Skip to main content

Supramolecular Chemistry of Carbon Nanotubes at Interfaces: Toward Applications

  • Chapter
  • First Online:
  • 972 Accesses

Part of the book series: Structure and Bonding ((STRUCTURE,volume 159))

Abstract

The properties at interfaces play important roles in biology and electronics. In the last 20 years, new carbon allotropes, like carbon nanotubes, have emerged as novel suitable substrates for the production of derivatives with wide range of technological applications. Since then, a great attention has been drawn in the study of the biological and technological properties of these novel allotropes at interfaces. Among the plethora of chemical reactions adopted to improve the properties of these nanostructured carbon species, the one employing supramolecular approaches have rapidly increased during the last years. In this chapter we will review the supramolecular approaches aimed at the functionalization of these carbon-based nanostructures focusing on their properties and applicative uses as self-organized materials at interfaces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ruhle M, Recnik A, Ceh M (1997) Chemistry and structure of internal interfaces in inorganic materials. In: Davies PK, Jacobson AJ, Torardi CC, Vanderah TA (eds) Solid-state chemistry of inorganic materials. Symposium of the Materials Research Society. Baldwin City, KS, U.S.A., pp 673–684

    Google Scholar 

  2. Filler MA, Bent SF (2003) The surface as molecular reagent: organic chemistry at the semiconductor interface. Prog Surf Sci 73:1–56

    CAS  Google Scholar 

  3. Lehn JM (1988) Supramolecular chemistry—scope and perspectives molecules, supermolecules, and molecular devices. Angew Chem Int Ed 27:89–112

    Google Scholar 

  4. Bonifazi D, Mohnani S, Llanes-Pallas A (2009) Supramolecular chemistry at interfaces: molecular recognition on nanopatterned porous surfaces. Chem Eur J 15:7004–7025

    CAS  Google Scholar 

  5. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    CAS  Google Scholar 

  6. Hirsch A (2010) The era of carbon allotropes. Nat Mater 9:868–871

    CAS  Google Scholar 

  7. Kostarelos K, Bianco A, Prato M (2009) Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol 4:627–633

    CAS  Google Scholar 

  8. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. World Scientific Publishing Company, London

    Google Scholar 

  9. Martel R, Schmidt T, Shea HR, Hertel T, Avouris P (1998) Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73:2447–2449

    CAS  Google Scholar 

  10. Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294:1317–1320

    CAS  Google Scholar 

  11. Avouris P (2002) Molecular electronics with carbon nanotubes. Acc Chem Res 35:1026–1034

    CAS  Google Scholar 

  12. Dillon AC (2010) Carbon nanotubes for photoconversion and electrical energy storage. Chem Rev 110:6856–6872

    CAS  Google Scholar 

  13. Diez-Tascòn JM, Bottani EJ (2009) Carbon nanotubes: gas adsorption properties. In: Schwarz JA, Contescu CI, Putyera K (eds) Dekker encyclopedia of nanoscience and nanotechnology. Taylor and Francis, London

    Google Scholar 

  14. Antonucci V, Hsiao KT, Advani SG (2003) Review of polymer composites with carbon nanotubes. In: Shonaike GO, Advani SG (eds) Advanced polymeric materials: structure property relationships. Taylor and Francis, London, pp 397–437

    Google Scholar 

  15. Li C, Thostenson ET, Chou TW (2008) Sensors and actuators based on carbon nanotubes and their composites: a review. Compos Sci Technol 68:1227–1249

    CAS  Google Scholar 

  16. Shokrieh MM, Rafiee R (2010) A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites. Mech Compos Mater 46:155–172

    CAS  Google Scholar 

  17. Balasubramanian K, Burghard M (2006) Biosensors based on carbon nanotubes. Anal Bioanal Chem 385:452–468

    CAS  Google Scholar 

  18. Lei J, Ju H (2010) Nanotubes in biosensing. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:496–509

    CAS  Google Scholar 

  19. Chichak KS, Star A, Altoè MVR, Stoddart JF (2005) Single-walled carbon nanotubes under the influence of dynamic coordination and supramolecular chemistry. Small 1:452–461

    CAS  Google Scholar 

  20. Guldi DM, Rahman GM, Jux N, Balbinot D, Hartnagel U, Tagmatarchis N, Prato M (2005) Functional single-wall carbon nanotube nanohybrids-associating SWNTs with water-soluble enzyme model systems. J Am Chem Soc 127:9830–9838

