of their homoaromaticity. Preparation and study of the homocyclopropenium ion, the simplest homoaromatic system. J Am Chem Soc 97:5489CrossRefGoogle Scholar
  66. 66.
    Olah GA, Staral JS (1976) Novel aromatic systems. 4. Cyclobutadiene dications. J Am Chem Soc 98:6290CrossRefGoogle Scholar
  67. 67.
    Inoue S, Epping JD, Irran E, Driess M (2011) Formation of a donor-stabilized tetrasilacyclobutadiene dication by a Lewis acid assisted reaction of an N-heterocyclic chloro silylene. J Am Chem Soc 133:8514CrossRefGoogle Scholar
  68. 68.
    Lambert JB, Zhang S, Stern CL, Huffman JC (1993) Crystal structure of a silyl cation with No coordination to anion and distant coordination to solvent. Science 260:1917CrossRefGoogle Scholar
  69. 69.
    Reed CA, Xie Z, Bau R, Benesi A (1993) Closely approaching the silylium ion (R3Si+). Science 262:402CrossRefGoogle Scholar
  70. 70.
    Schleyer PvR, Buzek P, Müller T, Apeloig Y, Siehl HU (1993) The search for an isolable silyl cation must continue. Angew Chem Int Ed Engl 32:1471CrossRefGoogle Scholar
  71. 71.
    Pauling L, Olah GA, Rasul G, Li XY, Buchholz HA, Sandford G, Prakash GKS, Lambert JB, Zhang S, Reed CA, Xie Z (1993) Triethylsilyl cations. Science 263:983CrossRefGoogle Scholar
  72. 72.
    Lambert JB, Zhang S, Ciro SM (1994) Silyl cations in the solid and in solution. Organometallics 13:2430CrossRefGoogle Scholar
  73. 73.
    Panisch R, Bolte M, Müller T (2007) Structure and bonding in bissilylated arenium ions. Organometallics 26:3524CrossRefGoogle Scholar
  74. 74.
    Romanato P, Duttwyler S, Linden A, Baldridge KK, Siegel JS (2010) Intramolecular halogen stabilization of silylium ions directs gearing dynamics. J Am Chem Soc 132:7828CrossRefGoogle Scholar
  75. 75.
    Romanato P, Duttwyler S, Linden A, Baldridge KK, Siegel JS (2011) Competition between π-arene and lone-pair halogen coordination of silylium ions? J Am Chem Soc 133:11844CrossRefGoogle Scholar
  76. 76.
    Gerdes C, Saak W, Haase D, Müller T (2013) Dibenzosilanorbornadienyl cations and their fragmentation into silyliumylidenes. J Am Chem Soc 135:10353Google Scholar
  77. 77.
    Choi N, Lickiss PD, McPartlin M, Masangane PC, Veneziani GL (2005) Isolation and structure of a silicocationic species with 1,3-aryl bridging between silicon atoms: a bis-silylated benzenium ion or a bridging Ph group? Chem Commun 6023Google Scholar
  78. 78.
    Müller T (2001) A silyl cation with a three-center Si–H–Si bond. Angew Chem Int Ed 40:3033CrossRefGoogle Scholar
  79. 79.
    Khalimon AY, Lin ZH, Simionescu R, Vyboishchikov SF, Nikonov GI (2007) Angew Chem Int Ed 46:4530CrossRefGoogle Scholar
  80. 80.
    Sekiguchi A, Murakami Y, Fukaya N, Kabe Y (2004) Silylium ions stabilized by an Si–X–Si three-center bond (X=Halogen or Hydrogen). Chem Lett 33:530CrossRefGoogle Scholar
  81. 81.
    Yamaguchi T, Asay M, Sekiguchi A (2012) A molecule with disilenyl cation character. J Am Chem Soc 134:886CrossRefGoogle Scholar
  82. 82.
    Müller T, Bauch C, Ostermeier M, Bolte M (2003) Norbornyl cations of group 14 elements. J Am Chem Soc 125:2158CrossRefGoogle Scholar
  83. 83.
    Müller T, Juhasz M, Reed CA (2004) The x-ray structure of a vinyl cation. Angew Chem Int Ed 43:1543CrossRefGoogle Scholar
  84. 84.
    Klaer A, Saak W, Haase D, Müller T (2008) Molecular structure of a cyclopropyl substituted vinyl cation. J Am Chem Soc 130:14956CrossRefGoogle Scholar
  85. 85.
    Müller T, Margraf D, Syha Y (2005) σ-Delocalization versus π-resonance in α-aryl-substituted vinyl cations. J Am Chem Soc 127:10852Google Scholar
  86. 86.
    Klaer A, Syha Y, Nasiri HR, Müller T (2009) Trisilyl-substituted vinyl cations. Chem Eur J 15:8414Google Scholar
  87. 87.
