Metal-Organic Frameworks for Photochemical Reactions

  • Raghavender Medishetty
  • Jagadese J. VittalEmail author
Part of the Structure and Bonding book series (STRUCTURE, volume 157)


In this chapter, various photochemical reactions involving coordination polymers and metal-organic frameworks have been described. These include structural transformations, post-synthetic modification of surfaces to create reactive sites, radicals which are not possible by convention synthetic routes, polymerization on the surfaces, and cistrans isomerization of the guest molecules in the cavities using the dynamic behavior of the structures. Further, a few examples have been provided where [2+2] cycloaddition reaction has been used as a tool to monitor the changes in the solid-state structures in the absence of crystal structures. The structures of the resultant products of a number of polymerization reactions such as alkenoates were hampered due to the lack of suitable structural tool other than single crystal X-ray crystallography. On the other hand, most of the examples discussed in this chapter do maintain the single crystals at the end of the reactions making them amenable for structural elucidation to understand the reactivity completely.


2+2 cycloaddition Coordination polymers (CPs) Crystal engineering Cyclobutane derivatives Ladder structures MOFs Photo-reactivity Solid-state reactions Structural transformation 



We thank the National University of Singapore for their continuous support. The Ministry of Education, Singapore, is gratefully thanked for financial support through NUS FRC Grant R-143-000-439-112. We also thank the Nature Publications for providing the copyright permissions for Figs. 25 and 31.


  1. 1.
    Ramamurthy V, Venkatesan K (1987) Photochemical reactions of organic crystals. Chem Rev 87(2):433–481CrossRefGoogle Scholar
  2. 2.
    Theocharis CR, Jones W (1987) Organic solid state chemistry. In: Desiraju GR (ed) Organic solid state chemistry. Elsevier, Amsterdam, pp 47–68Google Scholar
  3. 3.
    Green BS, Lahav M, Rabinovich D (1979) Asymmetric synthesis via reactions in chiral crystals. Acc Chem Res 12(6):191–197CrossRefGoogle Scholar
  4. 4.
    Jones W (ed) (1997) Organic molecular solids: properties and applications. CRC, Boca RatonGoogle Scholar
  5. 5.
    Toda F (ed) (2005) Organic solid state reactions. Topics in current chemistry, vol 254. Springer, BerlinGoogle Scholar
  6. 6.
    Keating AE, Garcia-Garibay MA (1998) Organic and inorganic photochemistry. In: Ramamurthy V, Schanze KS (eds) Organic and inorganic photochemistry. Marcel Dekker, New York, pp 195–248Google Scholar
  7. 7.
    Tanaka K, Toda F (2000) Solvent-free organic synthesis. Chem Rev 100(3):1025–1074CrossRefGoogle Scholar
  8. 8.
    Toda F (1995) Solid state organic chemistry: Efficient reactions, remarkable yields, and stereoselectivity. Acc Chem Res 28(12):480–486CrossRefGoogle Scholar
  9. 9.
    Lee-Ruff E, Mladenova G (2003) Enantiomerically pure cyclobutane derivatives and their use in organic synthesis. Chem Rev 103(4):1449–1484CrossRefGoogle Scholar
  10. 10.
    Namyslo JC, Kaufmann DE (2003) The application of cyclobutane derivatives in organic synthesis. Chem Rev 103(4):1485–1538CrossRefGoogle Scholar
  11. 11.
    Nishimura J, Nakamura Y, Hayashida Y, Kudo T (2000) Stereocontrol in cyclophane synthesis: a photochemical method to overlap aromatic rings. Acc Chem Res 33(10):679–686CrossRefGoogle Scholar
  12. 12.
    Cohen MD, Schmidt GMJ, Sonntag FI (1964) Topochemistry. Part II. The photochemistry of trans-cinnamic acids. J Chem Soc 384:2000–2013CrossRefGoogle Scholar
  13. 13.
    Schimdt GMJ (1971) Photodimerization in the solid state. Pure Appl Chem 27:647–678CrossRefGoogle Scholar
  14. 14.
