Skip to main content

Size- and Ligand-Specific Bioresponse of Gold Clusters and Nanoparticles: Challenges and Perspectives

  • Chapter
  • First Online:
Gold Clusters, Colloids and Nanoparticles I

Part of the book series: Structure and Bonding ((STRUCTURE,volume 161))

Abstract

This review gives an introduction to the chemical and physical properties of gold clusters and nanoparticles (NPs) and reflects the present understanding how such particles interact with biological systems in vitro and in vivo. It will acquaint the reader with the basic principles of interaction from a chemical point of view and illustrates perspectives that arise for the application of gold nanoparticles (AuNPs) in biological environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The difference between the expression “cluster” and “nanoparticle” is not sharp. In the following we will use “cluster” for particles of a discrete number of atoms, whereas “nanoparticle” is used for less exactly defined species, allowing a certain size distribution.

References

  1. Teo BK, Shi X, Zhang H (1992) Pure gold cluster of 1:9:9:1:9:9:1 layered structure: a novel 39-metal-atom cluster [(Ph3P)14Au39Cl6]Cl2 with an interstitial gold atom in a hexagonal antiprismatic cage. J Am Chem Soc 114:2743

    CAS  Google Scholar 

  2. Gutrath BS, Oppel IM, Presly O, Beljakov I, Meded V, Wenzel W, Simon U (2013) [Au14(PPh3)8(NO3)4]: an example of a new class of Au(NO3)-ligated superatom complexes. Angew Chem Int Ed 52:3529

    Google Scholar 

  3. Briant CE, Theobald BRC, White JW, Bell LK, Mingos DMP, Welch AJ (1981) Synthesis and X-ray structural characterization of the centred icosahedral gold cluster compound [Aul3(PMe2Ph)10Cl2](PF6)3; the realization of a theoretical prediction. J Chem Soc Chem Commun 201

    Google Scholar 

  4. Mingos DMP (1976) Molecular-orbital calculations on cluster compounds of gold. J Chem Soc Dalton Trans 1163

    Google Scholar 

  5. Mingos DMP (1996) Gold – a flexible friend in cluster chemistry. J Chem Soc Dalton Trans 561

    Google Scholar 

  6. Gutrath BS, Englert U, Wang Y, Simon U (2013) A missing link in undecagold cluster chemistry: single-crystal X-ray analysis of [Au11(PPh3)7Cl3]. Eur J Inorg Chem 2013(12):2002–2006

    Google Scholar 

  7. Schwerdtfeger P (ed) (2002) Relativistic electronic structure theory, part 1: fundamentals. Elsevier, Amsterdam

    Google Scholar 

  8. Schwerdtfeger P (ed) (2005) Relativistic electronic structure theory, part 2: applications. Elsevier, Amsterdam

    Google Scholar 

  9. Hess BA (ed) (2002) Relativistic effects in heavy-element chemistry and physics. Wiley-VCH, New York

    Google Scholar 

  10. Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 330:377

    Google Scholar 

  11. Schmid G, Brune H, Ernst H, Grunwald A, Grünwald W, Hofmann H, Krug H, Janich P, Mayor M, Rathgeber W, Simon U, Vogel V, Wyrwa D (2006) Nanotechnology: assessment and perspectives. In: Wissenschaftsethik und Technikfolgenabschätzung, vol. 27. Springer, Berlin

    Google Scholar 

  12. The Royal Society and The Royal Academy of Engineering, Science Policy Section (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. The Royal Society and The Royal Academy of Engineering, Science Policy Section, London

    Google Scholar 

  13. Bezryadin A, Dekker C, Schmid G (1997) Electrostatic trapping of single conducting nanoparticles between nanoelectrodes. Appl Phys Lett 71:1273

    CAS  Google Scholar 

  14. Schmid G, Pfeil R, Boese R, Bandermann F, Meyer S, Calis GHM, van der Velden JWA (1981) Au55[P(C6H5)3]12CI6 — ein Goldcluster ungewöhnlicher Größe. Chem Ber 114:3634

    CAS  Google Scholar 

  15. Chi LF, Hartig M, Drechsler T, Schwaack T, Seidel C, Fuchs H, Schmid G (1998) Single-electron tunneling in Au55 cluster monolayers. Appl Phys A 66:187

    Google Scholar 

  16. van der Velden JWA, Vollenbroek FA, Bour JJ, Beurskens PI, Smits JMM, Bosman WP (1981) Recueil J Roy Netherlands Chem Soc 100:148

    Google Scholar 

  17. Schmid G, Morun B, Malm J-O (1989) Pt309Phen*36O30 ± 10, a four-shell platinum cluster. Angew Chem Int Ed 28:778

    Google Scholar 

  18. Schmid G, Klein N, Morun B, Lehnert A (1990) Two, four, five-shell clusters and colloids. Pure Appl Chem 62:1175

    CAS  Google Scholar 

  19. Boyen HG, Ethirajan A, Kästle G, Weigl F, Ziemann P, Schmid G, Garnier MG, Büttner M, Oelhafen P (2005) Alloy formation of supported gold nanoparticles at their transition from clusters to solids: does size matter? Phys Rev Lett 94:016804

    Google Scholar 

  20. Pei Y, Shao N, Gao Y, Zeng XC (2010) Investigating active site of gold nanoparticle Au55(PPh3)12Cl6 in selective oxidation. ACS Nano 4:2009

    CAS  Google Scholar 

  21. Turner M, Golovko VB, Vaughan OPH, Abdulkin P, Berenguer-Murcia A, Tikhov MS, Johnson BFG, Lambert RM (2008) Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454:981

    CAS  Google Scholar 

  22. Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U, Jahnen-Dechent W (2009) Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5:2067