    CAS  Google Scholar 

  21. Sgobba V, Rahman GM, Guldi DM, Jux N, Campidelli S, Prato M (2006) Supramolecular assemblies of different carbon nanotubes for photoconversion processes. Adv Mater 18:2264–2269

    CAS  Google Scholar 

  22. Geng J, Ko YK, Youn SC, Kim YH, Kim SA, Jung DH, Jung HT (2008) Synthesis of SWNT rings by noncovalent hybridization of porphyrins and single-walled carbon nanotubes. J Phys Chem C 112:12264–12271

    CAS  Google Scholar 

  23. Tu X, Zheng M (2008) A DNA-based approach to the carbon nanotube sorting problem. Nano Res 1:185–194

    CAS  Google Scholar 

  24. D’Souza F, Ito O (2009) Supramolecular donor-acceptor hybrids of porphyrins/phthalocyanines with fullerenes/carbon nanotubes: electron transfer, sensing, switching, and catalytic applications. Chem Commun 33:4913–4928

    Google Scholar 

  25. Ehli C, Guldi DM, Herranz MA, Martin N, Campidelli S, Prato M (2008) Pyrene-tetrathiafulvalene supramolecular assembly with different types of carbon nanotubes. J Mater Chem 18:1498–1503

    CAS  Google Scholar 

  26. Yang R, Tang Z, Yan J, Kang H, Kim Y, Zhu Z, Tan W (2008) Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing biomolecular interactions. Anal Chem 80:7408–7413

    CAS  Google Scholar 

  27. Sudibya HG, Ma J, Dong X, Ng S, Li LJ, Liu XW, Chen P (2009) Interfacing glycosylated carbon-nanotube-network devices with living cells to detect dynamic secretion of biomolecules. Angew Chem Int Ed 48:2723–2726

    CAS  Google Scholar 

  28. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    CAS  Google Scholar 

  29. Singh P, Campidelli S, Giordani S, Bonifazi D, Bianco A, Prato M (2009) Organic functionalisation and characterisation of single-walled carbon nanotubes. Chem Soc Rev 38:2214–2230

    CAS  Google Scholar 

  30. Zhao YL, Stoddart JF (2009) Noncovalent functionalization of single-walled carbon nanotubes. Acc Chem Res 42:1161–1171

    CAS  Google Scholar 

  31. Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838–3839

    CAS  Google Scholar 

  32. Liu Z, Tabakman SM, Chen Z, Dai H (2009) Preparation of carbon nanotube bioconjugates for biomedical applications. Nat Protoc 4:1372–1382

    CAS  Google Scholar 

  33. Kauffman DR, Star A (2008) Electronically monitoring biological interactions with carbon nanotube field-effect transistors. Chem Soc Rev 37:1197–1206

    CAS  Google Scholar 

  34. Goldoni A, Petaccia L, Lizzit S, Larciprete R (2010) Sensing gases with carbon nanotubes: a review of the actual situation. J Phys Condes Matter 22:013001–013008

    CAS  Google Scholar 

  35. Hecht DS, Ramirez RJ, Briman M, Artukovic E, Chichak KS, Stoddart JF, Grüner G (2006) Bioinspired detection of light using a porphyrin-sensitized single-wall nanotube field effect transistor. Nano Lett 6:2031–2036

    CAS  Google Scholar 

  36. Guldi DM, Rahman GM, Jux N, Tagmatarchis N, Prato M (2004) Integrating single-wall carbon nanotubes into donor-acceptor nanohybrids. Angew Chem Int Ed 43:5526–5530

    CAS  Google Scholar 

  37. Zhao YL, Hu LB, Stoddart JF, Gruner G (2008) Pyrenecyclodextrin-decorated single-walled carbon nanotube field-effect transistors as chemical sensors. Adv Mater 20:1910–1915

    CAS  Google Scholar 

  38. Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287:1801–1804

    CAS  Google Scholar 

  39. Stan G, Bojan MJ, Curtarolo S, Gatica SM, Cole MW (2000) Uptake of gases in bundles of carbon nanotubes. Phys Rev B 62:2173–2180

    CAS  Google Scholar 

  40. Kim C, Choi YS, Lee SM, Park JT, Kim B, Lee YH (2002) The effect of gas adsorption on the field emission mechanism of carbon nanotubes. J Am Chem Soc 124:9906–9911

