• Guido KickelbickEmail author
Part of the Structure and Bonding book series (STRUCTURE, volume 155)


The diversity of structures of silsesquioxanes with the general composition (RSiO1.5) n is great and involves amorphous compounds, ladder structures, open cages, and polyhedral oligomeric silsesquioxane (POSS) molecules. The obtained structure morphology depends strongly on the applied reaction conditions. The enormous amount of potential substitution patterns combined with the chemical and thermal robust silicon oxide core makes silsesquioxanes ideal materials for a variety of applications. This review covers the structures and synthetic approaches of this type of compounds as well as their properties and potential applications. It focuses on results obtained in the last decade.


Functional materials POSS Silicon oxide Silsesquioxanes 



Brunauer–Emmett–Teller method for surface area analysis


Isotactic polypropylene








Organic light-emitting diode










Polyhedral oligomeric silsesquioxanes




Stepwise coupling polymerization


Tetrabutylammonium fluoride


Tetraethylorthosilicate (or tetraethoxysilane)




  1. 1.
    Scott DW (1946) Thermal rearrangement of branched-chain methylpolysiloxanes. J Am Chem Soc 68:356–358CrossRefGoogle Scholar
  2. 2.
    Barry AJ, Daudt WH, Domicone JJ, Gilkey JW (1955) Crystalline organosilsesquioxanes. J Am Chem Soc 77(16):4248–4252. doi: 10.1021/Ja01621a025 Google Scholar
  3. 3.
    Mikhail G, Voronkov V (1982) Polyhedral oligosilsesquioxanes and their homo derivatives. Top Curr Chem 102:199–236Google Scholar
  4. 4.
    Bassindale AR, Chen HP, Liu ZH, MacKinnon LA, Parker DJ, Taylor PG, Yang YX, Light ME, Horton PN, Hursthouse MB (2004) A higher yielding route to octasilsesquioxane cages using tetrabutylammonium fluoride, part 2: further synthetic advances, mechanistic investigations and X-ray crystal structure studies into the factors that determine cage geometry in the solid state. J Organomet Chem 689(21):3287–3300. doi: 10.1016/j.jorganchem.2004.06.063 CrossRefGoogle Scholar
  5. 5.
    Bassindale AR, Liu Z, MacKinnon IA, Taylor PG, Yang Y, Light ME, Horton PN, Hursthouse MB (2003) A higher yielding route for T8 silsesquioxane cages and X-ray crystal structures of some novel spherosilicates. Dalton Trans (14):2945. doi: 10.1039/b302950f
  6. 6.
    Bassindale AR, Parker DJ, Pourny M, Taylor PG, Horton PN, Hursthouse MB (2004) Fluoride ion entrapment in octasilsesquioxane cages as models for ion entrapment in zeolites. Further examples, X-ray crystal structure studies, and investigations into how and why they may be formed. Organometallics 23(19):4400–4405. doi: 10.1021/Om049928g CrossRefGoogle Scholar
  7. 7.
    Bassindale AR, Pourny M, Taylor PG, Hursthouse MB, Light ME (2003) Fluoride-ion encapsulation within a silsesquioxane cage. Angew Chem Int Ed 42(30):3488–3490. doi: 10.1002/anie.200351249 CrossRefGoogle Scholar
  8. 8.
    Anderson SE, Bodzin DJ, Haddad TS, Boatz JA, Mabry JM, Mitchell C, Bowers MT (2008) Structural investigation of encapsulated fluoride in polyhedral oligomeric silsesquioxane cages using ion mobility mass spectrometry and molecular mechanics. Chem Mater 20(13):4299–4309. doi: 10.1021/cm800058z CrossRefGoogle Scholar
  9. 9.