    Desiraju GR, Vittal JJ, Ramanan A (eds) (2011) Crystal engineering. World Scientific, SingaporeGoogle Scholar
  15. 15.
    Kole GK, Vittal JJ (2013) Solid-state reactivity and structural transformations involving coordination polymers. Chem Soc Rev 42(4):1755–1775CrossRefGoogle Scholar
  16. 16.
    MacGillivray LR, Papaefstathiou GS, Friščić T, Hamilton TD, Bučar D-K, Chu Q, Varshney DB, Georgiev IG (2008) Supramolecular control of reactivity in the solid state: from templates to ladderanes to metal – organic frameworks. Acc Chem Res 41(2):280–291CrossRefGoogle Scholar
  17. 17.
    Biradha K, Santra R (2013) Crystal engineering of topochemical solid state reactions. Chem Soc Rev 42(3):950–967CrossRefGoogle Scholar
  18. 18.
    Nagarathinam M, Peedikakkal AMP, Vittal JJ (2008) Stacking of double bonds for photochemical [2+2] cycloaddition reactions in the solid state. Chem Commun 42:5277–5288CrossRefGoogle Scholar
  19. 19.
    Nagarathinam M, Vittal JJ (2006) A rational approach to crosslinking of coordination polymers using the photochemical [2+2] cycloaddition reaction. Macromol Rapid Commun 27(14):1091–1099CrossRefGoogle Scholar
  20. 20.
    Vittal JJ (2007) Supramolecular structural transformations involving coordination polymers in the solid state. Coord Chem Rev 251(13–14):1781–1795 (special issue)CrossRefGoogle Scholar
  21. 21.
    Praetorius P (1909) Thesis, HalleGoogle Scholar
  22. 22.
    Praetorius P, Korn F (1910) Ber Dtsch Chem Ges 43:2744CrossRefGoogle Scholar
  23. 23.
    Stobbe H, Färber E (1925) Ber Dtsch Chem Ges 58:1548CrossRefGoogle Scholar
  24. 24.
    Alcock NW, de Meester P, Kemp TJ (1979) Solid-state photochemistry. Part 1. Nature of the stereocontrol in the photodimerisation of dibenzylideneacetone by UO22+ ion: Crystal and molecular structure of trans-dichlorobis(trans, trans-dibenzylideneacetone)dioxouranium(VI) and of its acetic acid solvate. J Chem Soc Perkin Trans 2(7):921–926CrossRefGoogle Scholar
  25. 25.
    Theocharis CR (1987) Co-ordination polymers based on 2,5-dibenzylidenecyclopentanone, which are photochemically cross-linkable. J Chem Soc Chem Commun 0(2):80–81CrossRefGoogle Scholar
  26. 26.
    Chu Q, Swenson DC, MacGillivray LR (2005) A single-crystal-to-single-crystal transformation mediated by argentophilic forces converts a finite metal complex into an infinite coordination network. Angew Chem Int Ed 44(23):3569–3572CrossRefGoogle Scholar
  27. 27.
    Harada J, Ogawa K (2001) Invisible but common motion in organic crystals: A pedal motion in stilbenes and azobenzenes. J Am Chem Soc 123(44):10884–10888CrossRefGoogle Scholar
  28. 28.
    Dutta S, Bucar D-K, Elacqua E, MacGillivray LR (2013) Single-crystal-to-single-crystal direct cross-linking and photopolymerisation of a discrete Ag(I) complex to give a 1D polycyclobutane coordination polymer. Chem Commun 49(11):1064–1066CrossRefGoogle Scholar
  29. 29.
    Peedikakkal AMP, Koh LL, Vittal JJ (2008) Photodimerization of a 1D hydrogen-bonded zwitter-ionic lead(ii) complex and its isomerization in solution. Chem Commun 4:441–443CrossRefGoogle Scholar
  30. 30.