    CAS  Google Scholar 

  41. Krungleviciute V, Heroux L, Talapatra S, Migone AD (2004) Gas adsorption on HiPco nanotubes: surface area determinations, and neon second layer data. Nano Lett 4:1133–1137

    CAS  Google Scholar 

  42. Feng X, Irle S, Witek H, Morokuma K, Vidic R, Borguet E (2005) Sensitivity of ammonia interaction with single-walled carbon nanotube bundles to the presence of defect sites and functionalities. J Am Chem Soc 127:10533–10538

    CAS  Google Scholar 

  43. Saridara C, Brukh R, Iqbal Z, Mitra S (2005) Preconcentration of volatile organics on self-assembled, carbon nanotubes in a microtrap. Anal Chem 77:1183–1187

    CAS  Google Scholar 

  44. Snow ES, Perkins FK, Houser EJ, Badescu SC, Reinecke TL (2005) Chemical detection with a single-walled carbon nanotube capacitor. Science 307:1942–1945

    CAS  Google Scholar 

  45. Kingrey D, Khatib O, Collins PG (2006) Electronic fluctuations in nanotube circuits and their sensitivity to gases and liquids. Nano Lett 6:1564–1568

    CAS  Google Scholar 

  46. Chiashi S, Watanabe S, Hanashima T, Homma Y (2008) Influence of gas adsorption on optical transition energies of single-walled carbon nanotubes. Nano Lett 8:3097–3101

    CAS  Google Scholar 

  47. Liang CW, Sahakalkan S, Roth S (2008) Electrical characterization of the mutual influences between gas molecules and single-walled carbon nanotubes. Small 4:432–436

    CAS  Google Scholar 

  48. Lee CY, Strano MS (2008) Amine basicity (pK(b)) controls the analyte blinding energy on single walled carbon nanotube electronic sensor arrays. J Am Chem Soc 130:1766–1773

    CAS  Google Scholar 

  49. Ravelo-Pérez LM, Herrera-Herrera AV, Hernández-Borges J, Rodríguez-Delgado MA (2010) Carbon nanotubes: solid-phase extraction. J Chromatogr A 1217:2618–2641

    Google Scholar 

  50. Cai Y, Jiang G, Liu J, Zhou Q (2003) Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol a, 4-n-nonylphenol, and 4-tert-octylphenol. Anal Chem 75:2517–2521

    CAS  Google Scholar 

  51. Liu G, Wang J, Zhu Y, Zhang X (2004) Application of multiwalled carbon nanotubes as a solid-phase extraction sorbent for chlorobenzenes. Anal Lett 37:3085–3104

    CAS  Google Scholar 

  52. Cai YQ, Cai YE, Mou SF, Lu YQ (2005) Multi-walled carbon nanotubes as a solid-phase extraction adsorbent for the determination of chlorophenols in environmental water samples. J Chromatogr A 1081:245–247

    CAS  Google Scholar 

  53. Fang GZ, He JX, Wang S (2006) Multiwalled carbon nanotubes as sorbent for on-line coupling of solid-phase extraction to high-performance liquid chromatography for simultaneous determination of 10 sulfonamides in eggs and pork. J Chromatogr A 1127:12–17

    CAS  Google Scholar 

  54. Zhou Q, Ding Y, Xiao J (2006) Sensitive determination of thiamethoxam, imidacloprid and acetamiprid in environmental water samples with solid-phase extraction packed with multiwalled carbon nanotubes prior to high-performance liquid chromatography. Anal Bioanal Chem 385:1520–1525

    CAS  Google Scholar 

  55. Zhou Q, Xiao J, Wang W (2006) Using multi-walled carbon nanotubes as solid phase extraction adsorbents to determine dichlorodiphenyltrichloroethane and its metabolites at trace level in water samples by high performance liquid chromatography with UV detection. J Chromatogr A 1125:152–158

    CAS  Google Scholar 

  56. El-Sheikh AH, Insisi AA, Sweileh JA (2007) Effect of oxidation and dimensions of multi-walled carbon nanotubes on solid phase extraction and enrichment of some pesticides from environmental waters prior to their simultaneous determination by high performance liquid chromatography. J Chromatogr A 1164:25–32

