Skip to main content

Progress in the Synthesis and Characterization of Gold Nanoclusters

  • Chapter
  • First Online:
Gold Clusters, Colloids and Nanoparticles I

Part of the book series: Structure and Bonding ((STRUCTURE,volume 161))

Abstract

Quantum-sized, thiolate-protected gold nanoclusters (NCs) with atomic precision have attracted substantial research attention over the past decades due to their interesting optical, electronic properties and unusually high catalytic activities. However, despite the remarkable success has been made in the synthesis and characterization of gold nanoclusters, most synthetic approaches suffer from the production of a mixture of different cluster sizes and often a quite low yield of specific sized clusters. Therefore, the products have to be separated on the basis of various complicated processes. The difficulty in isolating and purifying nanoclusters has become a major obstacle to the practical applications of metal nanocluster materials. On the other hand, intensive studies have shown that the optical, electronic, and catalytic properties of gold nanoclusters are strongly dependent on the core size, composition, and structure. Thus, it is highly desirable to develop facile protocols that permit the synthesis, isolation, purification, and characterization of monodispersed, atomically precise gold nanoclusters with control over size in order to fully understand their size-dependent properties. This chapter describes the recent progress in the synthesis, characterization, and study of monodispersed gold nanoclusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mingos DMP, Slee T, Lin ZY (1990) Chem Rev 90:383

    Google Scholar 

  2. Briant CE, Theobald BRC, White JW, Bell LK, Mingos DMP (1981) J Chem Soc Chem Comm 201

    Google Scholar 

  3. Hall KP, Theobald BRC, Gilmour DI, Michael D, Mingos P, Welch AJ (1982) J Chem Soc Chem Comm 528

    Google Scholar 

  4. Vandervelden JWA, Bour JJ, Bosman WP, Noordik JH (1981) J Chem Soc Chem Comm 1218

    Google Scholar 

  5. Bartlett PA, Bauer B, Singer SJ (1978) J Am Chem Soc 100:5085

    Google Scholar 

  6. Bellon P, Sansoni M, Manasser M (1972) J Chem Soc Dalton 1481

    Google Scholar 

  7. Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301

    Article  CAS  Google Scholar 

  8. Valden M, Lai X, Goodman DW (1998) Science 281:1647

    Google Scholar 

  9. Fan HY, Yang K, Boye DM et al (2004) Science 304:567

    Google Scholar 

  10. Wang CS, Li JY, Amatore C, Chen Y, Jiang H, Wang XM (2011) Angew Chem Int Edit 50:11644

    Google Scholar 

  11. Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA (2006) Science 312:1027

    Google Scholar 

  12. Zheng J, Dickson RM (2002) J Am Chem Soc 124:13982

    Google Scholar 

  13. Chen SW, Ingram RS, Hostetler MJ et al (1998) Science 280:2098

    Google Scholar 

  14. Qian HF, Zhu MZ, Wu ZK, Jin RC (2012) Accounts Chem Res 45:1470

    Google Scholar 

  15. Jin RC (2010) Nanoscale 2:343

    Google Scholar 

  16. Lu YZ, Chen W (2012) Chem Soc Rev 41:3594

    Google Scholar 

  17. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) J Chem Soc Chem Comm 801

    Google Scholar 

  18. Brust M, Fink J, Bethell D, Schiffrin DJ, Kiely C (1995) J Chem Soc Chem Comm 1655

    Google Scholar 

  19. Zhu M, Lanni E, Garg N, Bier ME, Jin R (2008) J Am Chem Soc 130:1138

    Google Scholar 

  20. Wu Z, Suhan J, Jin RC (2009) J Mater Chem 19:622

    Google Scholar 

  21. Huang CC, Yang Z, Lee KH, Chang HT (2007) Angew Chem Int Edit 46:6824

    Google Scholar 

  22. Liu YL, Ai KL, Cheng XL, Huo LH, Lu LH (2010) Adv Funct Mater 20:951

    Google Scholar 

  23. Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R (2008) J Am Chem Soc 130:5883