    Google Scholar 

  23. Smith BA, Zhang JZ, Giebel U, Schmid G (1997) Direct probe of size-dependent electronic relaxation in single-sized Au and nearly monodisperse Pt colloidal nano-particles. Chem Phys Lett 270:139

    CAS  Google Scholar 

  24. Schmid G, Klein N, Korste L, Kreibig U, Schönauer D (1988) Large transition metal clusters—VI. Ligand exchange reactions on Au55(PPh3)12Cl6—the formation of a water soluble Au55 cluster. Polyhedron 7:605

    CAS  Google Scholar 

  25. Saha K, Bajaj A, Duncan B, Rotello VM (2011) Beauty is skin deep: a surface monolayer perspective on nanoparticle interactions with cells and bio-macromolecules. Small 7:1903

    CAS  Google Scholar 

  26. Schmid G (1985) Developments in transition metal cluster chemistry — the way to large clusters. Struct Bond 62:51

    CAS  Google Scholar 

  27. Cho W-S, Cho M, Jeong J, Choi M, Cho H-Y, Han BS, Kim SH, Kim HO, Lim YT, Chung BH, Jeong J (2009) Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol Appl Pharmacol 236:16

    CAS  Google Scholar 

  28. Li JJ, Hartono D, Ong C-N, Bay B-H, Yung L-YL (2010) Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials 31:5996

    CAS  Google Scholar 

  29. Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V (2010) A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40:328

    CAS  Google Scholar 

  30. Shang L, Brandholt S, Stockmar F, Trouillet V, Bruns M, Nienhaus GU (2012) Effect of protein adsorption on the fluorescence of ultrasmall gold nanoclusters. Small 8:661

    CAS  Google Scholar 

  31. De Paoli Lacerda SH, Park JJ, Meuse C, Pristinski D, Becker ML, Karim A, Douglas JF (2010) Interaction of gold nanoparticles with common human blood proteins. ACS Nano 4:365

    Google Scholar 

  32. Treuel L, Nienhaus GU (2012) Toward a molecular understanding of nanoparticle–protein interactions. Biophys Rev 4:137

    CAS  Google Scholar 

  33. Dhar S, Daniel WL, Giljohann DA, Mirkin CA, Lippard SJ (2009) Polyvalent oligonucleotide gold nanoparticle conjugates as delivery vehicles for Platinum(IV) warheads. J Am Chem Soc 131:14652

    CAS  Google Scholar 

  34. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547

    CAS  Google Scholar 

  35. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078

    CAS  Google Scholar 

  36. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120:1959

    CAS  Google Scholar 

  37. Storhoff JJ, Lazarides AA, Mucic RC, Mirkin CA, Letsinger RL, Schatz GC (2000) What controls the optical properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 122:4640

    CAS  Google Scholar 

  38. Mucic RC, Storhoff JJ, Mirkin CA, Letsinger RL (1998) DNA-directed synthesis of binary nanoparticle network materials. J Am Chem Soc 120:12674

    CAS  Google Scholar 

  39. Taton TA, Lu G, Mirkin CA (2001) Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes. J Am Chem Soc 123:5164

    CAS  Google Scholar 

  40. Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312:1027

    CAS  Google Scholar 

  41. Seferos DS, Giljohann DA, Hill HD, Prigodich AE, Mirkin CA (2007) Nano-flares: probes for transfection and mRNA detection in living cells. J Am Chem Soc 129:15477

    CAS  Google Scholar 

  42. Demers LM, Mirkin CA, Mucic RC, Reynolds RA, Letsinger RL, Elghanian R, Viswanadham G (2000) A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal Chem 72:5535

    CAS  Google Scholar 

  43. Jin R, Wu G, Li Z, Mirkin CA, Schatz GC (2003) What controls the melting properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 125:1643

    CAS  Google Scholar 

  44. Giljohann DA, Seferos DS, Prigodich AE, Patel PC, Mirkin CA (2009) Gene regulation with polyvalent siRNA-nanoparticle conjugates. J Am Chem Soc 131:2072

    CAS  Google Scholar 

  45. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607

    CAS  Google Scholar 

  46. Nam J-M, Park S-J, Mirkin CA (2002) Bio-barcodes based on oligonucleotide-modified nanoparticles. J Am Chem Soc 124:3820

    CAS  Google Scholar 

  47. Park S-J, Lazarides AA, Mirkin CA, Brazis PW, Kannewurf CR, Letsinger RL (2000) The electrical properties of gold nanoparticle assemblies linked by DNA. Angew Chem Int Ed 39:3845

    CAS  Google Scholar 

  48. Taton TA, Mucic RC, Mirkin CA, Letsinger RL (2000) The DNA-mediated formation of supramolecular mono- and multilayered nanoparticle structures. J Am Chem Soc 122:6305

    CAS  Google Scholar 

  49. Cutler JI, Auyeung E, Mirkin CA (2012) Spherical nucleic acids. J Am Chem Soc 134:1376

    CAS  Google Scholar 

  50. Lee J-S, Han MS, Mirkin CA (2007) Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew Chem Int Ed 46:4093

    CAS  Google Scholar 

  51. Zheng G, Daniel WL, Mirkin CA (2008) A new approach to amplified telomerase detection with polyvalent oligonucleotide nanoparticle conjugates. J Am Chem Soc 130:9644

    CAS  Google Scholar 

  52. Han MS, Lytton-Jean AKR, Oh B-K, Heo J, Mirkin CA (2006) Colorimetric screening of DNA-binding molecules with gold nanoparticle probes. Angew Chem Int Ed 45:1807

    CAS  Google Scholar 

  53. Xu X, Daniel WL, Wei W, Mirkin CA (2010) Colorimetric Cu2+ detection using DNA-modified gold-nanoparticle aggregates as probes and click chemistry. Small 6:623