    Paul AK, Karthik R, Natarajan S (2011) Synthesis, structure, photochemical [2+2] cycloaddition, transformation, and photocatalytic studies in a family of inorganic–organic hybrid cadmium thiosulfate compounds. Cryst Growth Des 11(12):5741–5749CrossRefGoogle Scholar
  31. 31.
    Peedikakkal AMP, Vittal JJ (2008) Solid-state photochemical [2+2] cycloaddition in a hydrogen-bonded metal complex containing several parallel and crisscross C═C bonds. Chem Eur J 14(17):5329–5334CrossRefGoogle Scholar
  32. 32.
    Toh NL, Nagarathinam M, Vittal JJ (2005) Topochemical photodimerization in the coordination polymer [{(CF3CO2)(μ-O2CCH3)Zn}2(μ-bpe)2]n through single-crystal to single-crystal transformation. Angew Chem Int Ed 44(15):2237–2241CrossRefGoogle Scholar
  33. 33.
    Nagarathinam M, Vittal JJ (2010) Solid-state synthesis of coordination polymers for [2+2] photoreactions by grinding. Aust J Chem 63(4):589–595CrossRefGoogle Scholar
  34. 34.
    Kole GK, Peedikakkal AMP, Toh BMF, Vittal JJ (2013) Solid-state structural transformations and photoreactivity of 1D-ladder coordination polymers of PbII. Chem Eur J 19(12):3962–3968CrossRefGoogle Scholar
  35. 35.
    Liu D, Li N-Y, Lang J-P (2011) Single-crystal to single-crystal transformation of 1D coordination polymer via photochemical [2+2] cycloaddition reaction. Dalton Trans 40(10):2170–2172CrossRefGoogle Scholar
  36. 36.
    Papaefstathiou GS, Zhong Z, Geng L, MacGillivray LR (2004) Coordination-driven self-assembly directs a single-crystal-to-single-crystal transformation that exhibits photocontrolled fluorescence. J Am Chem Soc 126(30):9158–9159CrossRefGoogle Scholar
  37. 37.
    Papaefstathiou GS, Georgiev IG, Friscic T, MacGillivray LR (2005) Directed assembly and reactivity of olefins within a one-dimensional ladder-like coordination polymer based on a dinuclear Zn(ii) platform. Chem Commun 31:3974–3976CrossRefGoogle Scholar
  38. 38.
    Ou Y-C, Liu W-T, Li J-Y, Zhang G-G, Wang J, Tong M-L (2011) Solvochromic and photodimerization behaviour of 1D coordination polymer via single-crystal-to-single-crystal transformation. Chem Commun 47(33):9384–9386CrossRefGoogle Scholar
  39. 39.
    Santra R, Banerjee K, Biradha K (2011) Weak AgAg and Ag[small pi] interactions in templating regioselective single and double [2+2] reactions of N, N[prime or minute]-bis(3-(4-pyridyl)acryloyl)-hydrazine: Synthesis of an unprecedented tricyclohexadecane ring system. Chem Commun 47(38):10740–10742CrossRefGoogle Scholar
  40. 40.
    Eubank JF, Kravtsov VC, Eddaoudi M (2007) Synthesis of organic photodimeric cage molecules based on cycloaddition via metal–ligand directed assembly. J Am Chem Soc 129(18):5820–5821CrossRefGoogle Scholar
  41. 41.
    Liu D, Lang J-P, Abrahams BF (2013) Stepwise ligand transformations through [2+2] photodimerization and hydrothermal in situ oxidation reactions. Chem Commun 49(26):2682–2684CrossRefGoogle Scholar
  42. 42.
    Peedikakkal AMP, Vittal JJ (2010) Solid-state photochemical behavior of a triple-stranded ladder coordination polymer. Inorg Chem 49(1):10–12CrossRefGoogle Scholar
  43. 43.
    Nagarathinam M, Vittal JJ (2006) Anisotropic movements of coordination polymers upon desolvation: solid-state transformation of a linear 1D coordination polymer to a ladderlike structure. Angew Chem Int Ed 45(26):4337–4341CrossRefGoogle Scholar
  44. 44.