    CAS  Google Scholar 

  57. Suádrez B, Santos B, Simonet BM, Cárdenas S, Valcárcel M (2007) Solid-phase extraction-capillary electrophoresis-mass spectrometry for the determination of tetracyclines residues in surface water by using carbon nanotubes as sorbent material. J Chromatogr A 1175:127–132

    Google Scholar 

  58. Wang S, Zhao P, Min G, Fang G (2007) Multi-residue determination of pesticides in water using multi-walled carbon nanotubes solid-phase extraction and gas chromatography–mass spectrometry. J Chromatogr A 1165:166–171

    CAS  Google Scholar 

  59. Wang WD, Huang YM, Shu WQ, Cao H (2007) Multiwalled carbon nanotubes as adsorbents of solid-phase extraction for determination of polycyclic aromatic hydrocarbons in environmental waters coupled with high-performance liquid chromatography. J Chromatogr A 1173:27–36

    CAS  Google Scholar 

  60. Yu JC, Hrdina A, Mancini C, Lai EP (2007) Molecularly imprinted polypyrrole encapsulated carbon nanotubes in stainless steel frit for micro solid phase extraction of estrogenic compounds. J Nanosci Nanotechnol 7:3095–3103

    CAS  Google Scholar 

  61. Du D, Wang M, Zhang J, Cai H, Tu H, Zhang A (2008) Application of multiwalled carbon nanotubes for solid-phase extraction of organophosphate pesticide. Electrochem Commun 10:85–89

    CAS  Google Scholar 

  62. Pyrzynska K (2008) Carbon nanotubes as a new solid-phase extraction material for removal and enrichment of organic pollutants in water. Sep Purif Rev 37:372–389

    CAS  Google Scholar 

  63. Ravelo-Peréz LM, Hernández-Borges J, Rodríguez-Delgado MA (2008) Multi-walled carbon nanotubes as efficient solid-phase extraction materials of organophosphorus pesticides from apple, grape, orange and pineapple fruit juices. J Chromatogr A 1211:33–42

    Google Scholar 

  64. Ravelo-Peréz LM, Hernández-Borges J, Rodríguez-Delgado MA (2008) Multiwalled carbon nanotubes as solid-phase extraction materials for the gas chromatographic determination of organophosphorus pesticides in waters. J Sep Sci 31:3612–3619

    Google Scholar 

  65. Salam MA, Burk R (2008) Novel application of modified multiwalled carbon nanotubes as a solid phase extraction adsorbent for the determination of polyhalogenated organic pollutants in aqueous solution. Anal Bioanal Chem 390:2159–2170

    Google Scholar 

  66. Asensio-Ramos M, Hernández-Borges J, Borges-Miquel TM, Rodríguez-Delgado MA (2009) Evaluation of multi-walled carbon nanotubes as solid-phase extraction adsorbents of pesticides from agricultural, ornamental and forestal soils. Anal Chim Acta 647:167–176

    CAS  Google Scholar 

  67. Chen W, Zeng J, Chen J, Huang X, Jiang Y, Wang Y, Chen X (2009) High extraction efficiency for polar aromatic compounds in natural water samples using multiwalled carbon nanotubes/Nafion solid-phase microextraction coating. J Chromatogr A 1216:9143–9148

    CAS  Google Scholar 

  68. Fang G, Min G, He J, Zhang C, Qian K, Wang S (2009) Multiwalled carbon nanotubes as matrix solid-phase dispersion extraction absorbents to determine 31 pesticides in agriculture samples by gas chromatography–mass spectrometry. J Agric Food Chem 57:3040–3045

    CAS  Google Scholar 

  69. López-Feria S, Cárdenas S, Valcárcel M (2009) One step carbon nanotubes-based solid-phase extraction for the gas chromatographic-mass spectrometric multiclass pesticide control in virgin olive oils. J Chromatogr A 1216:7346–7350

    Google Scholar 

  70. Salam MA, Burk R (2009) Solid phase extraction of polyhalogenated pollutants from freshwater using chemically modified multi-walled carbon nanotubes and their determination by gas chromatography. J Sep Sci 32:1060–1068

    Google Scholar 

  71. Zhang W, Sun Y, Wu C, Xing J, Li J (2009) Polymer-functionalized single-walled carbon nanotubes as a novel sol–gel solid-phase micro-extraction coated fiber for determination of polybrominated diphenyl ethers in water samples with gas chromatography-electron capture detection. Anal Chem 81:2912–2920