    CAS  Google Scholar 

  54. Lytton-Jean AKR, Mirkin CA (2005) A thermodynamic investigation into the binding properties of DNA functionalized gold nanoparticle probes and molecular fluorophore probes. J Am Chem Soc 127:12754

    CAS  Google Scholar 

  55. Seferos DS, Prigodich AE, Giljohann DA, Patel PC, Mirkin CA (2009) Polyvalent DNA nanoparticle conjugates stabilize nucleic acids. Nano Lett 9:308

    CAS  Google Scholar 

  56. Giljohann DA, Seferos DS, Patel PC, Millstone JE, Rosi NL, Mirkin CA (2007) Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett 7:3818

    CAS  Google Scholar 

  57. Cutler JI, Zhang K, Zheng D, Auyeung E, Prigodich AE, Mirkin CA (2011) Polyvalent nucleic acid nanostructures. J Am Chem Soc 133:9254

    CAS  Google Scholar 

  58. Patel PC, Giljohann DA, Daniel WL, Zheng D, Prigodich AE, Mirkin CA (2010) Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles. Bioconjugate Chem 21:2250

    CAS  Google Scholar 

  59. Cutler JI, Zheng D, Xu X, Giljohann DA, Mirkin CA (2010) Polyvalent oligonucleotide iron oxide nanoparticle “click” conjugates. Nano Lett 10:1477

    CAS  Google Scholar 

  60. Witten KG, Rech C, Eckert T, Charrak S, Richtering W, Elling L, Simon U (2011) Glyco-DNA–gold nanoparticles: lectin-mediated assembly and dual-stimuli response. Small 7:1954

    CAS  Google Scholar 

  61. van Kasteren SI, Campbell SJ, Serres S, Anthony DC, Sibson NR, Davis BG (2009) Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease. Proc Natl Acad Sci USA 106:18

    Google Scholar 

  62. Ebisu S, Shankar Iyer PN, Goldstein IJ (1978) Equilibrium dialysis and carbohydrate-binding studies on the 2-acetamido-2-deoxy-d-glucopyranosyl-binding lectin from Bandeiraea simplicifolia seeds. Carbohydr Res 61:129

    CAS  Google Scholar 

  63. Zook JM, Long SE, Cleveland D, Geronimo CLA, MacCuspie RI (2011) Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV–visible absorbance. Anal Bioanal Chem 401:1993

    CAS  Google Scholar 

  64. Kittler S, Greulich C, Diendorf J, Köller M, Epple M (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22:4548

    CAS  Google Scholar 

  65. Ho C-M, Yau SK-W, Lok C-N, So M-H, Che C-M (2010) Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: a kinetic and mechanistic study. Chem Asian J 5:285

    Google Scholar 

  66. Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169

    CAS  Google Scholar 

  67. Liu J, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4:6903

    CAS  Google Scholar 

  68. Zhang W, Yao Y, Sullivan N, Chen Y (2011) Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ Sci Technol 45:4422

    CAS  Google Scholar 

  69. Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann M-C (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412

    CAS  Google Scholar 

  70. Soto K, Carrasco A, Powell TG, Garza KM, Murr L (2005) Comparative in vitro cytotoxicity assessment of some manufactured nanoparticulate materials characterized by transmissionelectron microscopy. J Nanopart Res 7:145

    CAS  Google Scholar 

  71. Foldbjerg R, Dang DA, Autrup H (2011) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 85:743

    CAS  Google Scholar 

  72. Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133

    CAS  Google Scholar 

  73. Geranio L, Heuberger M, Nowack B (2009) The behavior of silver nanotextiles during washing. Environ Sci Technol 43:8113

    CAS  Google Scholar 

  74. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959

    CAS  Google Scholar 

  75. Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R, Boller M, Burkhardt M (2010) Release of silver nanoparticles from outdoor facades. Environ Pollut 158:2900

    CAS  Google Scholar 

  76. Nowack B, Krug HF, Height M (2011) 120 Years of nanosilver history: implications for policy makers. Environ Sci Technol 45:1177

    CAS  Google Scholar 

  77. Lea MC (1889) Am J Sci 37:476

    Google Scholar 

  78. Gottschalk F, Scholz RW, Nowack B (2010) Probabilistic material flow modeling for assessing the environmental exposure to compounds: methodology and an application to engineered nano-TiO2 particles. Environ Model Softw 25:320

    Google Scholar 

  79. Asharani PV, Lianwu Y, Gong Z, Valiyaveettil S (2011) Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology 5:43

    CAS  Google Scholar 

  80. Asharani PV, Xinyi N, Hande MP, Valiyaveettil S (2010) DNA damage and p53-mediated growth arrest in human cells treated with platinum nanoparticles. Nanomedicine 5:51

    CAS  Google Scholar 

  81. Mahl D, Diendorf J, Ristig S, Greulich C, Li Z-A, Farle M, Köller M, Epple M (2012) Silver, gold, and alloyed silver–gold nanoparticles: characterization and comparative cell-biologic action. J Nanopart Res 14:1153

    Google Scholar 

  82. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325

    CAS  Google Scholar 

  83. Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721

    CAS  Google Scholar 

  84. Liu Y, Meyer-Zaika W, Franzka S, Schmid G, Tsoli M, Kuhn H (2003) Gold-cluster degradation by the transition of B-DNA into A-DNA and the formation of nanowires. Angew Chem Int Ed 42:2853

    CAS  Google Scholar 

  85. Tsoli M, Kuhn H, Brandau W, Esche H, Schmid G (2005) Cellular uptake and toxicity of Au55 clusters. Small 1:841

    CAS  Google Scholar 

  86. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Size dependent cytotoxicity of gold nanoparticles. Small 3:1941