    Google Scholar 

  24. Heaven MW, Dass A, White PS, Holt KM, Murray RW (2008) J Am Chem Soc 130:3754

    Google Scholar 

  25. Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Science 318:430

    Google Scholar 

  26. Qian HF, Jiang DE, Li G et al (2012) J Am Chem Soc 134:16159

    Google Scholar 

  27. Schaaff TG, Knight G, Shafigullin MN, Borkman RF, Whetten RL (1998) J Phys Chem B 102:10643

    Google Scholar 

  28. Wu ZW, Gayathri C, Gil RR, Jin RC (2009) J Am Chem Soc 131:6535

    Google Scholar 

  29. Whetten RL, Khoury JT, Alvarez MM et al (1996) Adv Mater 8:428

    Google Scholar 

  30. Murray RW (2008) Chem Rev 108:2688

    Google Scholar 

  31. Akola J, Walter M, Whetten RL, Hakkinen H, Gronbeck H (2008) J Am Chem Soc 130:3756

    Google Scholar 

  32. Jiang DE, Tiago ML, Luo WD, Dai S (2008) J Am Chem Soc 130:2777

    Google Scholar 

  33. Jiang DE, Luo W, Tiago ML, Dai S (2008) J Phys Chem C 112:13905

    Google Scholar 

  34. Lu YZ, Chen W (2012) J Power Sources 197:107

    Google Scholar 

  35. Wei WT, Lu YZ, Chen W, Chen SW (2011) J Am Chem Soc 133:2060

    Google Scholar 

  36. Ingram RS, Hostetler MJ, Murray RW et al (1997) J Am Chem Soc 119:9279

    Google Scholar 

  37. Chen W, Chen SW (2009) Angew Chem Int Edit 48:4386

    Google Scholar 

  38. Rao TUB, Pradeep T (2010) Angew Chem Int Edit 49:3925

    Google Scholar 

  39. Dass A, Holt K, Parker JF, Feldberg SW, Murray RW (2008) J Phys Chem C 112:20276

    Google Scholar 

  40. Yu Y, Luo ZT, Yu Y, Lee JY, Xie JP (2012) Acs Nano 6:7920

    Google Scholar 

  41. Salorinne K, Lahtinen T, Koivisto J et al (2013) Anal Chem 85:3489

    Article  CAS  Google Scholar 

  42. Tracy JB, Kalyuzhny G, Crowe MC, Balasubramanian R, Choi JP, Murray RW (2007) J Am Chem Soc 129:6706

    Google Scholar 

  43. Dass A, Stevenson A, Dubay GR, Tracy JB, Murray RW (2008) J Am Chem Soc 130:5940

    Google Scholar 

  44. Chaki NK, Negishi Y, Tsunoyama H, Shichibu Y, Tsukuda T (2008) J Am Chem Soc 130:8608

    Google Scholar 

  45. Arnold RJ, Reilly JP (1998) J Am Chem Soc 120:1528

    Google Scholar 

  46. Qian HF, Zhu Y, Jin RC (2010) J Am Chem Soc 132:4583

    Google Scholar 

  47. Qian HF, Ellen B, Zhu Y, Jin RC (2011) Acta Phys Chim Sin 27:513

    Google Scholar 

  48. Zhu Y, Qian HF, Drake BA, Jin RC (2010) Angew Chem Int Edit 49:1295

    Google Scholar 

  49. Qian HF, Eckenhoff WT, Zhu Y, Pintauer T, Jin RC (2010) J Am Chem Soc 132:8280

    Google Scholar 

  50. Zhang H, Huang X, Li L et al (2012) Chem Commun 48:567

    Article  CAS  Google Scholar 

  51. Zheng J, Petty JT, Dickson RM (2003) J Am Chem Soc 125:7780

    Google Scholar 

  52. Kamei Y, Shichibu Y, Konishi K (2011) Angew Chem Int Edit 50:7442

    Article  CAS  Google Scholar 

  53. Guo WW, Yuan JP, Wang EK (2012) Chem Commun 48:3076

    Google Scholar 

  54. Yang X, Shi MM, Zhou RJ, Chen XQ, Chen HZ (2011) Nanoscale 3:2596

    Google Scholar 

  55. Xie JP, Zheng YG, Ying JY (2009) J Am Chem Soc 131:888

    Google Scholar 

  56. Yu P, Wen XM, Toh YR, Tang J (2012) J Phys Chem C 116:6567