    Nagarathinam M, Vittal JJ (2008) Photochemical [2+2] cycloaddition as a tool to study a solid-state structural transformation. Chem Commun 4:438–440CrossRefGoogle Scholar
  45. 45.
    Ou YC, Zhi DS, Liu WT, Ni ZP, Tong ML (2012) Single‐crystal‐to‐single‐crystal transformation from 1D staggered‐sculls chains to 3D NbO‐type metal‐organic framework through [2+2] photodimerization. Chem Eur J 18(24):7357–7361CrossRefGoogle Scholar
  46. 46.
    Michaelides A, Skoulika S, Siskos MG (2004) Assembly of a photoreactive coordination polymer containing rectangular grids. Chem Commun 21:2418–2419CrossRefGoogle Scholar
  47. 47.
    Miao X-H, Zhu L-G (2010) Regiocontrolled [2+2] photodimerization of Cd(II) metal complexes in both solution and solid state. Dalton Trans 39(6):1457–1459CrossRefGoogle Scholar
  48. 48.
    Chanthapally A, Kole GK, Qian K, Tan GK, Gao S, Vittal JJ (2012) Thermal cleavage of cyclobutane rings in photodimerized coordination-polymeric sheets. Chem Eur J 18(25):7869–7877CrossRefGoogle Scholar
  49. 49.
    Sato H, Matsuda R, Mir MH, Kitagawa S (2012) Photochemical cycloaddition on the pore surface of a porous coordination polymer impacts the sorption behavior. Chem Commun 48(64):7919–7921CrossRefGoogle Scholar
  50. 50.
    Xie M-H, Yang X-L, Wu C-D (2011) From 2D to 3D: a single-crystal-to-single-crystal photochemical framework transformation and phenylmethanol oxidation catalytic activity. Chem Eur J 17(41):11424–11427CrossRefGoogle Scholar
  51. 51.
    Medishetty R, Koh LL, Kole GK, Vittal JJ (2011) Solid-state structural transformations from 2D interdigitated layers to 3D interpenetrated structures. Angew Chem Int Ed 50(46):10949–10952CrossRefGoogle Scholar
  52. 52.
    Sato H, Matsuda R, Sugimoto K, Takata M, Kitagawa S (2010) Photoactivation of a nanoporous crystal for on-demand guest trapping and conversion. Nat Mater 9(8):661–666CrossRefGoogle Scholar
  53. 53.
    Mir MH, Koh LL, Tan GK, Vittal JJ (2010) Single-crystal to single-crystal photochemical structural transformations of interpenetrated 3D coordination polymers by [2+2] cycloaddition Reactions13. Angew Chem Int Ed 49(2):390–393CrossRefGoogle Scholar
  54. 54.
    Michaelides A, Skoulika S, Siskos MG (2008) Designed self-assembly of a reactive metal-organic framework with quasi [small alpha]-Po topology. CrystEngComm 10(7):817–820CrossRefGoogle Scholar
  55. 55.
    Liu D, Ren Z-G, Li H-X, Lang J-P, Li N-Y, Abrahams BF (2010) Single-crystal-to-single-crystal transformations of two three-dimensional coordination polymers through regioselective [2+2] photodimerization reactions. Angew Chem Int Ed 49(28):4767–4770CrossRefGoogle Scholar
  56. 56.
    Wang X-Y, Wang Z-M, Gao S (2007) A pillared layer MOF with anion-tunable magnetic properties and photochemical [2+2] cycloaddition. Chem Commun 11:1127–1129CrossRefGoogle Scholar
  57. 57.
    Distefano G, Suzuki H, Tsujimoto M, Isoda S, Bracco S, Comotti A, Sozzani P, Uemura T, Kitagawa S (2013) Highly ordered alignment of a vinyl polymer by host–guest cross-polymerization. Nat Chem 5(4):335–341CrossRefGoogle Scholar
  58. 58.