    CAS  Google Scholar 

  72. Hadjmohammadi MR, Peyrovi M, Biparva P (2010) Comparison of C18 silica and multi-walled carbon nanotubes as the adsorbents for the solid-phase extraction of chlorpyrifos and phosalone in water samples using HPLC. J Sep Sci 33:1044–1051

    CAS  Google Scholar 

  73. Márquez-Sillero I, Aguilera-Herrador E, Cárdenas S, Valcárcel M (2010) Determination of parabens in cosmetic products using multi-walled carbon nanotubes as solid phase extraction sorbent and corona-charged aerosol detection system. J Chromatogr A 1217:1–6

    Google Scholar 

  74. See HH, Sanagi M, Ibrahim WA, Naim AA (2010) Determination of triazine herbicides using membrane-protected carbon nanotubes solid phase membrane tip extraction prior to micro-liquid chromatography. J Chromatogr A 1217:1767–1772

    CAS  Google Scholar 

  75. Wu H, Wang X, Liu B, Lu J, Du B, Zhang L, Ji J, Yue Q, Han B (2010) Flow injection solid-phase extraction using multi-walled carbon nanotubes packed micro-column for the determination of polycyclic aromatic hydrocarbons in water by gas chromatography–mass spectrometry. J Chromatogr A 1217:2911–2917

    CAS  Google Scholar 

  76. Liang P, Liu Y, Guo L, Zeng J, Lu H (2004) Multiwalled carbon nanotubes as solid-phase extraction adsorbent for the preconcentration of trace metal ions and their determination by inductively coupled plasma atomic emission spectrometry. J Anal At Spectrom 19:1489–1492

    CAS  Google Scholar 

  77. Liang P, Ding Q, Song F (2005) Application of multiwalled carbon nanotubes as solid phase extraction sorbent for preconcentration of trace copper in water samples. J Sep Sci 28:2339–2343

    CAS  Google Scholar 

  78. Ding Q, Liang P, Song F, Xiang A (2006) Separation and preconcentration of silver ion using multiwalled carbon nanotubes as solid phase extraction sorbent. Sep Sci Technol 41:2723–2732

    CAS  Google Scholar 

  79. Du Z, Yu YL, Chen XW, Wang JH (2007) The isolation of basic proteins by solid-phase extraction with multiwalled carbon nanotubes. Chem Eur J 13:9679–9685

    CAS  Google Scholar 

  80. Wang RK, Park HO, Chen WC, Silvera-Batista C, Reeves RD, Butler JE, Ziegler KJ (2008) Improving the effectiveness of interfacial trapping in removing single-walled carbon nanotube bundles. J Am Chem Soc 130:14721–14728

    CAS  Google Scholar 

  81. Ziegler KJ, Schmidt DJ, Rauwald U, Shah KN, Flor EL, Hauge RH, Smalley RE (2005) Length-dependent extraction of single-walled carbon nanotubes. Nano Lett 5:2355–2359

    CAS  Google Scholar 

  82. Hudson JL, Casavant MJ, Tour JM (2004) Water-soluble, exfoliated, nonroping single-wall carbon nanotubes. J Am Chem Soc 126:11158–11159

    CAS  Google Scholar 

  83. Mayya KS, Caruso F (2003) Phase transfer of surface-modified gold nanoparticles by hydrophobization with alkylamines. Langmuir 19:6987–6993

    CAS  Google Scholar 

  84. Zhang Y, Shen Y, Kuehner D, Wu S, Su Z, Ye S, Niu L (2008) Directing single-walled carbon nanotubes to self-assemble at water/oil interfaces and facilitate electron transfer. Chem Commun 36:4273–4275

    Google Scholar 

  85. Karajanagi SS, Vertegel AA, Kane RS, Dordick JS (2004) Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir 20:11594–11599

    CAS  Google Scholar 

  86. Asuri P, Karajanagi SS, Dordick JS, Kane RS (2006) Directed assembly of carbon nanotubes at liquid-liquid interfaces: nanoscale conveyors for interfacial biocatalysis. J Am Chem Soc 128:1046–1047

    CAS  Google Scholar 

  87. Edgerton SA, Holdren MW, Smith DL, Shah JJ (1989) Inter-urban comparison of ambient volatile organic compound concentration in U.S. cities. J Air Pollut Contr 39:729–732