    CAS  Google Scholar 

  87. Leifert A, Pan Y, Kinkeldey A, Schiefer F, Setzler J, Scheel O, Lichtenbeld H, Schmid G, Wenzel W, Jahnen-Dechent W, Simon U (2013) Differential hERG ion channel activity of ultrasmall gold nanoparticles. Proc Natl Acad Sci USA 110:8004

    CAS  Google Scholar 

  88. Hirn S, Semmler-Behnke M, Schleh C, Wenk A, Lipka J, Schäffler M, Takenaka S, Möller W, Schmid G, Simon U, Kreyling WG (2011) Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur J Pharm Biopharm 77:407

    CAS  Google Scholar 

  89. Semmler-Behnke M, Kreyling WG, Lipka J, Fertsch S, Wenk A, Takenaka S, Schmid G, Brandau W (2008) Biodistribution of 1.4- and 18-nm gold particles in rats. Small 4:2108

    Google Scholar 

  90. Schmid G (2012) Metal nanoparticles: electronic properties, bioresponse, and synthesis. In: Scott RA (ed) Encyclopedia of inorganic and bioinorganic chemistry. Wiley VCH, doi:10.1002/9781119951438.eibc0284.pub2

  91. Schleh C, Semmler-Behnke M, Lipka J, Wenk A, Hirn S, Schäffler M, Schmid G, Simon U, Kreyling WG (2012) Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology 6:36

    CAS  Google Scholar 

  92. Lin S, Zhao Y, Nel AE, Lin S (2012) Zebrafish: an in vivo model for nano EHS studies. Small. doi:10.1002/smll.201202115

    Google Scholar 

  93. George S, Xia T, Rallo R, Zhao Y, Ji Z, Lin S, Wang X, Zhang H, France B, Schoenfeld D, Damoiseaux R, Liu R, Lin S, Bradley KA, Cohen Y, Nel AE (2011) Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano 5:1805

    CAS  Google Scholar 

  94. Fako VE, Furgeson DY (2009) Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity. Adv Drug Deliv Rev 61:478

    CAS  Google Scholar 

  95. Simmons SO, Fan C-Y, Ramabhadran R (2009) Cellular stress response pathway system as a sentinel ensemble in toxicological screening. Toxicol Sci 111:202

    CAS  Google Scholar 

  96. Yang L, Kemadjou J, Zinsmeister C, Bauer M, Legradi J, Muller F, Pankratz M, Jakel J, Strahle U (2007) Transcriptional profiling reveals barcode-like toxicogenomic responses in the Zebrafish embryo. Genome Biol 8:R227

    Google Scholar 

  97. Harper SL, Carriere JL, Miller JM, Hutchison JE, Maddux BLS, Tanguay RL (2011) Systematic evaluation of nanomaterial toxicity: utility of standardized materials and rapid assays. ACS Nano 5:4688

    CAS  Google Scholar 

  98. Pan Y, Leifert A, Graf M, Schiefer F, Thoröe-Boveleth S, Broda J, Halloran MC, Hollert H, Laaf D, Simon U, Jahnen-Dechent W (2013) High-sensitivity real-time analysis of nanoparticle toxicity in green fluorescent protein-expressing zebrafish. Small 863

    Google Scholar 

  99. Razansky D, Distel M, Vinegoni C, Ma R, Perrimon N, Koster RW, Ntziachristos V (2009) Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. Nat Photonics 3:412

    CAS  Google Scholar 

  100. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740

    CAS  Google Scholar 

  101. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs. Cancer Res 46:6387

    CAS  Google Scholar 

  102. Tkachenko AG, Xie H, Coleman D, Glomm W, Ryan J, Anderson MF, Franzen S, Feldheim DL (2003) Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J Am Chem Soc 125:4700

    CAS  Google Scholar 

  103. de la Fuente JM, Berry CC (2005) Tat peptide as an efficient molecule to translocate gold nanoparticles into the cell nucleus. Bioconjug Chem 16:1176

    Google Scholar 

  104. Chen J, Wang D, Xi J, Au L, Siekkinen A, Warsen A, Li Z-Y, Zhang H, Xia Y, Li X (2007) Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 7:1318

    CAS  Google Scholar 

  105. Lu W, Xiong C, Zhang G, Huang Q, Zhang R, Zhang JZ, Li C (2009) Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres. Clin Cancer Res 15:876

    CAS  Google Scholar 

  106. Shilo M, Reuveni T, Motiei M, Popovtzer R (2012) Nanoparticles as computed tomography contrast agents: current status and future perspectives. Nanomedicine 7:257

    CAS  Google Scholar 

  107. Barreto JA, O’Malley W, Kubeil M, Graham B, Stephan H, Spiccia L (2011) Nanomaterials: applications in cancer imaging and therapy. Adv Mater 23:H18

    CAS  Google Scholar 

  108. Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS (2008) Molecular imaging in drug development. Nat Rev Drug Discov 7:591

    CAS  Google Scholar 

  109. Krause W (2002) Liver specific X-ray contrast agents. Top Curr Chem 222:173

    CAS  Google Scholar 

  110. Wang H, Zheng L, Guo R, Peng C, Shen M, Shi X, Zhang G (2012) Dendrimer-entrapped gold nanoparticles as potential CT contrast agents for blood pool imaging. Nanoscale Res Lett 7:190

    Google Scholar 

  111. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79:248

    CAS  Google Scholar 

  112. Kojima C, Umeda Y, Ogawa M, Harada A, Magata Y, Kono K (2010) X-ray computed tomography contrast agents prepared by seeded growth of gold nanoparticles in PEGylated dendrimer. Nanotechnology 21:245104