    Carroll JB, Frankamp BL, Rotello VM (2002) Self-assembly of gold nanoparticles through tandem hydrogen bonding and polyoligosilsesquioxane (POSS)-POSS recognition processes. Chem Commun (Cambridge) (17):1892–1893. doi: 10.1039/b203771h
  10. 10.
    Carroll JB, Frankamp BL, Srivastava S, Rotello VM (2004) Electrostatic self-assembly of structured gold nanoparticle/polyhedral oligomeric silsesquioxane (POSS) nanocomposites. J Mater Chem 14(4):690–694. doi: 10.1039/b311423f CrossRefGoogle Scholar
  11. 11.
    Feher FJ, Budzichowski TA, Blanski RL, Weller KJ, Ziller JW (1991) Facile syntheses of new incompletely condensed polyhedral oligosilsesquioxanes: [(c-C5H9)7Si7O9(OH)3], [(c-C7H13)7Si7O9(OH)3], and [(c-C7H13)6Si6O7(OH)4]. Organometallics 10(7):2526–2528CrossRefGoogle Scholar
  12. 12.
    Feher FJ, Newman DA, Walzer JF (1989) Silsesquioxanes as models for silica surfaces. J Am Chem Soc 111(5):1741–1748. doi: 10.1021/Ja00187a028 Google Scholar
  13. 13.
    Lichtenhan JD (1995) Polyhedral oligomeric silsesquioxanes – building-blocks for silsesquioxane-based polymers and hybrid materials. Comments Inorg Chem 17(2):115–130. doi: 10.1080/02603599508035785
  14. 14.
    Carniato F, Boccaleri E, Marchese L (2008) A versatile route to bifunctionalized silsesquioxane (POSS): synthesis and characterisation of Ti-containing aminopropylisobutyl-POSS. Dalton Trans 1:36–39. doi: 10.1039/b715664m CrossRefGoogle Scholar
  15. 15.
    Carniato F, Fina A, Tabuani D, Boccaleri E (2008) Polypropylene containing Ti- and Al-polyhedral oligomeric silsesquioxanes: crystallization process and thermal properties. Nanotechnology 19(47):475701/475701–475701/475709. doi: 10.1088/0957-4484/19/47/475701
  16. 16.
    Lee A, Xiao J, Feher FJ (2005) New approach in the synthesis of hybrid polymers grafted with polyhedral oligomeric silsesquioxane and their physical and viscoelastic properties. Macromolecules 38(2):438–444. doi: 10.1021/ma047892y CrossRefGoogle Scholar
  17. 17.
    Ramirez SM, Diaz YJ, Campos R, Stone RL, Haddad TS, Mabry JM (2011) Incompletely condensed fluoroalkyl silsesquioxanes and derivatives: precursors for low surface energy materials. J Am Chem Soc 133(50):20084–20087. doi: 10.1021/ja208506v CrossRefGoogle Scholar
  18. 18.
    Agaskar PA (1991) New synthetic route to the hydridospherosiloxanes Oh-H8si8o12 and D5h-H10si10o15. Inorg Chem 30(13):2707–2708. doi: 10.1021/Ic00013a002 Google Scholar
  19. 19.
    Harrison PG, Hall C (1997) Preparation and characterization of octasilsesquioxane cage monomers. Main Group Met Chem 20(8):515–530. doi: 10.1515/MGMC.1997.20.8.515 CrossRefGoogle Scholar
  20. 20.
    Dare EO, Olatunji GA, Ogunniyi DS (2004) Organic-inorganic hybrid material. I. Synthesis, characterization, and thermal property of a novel polyhedral cubic silsesquioxane. J Appl Polym Sci 93(2):907–910. doi: 10.1002/app.20530 CrossRefGoogle Scholar
  21. 21.
    Jaffres P-A, Morris RE (1998) Synthesis of highly functionalized dendrimers based on polyhedral silsesquioxane cores. J Chem Soc Dalton Trans 16:2767–2770CrossRefGoogle Scholar
  22. 22.