    CAS  Google Scholar 

  88. Carrillo-Carríon C, Lucena R, Cárdenas S, Valcárcel M (2007) Liquid-liquid extraction/headspace/gas chromatographic/mass spectrometric determination of benzene, toluene, ethylbenzene, (o-, m- and p-)xylene and styrene in olive oil using surfactant-coated carbon nanotubes as extractant. J Chromatogr A 1171:1–7

    Google Scholar 

  89. Kim S, Lee HR, Yun YJ, Ji S, Yoo K, Yun WS, Koo JY, Ha DH (2007) Effects of polymer coating on the adsorption of gas molecules on carbon nanotube networks. Appl Phys Lett 91:093126-093126-3

    Google Scholar 

  90. Pengfei QF, Vermesh O, Grecu M, Javey A, Wang O, Dai HJ, Peng S, Cho KJ (2003) Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett 3:347–351

    Google Scholar 

  91. Kauffman DR, Shade CM, Uh H, Petoud S, Star A (2009) Decorated carbon nanotubes with unique oxygen sensitivity. Nat Chem 1:500–506

    CAS  Google Scholar 

  92. Lee CY, Sharma R, Radadia AD, Masel RI, Strano MS (2008) On-chip micro gas chromatograph enabled by a noncovalently functionalized single-walled carbon nanotube sensor array. Angew Chem Int Ed 47:5018–5021

    CAS  Google Scholar 

  93. O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596

    Google Scholar 

  94. Bryning MB, Islam MF, Kikkawa JM, Yodh AG (2005) Very low conductivity threshold in bulk isotropic single-walled carbon nanotube-epoxy composites. Adv Mater 17:1186–1191

    CAS  Google Scholar 

  95. Banerjee S, Hemraj-Benny T, Wong SS (2005) Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater 17:17–29

    CAS  Google Scholar 

  96. Bianco A, Kostarelos K, Partidos CD, Prato M (2005) Biomedical applications of functionalised carbon nanotubes. Chem Commun 5:571–577

    Google Scholar 

  97. Yang WR, Thordarson P, Gooding JJ, Ringer SP, Braet F (2007) Carbon nanotubes for biological and biomedical applications. Nanotechnology 18:412001

    Google Scholar 

  98. Liang F, Chen B (2010) A review on biomedical applications of single-walled carbon nanotubes. Curr Med Chem 17:10–24

    CAS  Google Scholar 

  99. Mattson MP, Haddon RC, Rao AM (2000) Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J Mol Neurosci 14:175–182

    CAS  Google Scholar 

  100. Hu H, Ni YC, Montana V, Haddon RC, Parpura V (2004) Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett 4:507–511

    CAS  Google Scholar 

  101. Hu H, Ni YC, Mandal SK, Montana V, Zhao N, Haddon RC, Parpura V (2005) Polyethyleneimine functionalized single-walled carbon nanotubes as a substrate for neuronal growth. J Phys Chem B 109:4285–4289

    CAS  Google Scholar 

  102. Lovat V, Pantarotto D, Lagostena L, Spalluto G, Prato M, Ballerini L, Cacciari B, Grandolfo M, Righi M (2005) Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett 5:1107–1110

    CAS  Google Scholar 

  103. Gheith MK, Pappas TC, Liopo AV, Sinani VA, Shim BS, Motamedi M, Wicksted JR, Kotov NA (2006) Stimulation of neural cells by lateral layer-by-layer films of single-walled currents in conductive carbon nanotubes. Adv Mater 18:2975–2979

    CAS  Google Scholar 

  104. Zanello LP, Zhao B, Hu H, Haddon RC (2006) Bone cell proliferation on carbon nanotubes. Nano Lett 6:562–567

    CAS  Google Scholar 

  105. Jan E, Kotov NA (2007) Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. Nano Lett 7:1123–1128

    CAS  Google Scholar 

  106. Jan E, Hendricks JL, Husaini V, Richardson-Burns SM, Sereno A, Martin DC, Kotov NA (2009) Layered carbon nanotube-polyelectrolyte electrodes outperform traditional neural interface materials. Nano Lett 9:4012–4018

    CAS  Google Scholar 

  107. Namgung S, Kim T, Baik KY, Lee M, Nam J-M, Hong S (2010) Fibronectin–carbon-nanotube hybrid nanostructures for controlled cell growth. Small 7:56–61