    Google Scholar 

  113. Cai Q-Y, Kim SH, Choi KS, Kim SY, Byun SJ, Kim KW, Park SH, Juhng SK, Yoon K-H (2007) Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice. Invest Radiol 42:797

    CAS  Google Scholar 

  114. Peng C, Wang H, Guo R, Shen M, Cao X, Zhu M, Zhang G, Shi X (2011) Acetylation of dendrimer-entrapped gold nanoparticles: synthesis, stability, and X-ray attenuation properties. J Appl Polym Sci 119:1673

    CAS  Google Scholar 

  115. Ghann WE, Aras O, Fleiter T, Daniel M-C (2012) Syntheses and characterization of lisinopril-coated gold nanoparticles as highly stable targeted CT contrast agents in cardiovascular diseases. Langmuir 28:10398

    CAS  Google Scholar 

  116. Peng C, Zheng L, Chen Q, Shen M, Guo R, Wang H, Cao X, Zhang G, Shi X (2012) PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials 33:1107

    CAS  Google Scholar 

  117. Wang H, Zheng L, Peng C, Guo R, Shen M, Shi X, Zhang G (2011) Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles. Biomaterials 32:2979

    CAS  Google Scholar 

  118. Reuveni T, Motiei M, Romman Z, Popovtzer A, Popovtzer R (2011) Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int J Nanomedicine 6:2859

    CAS  Google Scholar 

  119. Chanda N, Kattumuri V, Shukla R, Zambre A, Katti K, Upendran A, Kulkarni RR, Kan P, Fent GM, Casteel SW, Smith CJ, Boote E, Robertson JD, Cutler C, Lever JR, Katti KV, Kannan R (2010) Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity. Proc Natl Acad Sci USA 107:8760

    CAS  Google Scholar 

  120. Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE, Kopelman R (2008) Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett 8:4593

    CAS  Google Scholar 

  121. Aydogan B, Li J, Rajh T, Chaudhary A, Chmura S, Pelizzari C, Wietholt C, Kurtoglu M, Redmond P (2010) AuNP-DG: deoxyglucose-labeled gold nanoparticles as X-ray computed tomography contrast agents for cancer imaging. Mol Imaging Biol 12:463

    Google Scholar 

  122. Lijowski M, Caruthers S, Hu G, Zhang H, Scott MJ, Williams T, Erpelding T, Schmieder AH, Kiefer G, Gulyas G, Athey PS, Gaffney PJ, Wickline SA, Lanza GM (2009) High sensitivity: high-resolution SPECT-CT/MR molecular imaging of angiogenesis in the Vx2 model. Invest Radiol 44:15

    CAS  Google Scholar 

  123. Hainfeld JF, O’Connor MJ, Dilmanian FA, Slatkin DN, Adams DJ, Smilowitz HM (2011) Micro-CT enables microlocalisation and quantification of Her2-targeted gold nanoparticles within tumour regions. Br J Radiol 84:526

    CAS  Google Scholar 

  124. Kim D, Park S, Lee JH, Jeong YY, Jon S (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 129:7661

    CAS  Google Scholar 

  125. Xu M, Wang LV (2006) Photoacoustic imaging in biomedicine. Rev Sci Instrum 77:041101

    Google Scholar 

  126. Homan K, Mallidi S, Cooley E, Emelianov S (eds) (2011) Combined photoacoustic and ultrasound imaging of metal nanoparticles in vivo. Pan Stanford Publishing Pte. Ltd., Austin

    Google Scholar 

  127. Lu W, Huang Q, Ku G, Wen X, Zhou M, Guzatov D, Brecht P, Su R, Oraevsky A, Wang LV, Li C (2010) Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres. Biomaterials 31:2617

    CAS  Google Scholar 

  128. Emelianov SY, Li P-C, O'Donnell M (2009) Photoacoustics for molecular imaging and therapy. Phys Today 62:34

    CAS  Google Scholar 

  129. Oraevsky AA (2009) Gold and silver nanoparticles as contrast agents for optoacoustic imaging. In: Wang LV (ed) Photoacoustic imaging and spectroscopy. Taylor and Francis, New York

    Google Scholar 

  130. Cobley CM, Chen J, Cho EC, Wang LV, Xia Y (2011) Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev 40:44

    CAS  Google Scholar 

  131. Homberger M, Simon U (2010) On the application potential of gold nanoparticles in nanoelectronics and biomedicine. Phil Trans R Soc A 368:1405

    CAS  Google Scholar 

  132. Wang Y, Xie X, Wang X, Ku G, Gill KL, O'Neal DP, Stoica G, Wang LV (2004) Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett 4:1689

    CAS  Google Scholar 

  133. Wang B, Yantsen E, Larson T, Karpiouk AB, Sethuraman S, Su JL, Sokolov K, Emelianov SY (2009) Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques. Nano Lett 9:2212

    CAS  Google Scholar 

  134. Zhang Q, Iwakuma N, Sharma P, Moudgil BM, Wu C, McNeill J, Jiang H, Grobmyer SR (2009) Gold nanoparticles as a contrast agent for in vivo tumor imaging with photoacoustic tomography. Nanotechnology 20:395102

    CAS  Google Scholar 

  135. Yoon SJ, Mallidi S, Tam JM, Tam JO, Murthy A, Johnston KP, Sokolov KV, Emelianov SY (2010) Utility of biodegradable plasmonic nanoclusters in photoacoustic imaging. Opt Lett 35:3751

    CAS  Google Scholar 

  136. Agarwal A, Shao X, Rajian JR, Zhang H, Chamberland DL, Kotov NA, Wang X (2011) Dual-mode imaging with radiolabeled gold nanorods. J Biomed Opt 16:051307

    Google Scholar 

  137. Olafsson R, Bauer DR, Montilla LG, Witte RS (2010) Real-time, contrast enhanced photoacoustic imaging of cancer in a mouse window chamber. Opt Express 18:18625