    Shanmugam N, Lee K-T, Cheng W-Y, Lu S-Y (2012) Organic-inorganic hybrid polyaspartamide involving polyhedral oligomeric silsesquioxane via Michael addition for CO2 capture. J Polym Sci A Polym Chem 50(13):2521–2526. doi: 10.1002/pola.26047 Google Scholar
  23. 23.
    Brick CM, Ouchi Y, Chujo Y, Laine RM (2005) Robust polyaromatic octasilsesquioxanes from polybromophenylsilsesquioxanes, BrxOPS, via Suzuki coupling. Macromolecules 38(11):4661–4665. doi: 10.1021/Ma0501141 CrossRefGoogle Scholar
  24. 24.
    Brick CM, Tamaki R, Kim SG, Asuncion MZ, Roll M, Nemoto T, Ouchi Y, Chujo Y, Laine RA (2005) Spherical, polyfunctional molecules using poly(bromophenylsilsesquioxane)s as nanoconstruction sites. Macromolecules 38(11):4655–4660. doi: 10.1021/Ma473014 CrossRefGoogle Scholar
  25. 25.
    Wang Z, Leng S, Wang Z, Li G, Yu H (2011) Nanostructured organic-inorganic copolymer networks based on polymethacrylate-functionalized octaphenylsilsesquioxane and methyl methacrylate: synthesis and characterization. Macromolecules (Washington) 44(3):566–574. doi: 10.1021/ma102047m CrossRefGoogle Scholar
  26. 26.
    Wang Z, Yu H, Zhao L, Qu J (2012) Controlled network structure and its correlations with physical properties of polycarboxyl octaphenylsilsesquioxanes-based inorganic–organic polymer nanocomposites. RSC Adv 2(7):2759–2767. doi: 10.1039/c2ra00021k CrossRefGoogle Scholar
  27. 27.
    Brown JF, Vogt LH, Katchman A, Eustance JW, Kiser KM, Krantz KW (1960) Double chain polymers of phenylsilsesquioxane. J Am Chem Soc 82(23):6194–6195. doi: 10.1021/ja01508a054 CrossRefGoogle Scholar
  28. 28.
    Andrianov KA, Zhdanov AA, Levin VY (1978) Some physical-properties of organosilicon ladder polymers. Annu Rev Mater Sci 8:313–326. doi: 10.1146/ Google Scholar
  29. 29.
    Xie P, Zhang RB (1997) Functionalization and application of ladder-like polysilsesquioxanes. Polym Advan Technol 8(11):649–656. doi: 10.1002/(Sici)1099-1581(199711)8:11<649::Aid-Pat696>3.0.Co;2-H
  30. 30.
    Zhou QL, Yan SK, Han CC, Xie P, Zhang RB (2008) Promising functional materials based on ladder polysiloxanes. Adv Mater 20(15):2970–2976. doi: 10.1002/adma.200800580 Google Scholar
  31. 31.
    Duan Q, Zhang Y, Jiang J, Deng K, Zhang T, Xie P, Zhang R, Fu P (2004) Synthesis and characterization of ethoxy-terminated ladder-like polymethylsilsesquioxane oligomer. Polym Int 53(1):113–120. doi: 10.1002/pi.1415 CrossRefGoogle Scholar
  32. 32.
    Zhang RB, Dai DR, Cui L, Xu H, Liu CQ, Xie P (1999) A glance at the relation of stepwise coupling polymerization to supramolecular chemistry. Mat Sci Eng C-Bio S 10(1–2):13–18. doi: 10.1016/S0928-4931(99)00099-5 Google Scholar
  33. 33.
    Zhang Z-X, Hao J, Xie P, Zhang X, Han CC, Zhang R (2008) A well-defined ladder polyphenylsilsesquioxane (Ph-LPSQ) synthesized via a new three-step approach: monomer self-organization-lyophilization-surface-confined polycondensation. Chem Mater 20(4):1322–1330. doi: 10.1021/cm071602l CrossRefGoogle Scholar
  34. 34.