    Google Scholar 

  108. Bianco A, Hoebeke J, Partidos CD, Kostarelos K, Prato M (2005) Carbon nanotubes: on the road to deliver. Curr Drug Deliv 2:253–259

    CAS  Google Scholar 

  109. Pastorin G, Kostarelos K, Prato M, Bianco A (2005) Functionalized carbon nanotubes: towards the delivery of therapeutic molecules. J Biomed Nanotechnol 1:133–142

    CAS  Google Scholar 

  110. Bianco A, Kostarelos K, Prato M (2008) Opportunities and challenges of carbon-based nanomaterials for cancer therapy. Expert Opin Drug Deliv 5:331–342

    CAS  Google Scholar 

  111. Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41:60–68

    CAS  Google Scholar 

  112. Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand JP, Prato M, Kostarelos K, Bianco A (2004) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed 43:5242–5246

    CAS  Google Scholar 

  113. Kam NW, Liu Z, Dai H (2005) Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc 127:12492–12493

    CAS  Google Scholar 

  114. Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD, Briand JP, Prato M, Bianco A, Kostarelos K (2005) Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J Am Chem Soc 127:4388–4396

    CAS  Google Scholar 

  115. Liu Z, Winters M, Holodniy M, Dai HJ (2007) siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew Chem Int Ed 46:2023–2027

    CAS  Google Scholar 

  116. Herrero MA, Toma FM, Al-Jamal KT, Kostarelos K, Bianco A, Da Ros T, Bano F, Casalis L, Scoles G, Prato M (2009) Synthesis and characterization of a carbon nanotube-dendron series for efficient siRNA delivery. J Am Chem Soc 131:9843–9848

    CAS  Google Scholar 

  117. Podesta JE, Al-Jamal KT, Herrero MA, Tian BW, Ali-Boucetta H, Hegde V, Bianco A, Prato M, Kostarelos K (2009) Antitumor activity and prolonged survival by carbon-nanotube-mediated therapeutic siRNA silencing in a human lung xenograft model. Small 5:1176–1185

    CAS  Google Scholar 

  118. Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) Organic functionalization of carbon nanotubes. J Am Chem Soc 124:760–761

    CAS  Google Scholar 

  119. Vigmond EJ, Velazquez JLP, Valiante TA, Bardakjian BL, Carlen PL (1997) Mechanisms of electrical coupling between pyramidal cells. J Neurophysiol 78:3107–3116

    CAS  Google Scholar 

  120. Cellot G, Cilia E, Cipollone S, Rancic V, Sucapane A, Giordani S, Gambazzi L, Markram H, Grandolfo M, Scaini D, Gelain F, Casalis L, Prato M, Giugliano M, Ballerini L (2009) Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat Nanotechnol 4:126–133

    CAS  Google Scholar 

  121. Chen X, Tam UC, Czlapinski JL, Lee GS, Rabuka D, Zettl A, Bertozzi CR (2006) Interfacing carbon nanotubes with living cells. J Am Chem Soc 128:6292–6293

    CAS  Google Scholar 

  122. Kam NW, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A 102:11600–11605

    CAS  Google Scholar 

  123. Feazell RP, Nakayama-Ratchford N, Dai H, Lippard SJ (2007) Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J Am Chem Soc 129:8438–8439

    CAS  Google Scholar 

  124. Georgakilas V, Tagmatarchis N, Pantarotto D, Bianco A, Briand JP, Prato M (2002) Amino acid functionalisation of water soluble carbon nanotubes. Chem Commun 24:3050–3051

    Google Scholar 

  125. Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand JP, Prato M, Kostarelos K, Bianco A (2004) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed 43:5242–5246

    CAS  Google Scholar 

  126. Zubritsky, E (2010) A Stellar, Metal-Free Way to Make Carbon Nanotubes. http://www.nasa.gov/topics/technology/features/metal-free-nanotubules.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Bonifazi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marega, R., Giust, D., Bonifazi, D. (2013). Supramolecular Chemistry of Carbon Nanotubes at Interfaces: Toward Applications. In: Nierengarten, JF. (eds) Fullerenes and Other Carbon-Rich Nanostructures. Structure and Bonding, vol 159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2013_129

Download citation

Publish with us

Policies and ethics