    CAS  Google Scholar 

  138. Chen L-C, Wei C-W, Souris JS, Cheng S-H, Chen C-T, Yang C-S, Li P-C, Lo L-W (2010) Enhanced photoacoustic stability of gold nanorods by silica matrix confinement. J Biomed Opt 15:016010

    Google Scholar 

  139. Agarwal A, Huang SW, O'Donnell M, Day KC, Day M, Kotov N, Ashkenazi S (2007) Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J Appl Phys 102:064701

    Google Scholar 

  140. Chamberland DL, Agarwal A, Kotov N, Fowlkes JB, Carson PL, Wang X (2008) Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent—an ex vivo preliminary rat study. Nanotechnology 19:095101

    Google Scholar 

  141. Chen Y-S, Frey W, Kim S, Kruizinga P, Homan K, Emelianov S (2011) Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett 11:348

    CAS  Google Scholar 

  142. Taruttis A, Herzog E, Razansky D, Ntziachristos V (2010) Real-time imaging of cardiovascular dynamics and circulating gold nanorods with multispectral optoacoustic tomography. Opt Express 18:19592

    CAS  Google Scholar 

  143. Bayer CL, Chen Y-S, Kim S, Mallidi S, Sokolov K, Emelianov S (2011) Multiplex photoacoustic molecular imaging using targeted silica-coated gold nanorods. Biomed Opt Express 2:1828

    CAS  Google Scholar 

  144. Skrabalak SE, Chen J, Sun Y, Lu X, Au L, Cobley CM, Xia Y (2008) Gold nanocages: synthesis, properties, and applications. Acc Chem Res 41:1587

    CAS  Google Scholar 

  145. Moon GD, Choi S-W, Cai X, Li W, Cho EC, Jeong U, Wang LV, Xia Y (2011) A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release. J Am Chem Soc 133:4762

    CAS  Google Scholar 

  146. Yang X, Skrabalak SE, Li Z-Y, Xia Y, Wang LV (2007) Photoacoustic tomography of a rat cerebral cortex in vivo with Au nanocages as an optical contrast agent. Nano Lett 7:3798

    CAS  Google Scholar 

  147. Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Richards-Kortum R (2003) Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63:1999

    CAS  Google Scholar 

  148. Aaron J, Nitin N, Travis K, Kumar S, Collier T, Park SY, José-Yacamán M, Coghlan L, Follen M, Richards-Kortum R, Sokolov K (2007) Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo. J Biomed Opt 12:034007

    Google Scholar 

  149. Mallidi S, Larson T, Tam J, Joshi PP, Karpiouk A, Sokolov K, Emelianov S (2009) Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer. Nano Lett 9:2825

    CAS  Google Scholar 

  150. Gutrath BS, Beckmann MF, Buchkremer A, Eckert T, Timper J, Leifert A, Richtering W, Schmitz G, Simon U (2012) Size-dependent multispectral photoacoustic response of solid and hollow gold nanoparticles. Nanotechnology 23:225707

    Google Scholar 

  151. Popović Z, Liu W, Chauhan VP, Lee J, Wong C, Greytak AB, Insin N, Nocera DG, Fukumura D, Jain RK, Bawendi MG (2010) A nanoparticle size series for in vivo fluorescence imaging. Angew Chem Int Ed 122:8649

    Google Scholar 

  152. Eghtedari M, Oraevsky A, Copland JA, Kotov NA, Conjusteau A, Motamedi M (2007) High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. Nano Lett 7:1914

    CAS  Google Scholar 

  153. Li P-C, Wei C-W, Liao C-K, Chen C-D, Pao K-C, Wang C-RC, Wu Y-N, Shieh D-B (2007) Photoacoustic imaging of multiple targets using gold nanorods. IEEE Trans Ultrason Ferroelectr Freq Control 54:1642

    Google Scholar 

  154. Jokerst JV, Cole AJ, Van de Sompel D, Gambhir SS (2012) Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via raman imaging in living mice. ACS Nano 6:10366

    CAS  Google Scholar 

  155. Li P-C, Wang C-RC, Shieh D-B, Wei C-W, Liao C-K, Poe C, Jhan S, Ding A-A, Wu Y-N (2008) In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods. Opt Express 16:18605

    CAS  Google Scholar 

  156. Huang G, Yang S, Yuan Y, Xing D (2011) Combining X-ray and photoacoustics for in vivo tumor imaging with gold nanorods. Appl Phys Lett 99:123701

    Google Scholar 

  157. Song KH, Kim C, Cobley CM, Xia Y, Wang LV (2008) Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model. Nano Lett 9:183

    Google Scholar 

  158. Bao C, Beziere N, del Pino P, Pelaz B, Estrada G, Tian F, Ntziachristos V, de la Fuente JM, Cui D (2013) Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers. Small 9:68

    CAS  Google Scholar 

  159. Orendorff CJ, Sau TK, Murphy CJ (2006) Shape-dependent plasmon-resonant gold nanoparticles. Small 2:636

    CAS  Google Scholar 

  160. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257

    CAS  Google Scholar 

  161. Alkilany AM, Thompson LB, Boulos SP, Sisco PN, Murphy CJ (2012) Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev 64:190

    CAS  Google Scholar 

  162. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Google Scholar 

  163. Skirtach AG, Dejugnat C, Braun D, Susha AS, Rogach AL, Parak WJ, Möhwald H, Sukhorukov GB (2005) The role of metal nanoparticles in remote release of encapsulated materials. Nano Lett 5:1371

    CAS  Google Scholar 

  164. Chou C-H, Chen C-D, Wang CRC (2005) Highly efficient, wavelength-tunable, gold nanoparticle based optothermal nanoconvertors. J Phys Chem B 109:11135