    Zhang X, Xie P, Shen Z, Jiang J, Zhu C, Li H, Zhang T, Han CC, Wan L, Yan S, Zhang R (2006) Confined synthesis of a cis-isotactic ladder polysilsesquioxane by using a π-stacking and H-bonding superstructure. Angew Chem Int Ed 45(19):3112–3116. doi: 10.1002/anie.200504474 CrossRefGoogle Scholar
  35. 35.
    Chen Z, Li Z, Guo H, Zhang J, Ren Z, Yan S, Xie P, Zhang R (2012) Supramolecular template-directed synthesis of soluble quadruple-chain ladder polyphenylsiloxane (Ph-QCLP) with high molecular weight. Chem Mater 24(10):1968–1973. doi: 10.1021/cm300951x CrossRefGoogle Scholar
  36. 36.
    Chang S, Matsumoto T, Matsumoto H, Unno M (2010) Synthesis and characterization of heptacyclic laddersiloxanes and ladder polysilsesquioxane. Appl Organomet Chem 24(3):241–246. doi: 10.1002/aoc.1607 CrossRefGoogle Scholar
  37. 37.
    Shea KJ, Loy DA (2001) Bridged polysilsesquioxanes. Molecular-engineered hybrid organic–inorganic materials. Chem Mater 13(10):3306–3319. doi: 10.1021/cm011074s CrossRefGoogle Scholar
  38. 38.
    Hu L-C, Shea KJ (2011) Organo–silica hybrid functional nanomaterials: how do organic bridging groups and silsesquioxane moieties work hand-in-hand? Chem Soc Rev 40(2):688–695. doi: 10.1039/c0cs00219d CrossRefGoogle Scholar
  39. 39.
    Hunks WJ, Ozin GA (2005) Challenges and advances in the chemistry of periodic mesoporous organosilicas (PMOs). J Mater Chem 15(35–36):3716–3724. doi: 10.1039/b504511h CrossRefGoogle Scholar
  40. 40.
    Blanc F, Chabanas M, Coperet C, Fenet B, Herdtweck E (2005) Reactivity differences between molecular and surface silanols in the preparation of homogeneous and heterogeneous olefin metathesis catalysts. J Organomet Chem 690(23):5014–5026. doi: 10.1016/j.jorganchem.2005.04.028 CrossRefGoogle Scholar
  41. 41.
    Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev (Washington) 110(4):2081–2173. doi: 10.1021/cr900201r CrossRefGoogle Scholar
  42. 42.
    Duan Y, Jana SC, Reinsel AM, Lama B, Espe MP (2012) Surface modification and reinforcement of silica aerogels using polyhedral oligomeric silsesquioxanes. Langmuir 28(43):15362–15371. doi: 10.1021/la302945b CrossRefGoogle Scholar
  43. 43.
    Mabry JM, Vij A, Iacono ST, Viers BD (2008) Fluorinated polyhedral oligomeric silsesquioxanes (F-POSS). Angew Chem Int Ed 47(22):4137–4140. doi: 10.1002/anie.200705355 Google Scholar
  44. 44.
    Wang H, Xue Y, Ding J, Feng L, Wang X, Lin T (2011) Durable, self-healing superhydrophobic and superoleophobic surfaces from fluorinated-decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane. Angew Chem Int Ed 50(48):11433–11436. doi: 10.1002/anie.201105069 Google Scholar
  45. 45.
    Daga VK, Anderson ER, Gido SP, Watkins JJ (2011) Hydrogen bond assisted assembly of well-ordered polyhedral oligomeric silsesquioxane-block copolymer composites. Macromolecules (Washington) 44(17):6793–6799. doi: 10.1021/ma200926n CrossRefGoogle Scholar
  46. 46.
    Zhang L, Abbenhuis HCL, Yang Q, Wang Y-M, Magusin PCMM, Mezari B, van SRA, Li C (2007) Mesoporous organic–inorganic hybrid materials built using polyhedral oligomeric silsesquioxane blocks. Angew Chem Int Ed 46(26):5003–5006. doi: 10.1002/anie.200700640
  47. 47.