    Lehmann M, Schulz A, Villinger A (2009) Bissilylated halonium ions: [Me3Si-X-SiMe3][B(C6F5)4]. Angew Chem Int Ed 48:7444CrossRefGoogle Scholar
  88. 88.
    Schulz A, Villinger A (2010) Pseudohalonium ions: [Me3Si-X-SiMe3]+ (X=CN,OCN, SCN, and NNN). Chem Eur J 16:7276Google Scholar
  89. 89.
    Prakash GKS, Bae C, Wang Q, Rasul G, Olah GA (2000) Tris(trimethylsilyl)sulfonium and methylbis(trimethylsilyl)sulfonium ions: preparation, NMR spectroscopy, and theoretical studies. J Org Chem 65:7646Google Scholar
  90. 90.
    Olah GA, Li XY, Wang Q, Rasul G, Prakash GKS (1995) Trisilyloxonium ions: preparation, NMR spectroscopy, ab initio/IGLO studies, and their role in cationic polymerization of cyclosiloxanes. J Am Chem Soc 117:8962CrossRefGoogle Scholar
  91. 91.
    Driess M, Barmeyer R, Monse C, Merz K (2001) E(SiMe3)4 + Ions (E=P, As): persilylated phosphonium and arsonium ions. Angew Chem Int Ed 40:2308CrossRefGoogle Scholar
  92. 92.
    Schäfer A, Saak W, Haase D, Müller T (2011) Persistent dialkyl(silyl)stannylium ions. J Am Chem Soc 133:14562CrossRefGoogle Scholar
  93. 93.
    Schäfer A, Winter F, Saak W, Haase D, Pöttgen R, Müller T (2011) Stannylium ions, a tin(II) arene complex, and a tin dication stabilized by weakly coordinating anions. Chem Eur J 17:10979Google Scholar
  94. 94.
    Boeré RT, Kacprzak S, Kessler M, Knapp C, Riebau R, Riedel S, Roemmele TL, Rühle M, Scherer H, Weber S (2011) Oxidation of closo-[B12Cl12]2− to the radical anion [B12Cl12]•− and to neutral B12Cl12. Angew Chem Int Ed 50:549CrossRefGoogle Scholar
  95. 95.
    Kato T, Stoyanov E, Geier J, Grützmacher H, Reed CA (2004) Alkylating agents stronger than alkyl Triflates. J Am Chem Soc 126:12451CrossRefGoogle Scholar
  96. 96.
    Müller T, Meyer R, Lennartz D, Siehl HU (2000) Unusually stable vinyl cations. Angew Chem Int Ed 39:3074CrossRefGoogle Scholar
  97. 97.
    Lambert JB, Zhao Y (1996) A stable β-silyl carbocation. J Am Chem Soc 118:7867CrossRefGoogle Scholar
  98. 98.
    Lambert JB, Zhao Y, Wu H (1999) ß-Silyl and β-germyl carbocations stable at room temperature. J Org Chem 64:2729Google Scholar
  99. 99.
    Lambert JB, Liu C, Kouliev T (2002) A stable β-silyl carbocation with allyl conjugation. J Phys Org Chem 15:667CrossRefGoogle Scholar
  100. 100.
    Furukawa S, Kobayashi J, Kawashima T (2009) Development of a Sila–Friedel–Crafts reaction and its application to the synthesis of dibenzosilole derivatives. J Am Chem Soc 131:14192CrossRefGoogle Scholar
  101. 101.
    Steinberger HU, Bauch C, Müller T, Auner N (2003) A metal-free catalytic intramolecular hydrosilylation. Can J Chem 81:1223CrossRefGoogle Scholar
  102. 102.
    Parks DJ, Blackwell JM, Piers WE (2000) Studies on the mechanism of B(C6F5)3. Catalyzed hydrosilation of carbonyl functions. J Org Chem 65:3090CrossRefGoogle Scholar
  103. 103.
    Kira M, Hino T, Sakurai (1992) Siloxycarbenium tetrakis[3,5-bis(trifluoromethyl)phenyl]borates. Chem Lett 555Google Scholar
  104. 104.
    Müther K, Oestreich M (2011) Self-regeneration of a silylium ion catalyst in carbonyl reduction. Chem Commun 47:334CrossRefGoogle Scholar
  105. 105.
    Scott VJ, Remle ÇÇ, Ozerov OV (2005) Room-temperature catalytic hydrodefluorination of C(sp3)-F bonds. J Am Chem Soc 127:2852CrossRefGoogle Scholar
  106. 106.
    Douvris C, Stoyanov E, Tham FS, Reed CA (2007) Isolating fluorinated carbocations. Chem Commun 1145Google Scholar
  107. 107.
    Douvris C, Ozerov OV (2008) Hydrodefluorination of perfluoroalkyl groups using silylium-carborane catalysts. Science 321:1188CrossRefGoogle Scholar
  108. 108.