    CAS  Google Scholar 

  165. Pissuwan D, Valenzuela SM, Cortie MB (2006) Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol 24:62

    CAS  Google Scholar 

  166. Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP (2003) Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 84:4023

    CAS  Google Scholar 

  167. Nam J, Won N, Jin H, Chung H, Kim S (2009) pH-Induced aggregation of gold nanoparticles for photothermal cancer therapy. J Am Chem Soc 131:13639

    CAS  Google Scholar 

  168. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115

    CAS  Google Scholar 

  169. Chen J, McLellan JM, Siekkinen A, Xiong Y, Li Z-Y, Xia Y (2006) Facile synthesis of gold–silver nanocages with controllable pores on the surface. J Am Chem Soc 128:14776

    CAS  Google Scholar 

  170. Chen J, Glaus C, Laforest R, Zhang Q, Yang M, Gidding M, Welch MJ, Xia Y (2010) Gold nanocages as photothermal transducers for cancer treatment. Small 6:811

    CAS  Google Scholar 

  171. Au L, Zheng D, Zhou F, Li Z-Y, Li X, Xia Y (2008) A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells. ACS Nano 2:1645

    CAS  Google Scholar 

  172. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100:13549

    CAS  Google Scholar 

  173. Lal S, Clare SE, Halas NJ (2008) Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 41:1842

    CAS  Google Scholar 

  174. O'Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209:171

    Google Scholar 

  175. Loo C, Lowery A, Halas NJ, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5:709

    CAS  Google Scholar 

  176. Day ES, Zhang L, Thompson PA, Zawaski JA, Kaffes CC, Gaber MW, Blaney SM, West JL (2012) Vascular-targeted photothermal therapy of an orthotopic murine glioma model. Nanomedicine 7:1133

    CAS  Google Scholar 

  177. Zhou HS, Honma I, Komiyama H, Haus JW (1994) Controlled synthesis and quantum-size effect in gold-coated nanoparticles. Phys Rev B 50:12052

    CAS  Google Scholar 

  178. Gobin AM, Watkins EM, Quevedo E, Colvin VL, West JL (2010) Near-infrared-resonant gold/gold sulfide nanoparticles as a photothermal cancer therapeutic agent. Small 6:745

    CAS  Google Scholar 

  179. Hu M, Chen J, Li Z-Y, Au L, Hartland GV, Li X, Marquez M, Xia Y (2006) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35:1084

    CAS  Google Scholar 

  180. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857

    CAS  Google Scholar 

  181. Huang H-C, Yang Y, Nanda A, Koria P, Rege K (2011) Synergistic administration of photothermal therapy and chemotherapy to cancer cells using polypeptide-based degradable plasmonic matrices. Nanomedicine 6:459

    CAS  Google Scholar 

  182. Norman RS, Stone JW, Gole A, Murphy CJ, Sabo-Attwood TL (2007) Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods. Nano Lett 8:302

    Google Scholar 

  183. Dickerson EB, Dreaden EC, Huang X, El-Sayed IH, Chu H, Pushpanketh S, McDonald JF, El-Sayed MA (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269:57

    CAS  Google Scholar 

  184. Choi WI, Kim J-Y, Kang C, Byeon CC, Kim YH, Tae G (2011) Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded. Functional Nanocarriers. ACS Nano 5:1995

    CAS  Google Scholar 

  185. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238

    CAS  Google Scholar 

  186. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2006) Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem Photobiol 82:412

    CAS  Google Scholar 

  187. von Maltzahn G, Park J-H, Agrawal A, Bandaru NK, Das SK, Sailor MJ, Bhatia SN (2009) Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res 69:3892

    Google Scholar 

  188. Dreaden EC, Mackey MA, Huang X, Kang B, El-Sayed MA (2011) Beating cancer in multiple ways using nanogold. Chem Soc Rev 40:3391

    CAS  Google Scholar 

  189. Wood BJ, Ramkaransingh JR, Fojo T, Walther MM, Libutti SK (2002) Percutaneous tumor ablation with radiofrequency. Cancer 94:443

    Google Scholar 

  190. Minelli C, Lowe SB, Stevens MM (2010) Engineering nanocomposite materials for cancer therapy. Small 6:2336

    CAS  Google Scholar 

  191. Arvizo R, Bhattacharya R, Mukherjee P (2010) Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin Drug Deliv 7:753

    CAS  Google Scholar 

  192. Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:N309

    CAS  Google Scholar 

  193. Pradhan AK, Nahar SN, Montenegro M, Yu Y, Zhang HL, Sur C, Mrozik M, Pitzer RM (2009) Resonant X-ray enhancement of the auger effect in high-Z atoms, molecules, and nanoparticles: potential biomedical applications. J Phys Chem A 113:12356

    CAS  Google Scholar 

  194. Kong T, Zeng J, Wang X, Yang X, Yang J, McQuarrie S, McEwan A, Roa W, Chen J, Xing JZ (2008) Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles. Small 4:1537

    CAS  Google Scholar 

  195. Chang M-Y, Shiau A-L, Chen Y-H, Chang C-J, Chen HHW, Wu C-L (2008) Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice. Cancer Sci 99:1479

    CAS  Google Scholar 

  196. Zhang X, Xing JZ, Chen J, Ko L, Amanie J, Gulavita S, Pervez N, Yee D, Moore R, Roa W (2008) Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles. Clin Invest Med 31:E160

    CAS  Google Scholar 

  197. Cho SH (2005) Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study. Phys Med Biol 50:N163

    Google Scholar 

  198. Cho SH, Jones BL, Krishnan S (2009) The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/X-ray sources. Phys Med Biol 54:4889