    Peng Y, Ben T, Xu J, Xue M, Jing X, Deng F, Qiu S, Zhu G (2011) A covalently-linked microporous organic-inorganic hybrid framework containing polyhedral oligomeric silsesquioxane moieties. Dalton Trans 40(12):2720–2724. doi: 10.1039/c0dt01268h CrossRefGoogle Scholar
  48. 48.
    Dong F, Ha C-S (2012) Multifunctional materials based on polysilsesquioxanes. Macromol Res 20(4):335–343. doi: 10.1007/s13233-012-0151-x CrossRefGoogle Scholar
  49. 49.
    Fina A, Monticelli O, Camino G (2010) POSS-based hybrids by melt/reactive blending. J Mater Chem 20(42):9297–9305. doi: 10.1039/c0jm00480d CrossRefGoogle Scholar
  50. 50.
    Bruce X, Fu MYG, Hsiao BS, Phillips S, Viers B, Blanski R, Ruth P (2003) Physical gelation in ethylene – propylene copolymer melts induced by polyhedral oligomeric silsesquioxane (POSS) molecules. Polymer 44(5):1499–1506CrossRefGoogle Scholar
  51. 51.
    Baldi F, Bignotti F, Fina A, Tabuani D, Ricco T (2007) Mechanical characterization of polyhedral oligomeric silsesquioxane/polypropylene blends. J Appl Polym Sci 105(2):935–943. doi: 10.1002/app.26142 CrossRefGoogle Scholar
  52. 52.
    Chyi-Ming Leu Y-TC, Wei K-H (2003) Polyimide-side-chain tethered polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric film applications. Chem Mater 15(19):3721–3727CrossRefGoogle Scholar
  53. 53.
    Carroll JB, Waddon AJ, Nakade H, Rotello VM (2003) “Plug and Play” polymers. Thermal and X-ray characterizations of noncovalently grafted polyhedral oligomeric silsesquioxane (POSS) – polystyrene nanocomposites. Macromolecules 36(17):6289–6291CrossRefGoogle Scholar
  54. 54.
    Leu C-M, Reddy GM, Wei K-H, Shu C-F (2003) Synthesis and dielectric properties of polyimide-chain-end tethered polyhedral oligomeric silsesquioxane nanocomposites. Chem Mater 15(11):2261–2265. doi: 10.1021/cm0208408 CrossRefGoogle Scholar
  55. 55.
    Haddad TS, Lichtenhan JD (1996) Hybrid organic–inorganic thermoplastics: Styryl-based polyhedral oligomeric silsesquioxane polymers. Macromolecules 29(22):7302–7304. doi: 10.1021/Ma960609d Google Scholar
  56. 56.
    Kim KM, Keum DK, Chujo Y (2003) Organic–inorganic polymer hybrids using polyoxazoline initiated by functionalized silsesquioxane. Macromolecules 36(3):867–875. doi: 10.1021/Ma.021303b Google Scholar
  57. 57.
    Lichtenhan JD, Otonari YA, Carr MJ (1995) Linear hybrid polymer building-blocks – methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers and polymers. Macromolecules 28(24):8435–8437. doi: 10.1021/Ma00128a067 Google Scholar
  58. 58.
    Naka K, Itoh H, Chujo Y (2002) Self-organization of spherical aggregates of palladium nanoparticles with a cubic silsesquioxane. Nano Lett 2(11):1183–1186. doi: 10.1021/Nl025713p Google Scholar
  59. 59.
    Wright ME, Schorzman DA, Feher FJ, Jin R-Z (2003) Synthesis and thermal curing of aryl-ethynyl-terminatedcoPOSS imide oligomers: new inorganic/organic hybrid resins. Chem Mater 15(1):264–268. doi: 10.1021/cm020238h CrossRefGoogle Scholar
  60. 60.