    Google Scholar 

  57. Hainfeld JF (1987) Science 236:450

    Google Scholar 

  58. Woehrle GH, Warner MG, Hutchison JE (2002) J Phys Chem B 106:9979

    Google Scholar 

  59. Yang YY, Chen SW (2003) Nano Lett 3:75

    Google Scholar 

  60. Copley RCB, Mingos DMP (1996) J Chem Soc Dalton 491

    Google Scholar 

  61. Shichibu Y, Konishi K (2010) Small 6:1216

    Article  CAS  Google Scholar 

  62. Shichibu Y, Suzuki K, Konishi K (2012) Nanoscale 4:4125

    Article  CAS  Google Scholar 

  63. Laupp M, Strahle J (1994) Angew Chem Int Edn English 33:207

    Article  Google Scholar 

  64. Li YY, Cheng H, Yao T et al (2012) J Am Chem Soc 134:17997

    Google Scholar 

  65. Shibu ES, Pradeep T (2011) Chem Mater 23:989

    Google Scholar 

  66. George A, Shibu ES, Maliyekkal SM, Bootharaju MS, Pradeep T (2012) Acs Appl Mater Inter 4:639

    Google Scholar 

  67. Shibu ES, Muhammed MAH, Tsukuda T, Pradeep T (2008) J Phys Chem C 112:12168

    Google Scholar 

  68. Negishi Y, Nobusada K, Tsukuda T (2005) J Am Chem Soc 127:5261

    Article  CAS  Google Scholar 

  69. Negishi Y, Takasugi Y, Sato S, Yao H, Kimura K, Tsukuda T (2006) J Phys Chem B 110:12218

    Article  CAS  Google Scholar 

  70. Shichibu Y, Negishi Y, Tsunoyama H, Kanehara M, Teranishi T, Tsukuda T (2007) Small 3:835

    Article  CAS  Google Scholar 

  71. Reilly SA, Krick T, Dass A (2010) J Phys Chem C 114:741

    Google Scholar 

  72. Tlahuice A, Garzon IL (2012) Phys Chem Chem Phys 14:3737

    Article  CAS  Google Scholar 

  73. Ghosh A, Udayabhaskararao T, Pradeep T (2012) J Phys Chem Lett 3:1997

    Article  CAS  Google Scholar 

  74. Xu Q, Wang SX, Liu Z, Xu GY, Meng XM, Zhu MZ (2013) Nanoscale 5:1176

    Google Scholar 

  75. Wu ZK, MacDonald MA, Chen J, Zhang P, Jin RC (2011) J Am Chem Soc 133:9670

    Google Scholar 

  76. Schmid G, Pfeil R, Boese R et al (1981) Chem Ber Recl 114:3634

    Article  CAS  Google Scholar 

  77. Weare WW, Reed SM, Warner MG, Hutchison JE (2000) J Am Chem Soc 122:12890

    Google Scholar 

  78. Zhang HF, Stender M, Zhang R, Wang CM, Li J, Wang LS (2004) J Phys Chem B 108:12259

    Google Scholar 

  79. Wan XK, Lin ZW, Wang QM (2012) J Am Chem Soc 134:14750

    Google Scholar 

  80. Zhu MZ, Qian HF, Jin RC (2009) J Am Chem Soc 131:7220

    Google Scholar 

  81. Pei Y, Gao Y, Shao N, Zeng XC (2009) J Am Chem Soc 131:13619

    Google Scholar 

  82. Das A, Li T, Nobusada K, Zeng Q, Rosi NL, Jin RC (2012) J Am Chem Soc 134:20286

    Google Scholar 

  83. Parker JF, Fields-Zinna CA, Murray RW (2010) Accounts Chem Res 43: 1289

    Google Scholar 

  84. Donkers RL, Lee D, Murray RW (2004) Langmuir 20:1945

    Google Scholar 

  85. Negishi Y, Takasugi Y, Sato S, Yao H, Kimura K, Tsukuda T (2004) J Am Chem Soc 126:6518

    Article  CAS  Google Scholar 

  86. Dharmaratne AC, Krick T, Dass A (2009) J Am Chem Soc 131:13604

    Google Scholar 

  87. Shichibu Y, Negishi Y, Tsukuda T, Teranishi T (2005) J Am Chem Soc 127:13464

    Article  CAS  Google Scholar 