    Douvris C, Nagaraja CM, Chen CH, Foxman BM, Ozerov OV (2010) Hydrodefluorination and other hydrodehalogenation of aliphatic carbon–halogen bonds using silylium catalysis. J Am Chem Soc 132:4946CrossRefGoogle Scholar
  109. 109.
    Stahl T, Klare HFT, Oestreich M (2013) Main-group Lewis Acids for C–F bond activation. ACS Catal 3:1578CrossRefGoogle Scholar
  110. 110.
    Lühmann N, Panisch R, Müller T (2010) A catalytic C–C bond-forming reaction between aliphatic fluorohydrocarbons and arylsilanes. Appl Organomet Chem 24:533CrossRefGoogle Scholar
  111. 111.
    Duttwyler S, Douvris C, Fackler NLP, Tham FS, Reed CA, Baldridge KK, Siegel JS (2010) C–F activation of fluorobenzene by silylium carboranes: evidence for incipient phenyl cation reactivity. Angew Chem Int Ed 49:7519CrossRefGoogle Scholar
  112. 112.
    Allemann O, Duttwyler S, Baldridge KK, Siegel JS (2011) Proton-catalyzed silane-fueled Friedel–Crafts coupling of fluoroarenes. Science 332:574CrossRefGoogle Scholar
  113. 113.
    Dilman AD, Ioffe SL (2003) Carbon–carbon bond forming reactions mediated by silicon lewis acids. Chem Rev 103:733CrossRefGoogle Scholar
  114. 114.
    Hara K, Akiyama R, Sawamura M (2005) Strong counteranion effects on the catalytic activity of cationic silicon Lewis Acids in Mukaiyama Aldol and Diels–Alder reactions. Org Lett 7:5621CrossRefGoogle Scholar
  115. 115.
    Schmidt RK, Müther K, Mück-Lichtenfeld C, Grimme S, Oestreich M (2012) Silylium ion-catalyzed challenging Diels–Alder reactions: the danger of hidden proton catalysis with strong Lewis acids. J Am Chem Soc 134:4421CrossRefGoogle Scholar
  116. 116.
    Reißmann M, Schäfer A, Jung S, Müller T (2013) Silylium ion/phosphane Lewis pairs. Organometallics doi:om 400559zGoogle Scholar
  117. 117.
    Zhang Y, Huynh K, Manners I, Read CA (2008) Ambient temperature ring-opening polymerization (ROP) of cyclic chlorophosphazene trimer [N3P3Cl6] catalyzed by silylium ions. Chem Commun 494Google Scholar
  118. 118.
    Olah GA, Wang Q, Li X, Rasul G, Prakash GKS (1996) Silylcarboxonium and silyloxonium intermediates of the cationic ring-opening polymerization of lactones and tetrahydrofuran initiated by electrophilic trimethylsilylating agents. Macromolecules 29:1857CrossRefGoogle Scholar
  119. 119.
    Zhang Y, Gustafson LO, Chen EYX (2011) Dinuclear silylium-enolate bifunctional active species: remarkable activity and stereoselectivity toward polymerization of methacrylate and renewable methylene butyrolactone monomers. J Am Chem Soc 133:13674CrossRefGoogle Scholar
  120. 120.
    Gaspar PP (2005) Learning from silylenes and supersilylenes. In: Auner N, Weis J (eds) Organosilicon chemistry VI. Wiley-VCH, WeinheimGoogle Scholar
  121. 121.
    Jutzi P, Mix A, Rummel B, Schoeller WW, Neumann B, Stammler HG (2004) The (Me5C5)Si+ cation: a stable derivative of HSi+. Science 305:849CrossRefGoogle Scholar
  122. 122.
    Driess M, Yao S, Brym M, Van Wüllen C (2006) Low-valent silicon cations with two-coordinate silicon and aromatic character. Angew Chem Int Ed 45:6730Google Scholar
  123. 123.
    Wang Y, Xie Y, Wei P, King RB, Schaefer HF III, PvR S, Robinson GH (2008) A stable silicon(0) compound with a Si=Si double bond. Science 321:1069CrossRefGoogle Scholar
  124. 124.
    Xiong Y, Yao S, Inoue S, Irran E, Driess M (2012) The elusive silyliumylidene [ClSi:]+ and silathionium [ClSi=S]+ cations stabilized by bis(iminophosphorane) chelate ligand. Angew Chem Int Ed 51:10074Google Scholar
  125. 125.
    Filippou AC, Lebedev YN, Chernov O, Straßmann M, Schnakenburg G (2013) Silicon(II) coordination chemistry: N-heterocyclic carbene complexes of Si2+ and SiI+. Angew Chem Int Ed 52:6974CrossRefGoogle Scholar
  126. 126.
    Xiong Y, Yao S, Inoue S, Epping JD, Driess M (2013) A cyclic silylone (“Siladicarbene”) with an electron rich silicon(0) atom. Angew Chem Int Ed 52:7147CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Institut für ChemieCarl von Ossietzky University OldenburgOldenburgGermany

Personalised recommendations