    Xu H, Kuo S-W, Lee J-S, Chang F-C (2002) Preparations, thermal properties, and Tg increase mechanism of inorganic/organic hybrid polymers based on polyhedral oligomeric silsesquioxanes. Macromolecules 35(23):8788–8793. doi: 10.1021/ma0202843 CrossRefGoogle Scholar
  61. 61.
    Xu H, Kuo S-W, Lee J-S, Chang F-C (2002) Glass transition temperatures of poly(hydroxystyrene-co-vinylpyrrolidone-co-isobutylstyryl polyhedral oligosilsesquioxanes). Polymer 43(19):5117–5124. doi: 10.1016/s0032-3861(02)00402-0 CrossRefGoogle Scholar
  62. 62.
    Phillips SH, Haddad TS, Tomczak SJ (2004) Developments in nanoscience: polyhedral oligomeric silsesquioxane (POSS)-polymers. Curr Opin Solid State Mater Sci 8(1):21–29. doi: 10.1016/j.cossms.2004.03.002 CrossRefGoogle Scholar
  63. 63.
    Brus J, Urbanova M, Strachota A (2008) Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes: structure and segmental dynamics as studied by solid-state NMR. Macromolecules (Washington) 41(2):372–386. doi: 10.1021/ma702140g CrossRefGoogle Scholar
  64. 64.
    Mather PT, Jeon HG, Romo-Uribe A, Haddad TS, Lichtenhan JD (1999) Mechanical relaxation and microstructure of poly(norbornyl-POSS) copolymers. Macromolecules 32(4):1194–1203. doi: 10.1021/Ma981210n Google Scholar
  65. 65.
    Kopesky ET, Haddad TS, Cohen RE, McKinley GH (2004) Thermomechanical properties of poly(methyl methacrylate)s containing tethered and untethered polyhedral oligomeric silsesquioxanes. Macromolecules 37(24):8992–9004. doi: 10.1021/ma048934l CrossRefGoogle Scholar
  66. 66.
    Soong SY, Cohen RE, Boyce MC (2007) Polyhedral oligomeric silsesquioxane as a novel plasticizer for poly(vinyl chloride). Polymer 48(5):1410–1418. doi: 10.1016/j.polymer.2007.01.021 CrossRefGoogle Scholar
  67. 67.
    Chen J-H, Chiou Y-D (2006) Crystallization behavior and morphological development of isotactic polypropylene blended with nanostructured polyhedral oligomeric silsesquioxane molecules. J Polym Sci B Polym Phys 44(15):2122–2134. doi: 10.1002/polb.20878 CrossRefGoogle Scholar
  68. 68.
    Chen J-H, Yao B-X, Su W-B, Yang Y-B (2007) Isothermal crystallization behavior of isotactic polypropylene blended with small loading of polyhedral oligomeric silsesquioxane. Polymer 48(6):1756–1769. doi: 10.1016/j.polymer.2007.01.010 CrossRefGoogle Scholar
  69. 69.
    Abad MJ, Barral L, Fasce DP, Williams RJJ (2003) Epoxy networks containing large mass fractions of a monofunctional polyhedral oligomeric silsesquioxane (POSS). Macromolecules 36(9):3128–3135. doi: 10.1021/ma021539f CrossRefGoogle Scholar
  70. 70.
    Bizet S, Galy J, Gerard J-F (2006) Molecular dynamics simulation of organic–inorganic copolymers based on methacryl-POSS and methyl methacrylate. Polymer 47(24):8219–8227. doi: 10.1016/j.polymer.2006.09.040 CrossRefGoogle Scholar
  71. 71.
    Baumann TF, Jones TV, Wilson T, Saab AP, Maxwell RS (2009) Synthesis and characterization of novel PDMS nanocomposites using POSS derivatives as cross-linking filler. J Polym Sci A Polym Chem 47(10):2589–2596. doi: 10.1002/pola.23344 CrossRefGoogle Scholar
  72. 72.