    CAS  Google Scholar 

  199. Roeske JC, Nuñez L, Hoggarth M, Labay E, Weichselbaum RR (2007) Characterization of the theorectical radiation dose enhancement from nanoparticles. Technol Cancer Res Treat 6:395

    Google Scholar 

  200. Brun E, Sanche L, Sicard-Roselli C (2009) Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution. Colloids Surf B Biointerfaces 72:128

    CAS  Google Scholar 

  201. Foley EA, Carter JD, Shan F, Guo T (2005) Enhanced relaxation of nanoparticle-bound supercoiled DNA in X-ray radiation. Chem Commun 3192

    Google Scholar 

  202. Butterworth KT, Wyer JA, Brennan-Fournet M, Latimer CJ, Shah MB, Currell FJ, Hirst DG (2008) Variation of strand break yield for plasmid DNA irradiated with high-Z metal nanoparticles. Radiat Res 170:381

    CAS  Google Scholar 

  203. Rahman WN, Bishara N, Ackerly T, He CF, Jackson P, Wong C, Davidson R, Geso M (2009) Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomed Nanotechnol Biol Med 5:136

    Google Scholar 

  204. Liu C-J, Wang C-H, Chen S-T, Chen H-H, Leng W-H, Chien C-C, Wang C-L, Kempson IM, Hwu Y, Lai T-C, Hsiao M, Yang C-S, Chen Y-J, Margaritondo G (2010) Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Phys Med Biol 55:931

    CAS  Google Scholar 

  205. Roa W, Zhang X, Guo L, Shaw A, Hu X, Xiong Y, Gulavita S, Patel S, Sun X, Chen J, Moore R, Xing JZ (2009) Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle. Nanotechnology 20:375101

    Google Scholar 

  206. Polf JC, Bronk LF, Driessen WHP, Arap W, Pasqualini R, Gillin M (2011) Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles. Appl Phys Lett 98:193702

    Google Scholar 

  207. Hainfeld JF, Dilmanian FA, Zhong Z, Slatkin DN, Kalef-Ezra JA, Smilowitz HM (2010) Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys Med Biol 55:3045

    CAS  Google Scholar 

  208. Zheng Y, Sanche L (2009) Gold nanoparticles enhance DNA damage induced by anti-cancer drugs and radiation. Radiat Res 172:114

    CAS  Google Scholar 

  209. Leung MKK, Chow JCL, Chithrani BD, Lee MJG, Oms B, Jaffray DA (2011) Irradiation of gold nanoparticles by X-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Med Phys 38:624

    CAS  Google Scholar 

  210. Carter JD, Cheng NN, Qu Y, Suarez GD, Guo T (2007) Nanoscale energy deposition by X-ray absorbing nanostructures. J Phys Chem B 111:11622

    CAS  Google Scholar 

  211. Zhang S, Gao J, Buchholz T, Wang Z, Salehpour M, Drezek R, Yu T-K (2009) Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: a Monte Carlo simulation study. Biomed Microdevices 11:925

    CAS  Google Scholar 

  212. Montenegro M, Nahar SN, Pradhan AK, Huang K, Yu Y (2009) Monte Carlo simulations and atomic calculations for Auger processes in biomedical nanotheranostics. J Phys Chem A 113:12364

    CAS  Google Scholar 

  213. Jones BL, Krishnan S, Cho SH (2010) Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations. Med Phys 37:3809

    CAS  Google Scholar 

  214. Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37:1896

    CAS  Google Scholar 

  215. Angelatos AS, Radt B, Caruso F (2005) Light-responsive polyelectrolyte/gold nanoparticle microcapsules. J Phys Chem B 109:3071

    CAS  Google Scholar 

  216. Skirtach AG, Muñoz Javier A, Kreft O, Köhler K, Piera Alberola A, Möhwald H, Parak WJ, Sukhorukov GB (2006) Laser-induced release of encapsulated materials inside living cells. Angew Chem Int Ed 45:4612

    CAS  Google Scholar 

  217. Vauthier C, Labarre D, Ponchel G (2007) Design aspects of poly(alkylcyanoacrylate) nanoparticles for drug delivery. J Drug Target 15:641

    CAS  Google Scholar 

  218. Sauer AM, Schlossbauer A, Ruthardt N, Cauda V, Bein T, Bräuchle C (2010) Role of endosomal escape for disulfide-based drug delivery from colloidal mesoporous silica evaluated by live-cell imaging. Nano Lett 10:3684

    CAS  Google Scholar 

  219. Schloßbauer A, Sauer AM, Cauda V, Schmidt A, Engelke H, Rothbauer U, Zolghadr K, Leonhardt H, Bräuchle C, Bein T (2012) Cascaded photoinduced drug delivery to cells from multifunctional core–shell mesoporous silica. Adv Healthcare Mater 1:316

    Google Scholar 

  220. Ruthardt N, Lamb DC, Bräuchle C (2011) Single-particle tracking as a quantitative microscopy-based approach to unravel cell entry mechanisms of viruses and pharmaceutical nanoparticles. Mol Ther 19:1199

    CAS  Google Scholar 

  221. Gaitzsch J, Appelhans D, Voit B (2012) Responsive polymersome. Nachr Chem 60:1176

    CAS  Google Scholar 

  222. Brinkhuis RP, Rutjes FPJT, van Hest JCM (2011) Polymeric vesicles in biomedical applications. Polym Chem 2:1449

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Simon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Broda, J., Schmid, G., Simon, U. (2013). Size- and Ligand-Specific Bioresponse of Gold Clusters and Nanoparticles: Challenges and Perspectives. In: Mingos, D. (eds) Gold Clusters, Colloids and Nanoparticles I. Structure and Bonding, vol 161. Springer, Cham. https://doi.org/10.1007/430_2013_127

Download citation

Publish with us

Policies and ethics