    Beharry AA, Woolley GA (2011) Azobenzene photoswitches for biomolecules. Chem Soc Rev 40(8):4422–4437CrossRefGoogle Scholar
  59. 59.
    Kumar GS, Neckers DC (1989) Photochemistry of azobenzene-containing polymers. Chem Rev 89(8):1915–1925CrossRefGoogle Scholar
  60. 60.
    Yanai N, Uemura T, Inoue M, Matsuda R, Fukushima T, Tsujimoto M, Isoda S, Kitagawa S (2012) Guest-to-host transmission of structural changes for stimuli-responsive adsorption property. J Am Chem Soc 134(10):4501–4504CrossRefGoogle Scholar
  61. 61.
    Michaelides A, Skoulika S, Siskos MG (2011) Photoreactive 3D microporous lanthanide MOFs: formation of a strained ladderane in a partial single crystal-to-single crystal manner. Chem Commun 47(25):7140–7142CrossRefGoogle Scholar
  62. 62.
    Michaelides A, Skoulika S, Siskos MG (2013) 2D And 3D photoreactive lanthanide MOFs of trans, trans-muconic acid. Chem Commun 49(10):1008–1010CrossRefGoogle Scholar
  63. 63.
    Schmidt GMJ (1971) Pure Appl Chem 27:647–678CrossRefGoogle Scholar
  64. 64.
    Vela MJ, Snider BB, Foxman BM (1998) Solid-state polymerization of aquabis(3-butenoato)calcium. Chem Mater 10(10):3167–3171CrossRefGoogle Scholar
  65. 65.
    Inoki M, Akutsu F, Kitayama Y, Kasashima Y, Naruchi K (1998) Thermal polymerizations of alkali and alkaline earth 4-vinylbenzoates in bulk. Macromol Chem Phys 199(4):619–623CrossRefGoogle Scholar
  66. 66.
    Kudoh M, Akutsu F, Nakaishi E, Kobayashi T, Naruchi K, Miura M (1994) Thermal polymerization of alkali and zinc methacrylates in the solid state. Macromol Rapid Commun 15(3):239–242CrossRefGoogle Scholar
  67. 67.
    Bowden MJ, O'Donnell JH, Sothman RD (1969) Radiation induced solid state polymerization of derivatives of methacrylic acid. VI. Polymerization of barium methacrylate dihydrate during irradiation. Macromol Chem Phys 122(1):186–195CrossRefGoogle Scholar
  68. 68.
    O'Donnell JH, Sothman RD (1968) Radiation-induced, solid-state polymerization of derivatives of methacrylic acid. I. Postirradiation polymerization of zinc methacrylate. J Polym Sci Part A Polym Chem 6(5):1073–1086CrossRefGoogle Scholar
  69. 69.
    Costaschuk FM, Gilson DFR, St. Pierre LE (1971) The solid-state polymerization of hydrated barium methacrylate. Macromolecules 4(1):16–19CrossRefGoogle Scholar
  70. 70.
    Costaschuk FM, Gilson DFR, St. Pierre LE (1970) Solid-state polymerization of hydrated calcium acrylate. Macromolecules 3(4):393–397CrossRefGoogle Scholar
  71. 71.
    Alcock NW, de Meester P, Kemp TJ (1979) Solid-state photochemistry. Part 1. Nature of the stereocontrol in the photodimerisation of dibenzylideneacetone by UO22+ ion: Crystal and molecular structure of trans-dichlorobis(trans, trans-dibenzylideneacetone)dioxouranium(VI) and of its acetic acid solvate. J Chem Soc Perkin Trans 2 0(7):921–926CrossRefGoogle Scholar
  72. 72.
    Vela MJ, Buchholz V, Enkelmann V, Snider BB, Foxman BM (2000) Solid-state polymerization of bis(but-3-enoato)zinc: The generation of a stereoregular oligomer. Chem Commun 0(22):2225–2226CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of ChemistryNational University of SingaporeSingaporeSingapore

Personalised recommendations