  88. Xie SH, Tsunoyama H, Kurashige W, Negishi Y, Tsukuda T (2012) Acs Catal 2:1519

    Google Scholar 

  89. Negishi Y, Chaki NK, Y Shichibu, RL Whetten, T Tsukuda (2007) J Am Chem Soc 129:11322

    Google Scholar 

  90. Parker JF, Weaver JEF, McCallum F, Fields-Zinna CA, Murray RW (2010) Langmuir 26:13650

    Google Scholar 

  91. Yuan X, Yu Y, Yao QF, Zhang QB, Xie JP (2012) J Phys Chem Lett 3:2310

    Google Scholar 

  92. Nimmala PR, Dass A (2011) J Am Chem Soc 133:9175

    Google Scholar 

  93. Zeng CJ, Qian HF, Li T et al (2012) Angew Chem Int Edit 51:13114

    Google Scholar 

  94. Qian HF, Zhu Y, Jin RC (2009) Acs Nano 3:3795

    Google Scholar 

  95. Schaaff TG, Whetten RL (1999) J Phys Chem B 103:9394

    Google Scholar 

  96. Toikkanen O, Ruiz V, Ronholm G, Kalkkinen N, Liljeroth P, Quinn BM (2008) J Am Chem Soc 130:11049

    Google Scholar 

  97. Qian HF, Zhu MZ, Andersen UN, Jin RC (2009) J Phys Chem A 113:4281

    Google Scholar 

  98. Pei Y, Gao Y, Zeng XC (2008) J Am Chem Soc 130:7830

    Google Scholar 

  99. Malola S, Lehtovaara L, Knoppe S et al (2012) J Am Chem Soc 134:19560

    Article  CAS  Google Scholar 

  100. Balasubramanian R, Guo R, Mills AJ, Murray RW (2005) J Am Chem Soc 127:8126

    Google Scholar 

  101. Tsunoyama H, Negishi Y, Tsukuda T (2006) J Am Chem Soc 128:6036

    Article  CAS  Google Scholar 

  102. Crooks RM, Zhao MQ, Sun L, Chechik V, Yeung LK (2001) Accounts Chem Res 34:181

    Google Scholar 

  103. Garcia-Martinez JC, Crooks RM (2004) J Am Chem Soc 126:16170

    Google Scholar 

  104. Hicks JF, Miles DT, Murray RW (2002) J Am Chem Soc 124:13322

    Google Scholar 

  105. Qian HF, Jin RC (2009) Nano Lett 9:4083

    Google Scholar 

  106. Dass A (2009) J Am Chem Soc 131:11666

    Article  CAS  Google Scholar 

  107. Nimmala PR, Yoon B, Whetten RL, Landman U, Dass A (2013) J Phys Chem A 117:504

    Google Scholar 

  108. Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL (1997) J Phys Chem B 101:3706

    Google Scholar 

  109. Ackerson CJ, Jadzinsky PD, Kornberg RD (2005) J Am Chem Soc 127:6550

    Google Scholar 

  110. Levi-Kalisman Y, Jadzinsky PD, Kalisman N et al (2011) J Am Chem Soc 133:2976

    Google Scholar 

  111. Hulkko E, Lopez-Acevedo O, Koivisto J et al (2011) J Am Chem Soc 133:3752

    Article  CAS  Google Scholar 

  112. Heinecke CL, Ni TW, Malola S et al (2012) J Am Chem Soc 134:13316

    Google Scholar 

  113. Schaaff TG, Shafigullin MN, Khoury JT et al (1997) J Phys Chem B 101:7885

    Google Scholar 

  114. Qian HF, Jin RC (2011) Chem Mater 23:2209

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21275136, 21043013) and the Natural Science Foundation of Jilin province, China (No. 201215090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lu, Y., Chen, W. (2013). Progress in the Synthesis and Characterization of Gold Nanoclusters. In: Mingos, D. (eds) Gold Clusters, Colloids and Nanoparticles I. Structure and Bonding, vol 161. Springer, Cham. https://doi.org/10.1007/430_2013_126

Download citation

Publish with us

Policies and ethics