    Cai HL, Xu K, Liu H, Liu X, Fu ZE, Chen MC (2011) Influence of polyhedral oligomeric silsesquioxanes on thermal and mechanical properties of polycarbonate/POSS hybrid composites. Polym Compos 32(9):1343–1351. doi: 10.1002/pc.21156 CrossRefGoogle Scholar
  73. 73.
    Constable GS, Lesser AJ, Coughlin EB (2004) Morphological and mechanical evaluation of hybrid organic-inorganic thermoset copolymers of dicyclopentadiene and mono- or tris(norbornenyl)-substituted polyhedral oligomeric silsesquioxanes. Macromolecules 37(4):1276–1282. doi: 10.1021/ma034989w CrossRefGoogle Scholar
  74. 74.
    Durmus A, Kasgoz A, Ercan N, Akin D, Sanli S (2012) Effect of polyhedral oligomeric silsesquioxane (POSS) reinforced polypropylene (PP) nanocomposite on the microstructure and isothermal crystallization kinetics of polyoxymethylene (POM). Polymer 53(23):5347–5357. doi: 10.1016/j.polymer.2012.09.026 CrossRefGoogle Scholar
  75. 75.
    Baklanov MR, Maex K (2006) Porous low dielectric constant materials for microelectronics. Philos Trans R Soc London Ser A 364(1838):201–215. doi: 10.1098/rsta.2005.1679 Google Scholar
  76. 76.
    Harrison PG, Kannengiesser R (1996) Chem Commun 415Google Scholar
  77. 77.
    Zhang C, Babonneau F, Bonhomme C, Laine RM, Soles CL, Hristov HA, Yee AF (1998) J Am Chem Soc 120:8380CrossRefGoogle Scholar
  78. 78.
    Chen Y, Chen L, Nie H, Kang ET (2006) Low-κ nanocomposite films based on polyimides with grafted polyhedral oligomeric silsesquioxane. J Appl Polym Sci 99(5):2226–2232. doi: 10.1002/app.22515 CrossRefGoogle Scholar
  79. 79.
    Liu Y-L, Fangchiang M-H (2009) Polyhedral oligomeric silsesquioxane nanocomposites exhibiting ultra-low dielectric constants through POSS orientation into lamellar structures. J Mater Chem 19(22):3643–3647. doi: 10.1039/b900141g CrossRefGoogle Scholar
  80. 80.
    Xu Y, Zhu X, Yang S (2009) Crack-free 3D hybrid microstructures from photosensitive organosilicates as versatile photonic templates. ACS Nano 3(10):3251–3259. doi: 10.1021/nn9007803 CrossRefGoogle Scholar
  81. 81.
    Liang G, Zhu X, Xu Y, Li J, Yang S (2010) Holographic design and fabrication of diamond symmetry photonic crystals via dual-beam quadruple exposure. Adv Mater (Weinheim) 22(40):4524–4529. doi: 10.1002/adma.201001785 CrossRefGoogle Scholar
  82. 82.
    Moon JH, Seo JS, Xu Y, Yang S (2009) Direct fabrication of 3D silica-like microstructures from epoxy-functionalized polyhedral oligomeric silsesquioxane (POSS). J Mater Chem 19(27):4687–4691. doi: 10.1039/b901226e CrossRefGoogle Scholar
  83. 83.
    Li J, Liang G, Zhu X, Yang S (2012) Exploiting nanoroughness on holographically patterned three-dimensional photonic crystals. Adv Funct Mater 22(14):2980–2986. doi: 10.1002/adfm.201200013 Google Scholar
  84. 84.
    Chan KL, Sonar P, Sellinger A (2009) Cubic silsesquioxanes for use in solution processable organic light emitting diodes (OLED). J Mater Chem 19(48):9103–9120. doi: 10.1039/b909234j CrossRefGoogle Scholar
  85. 85.
    Xiao S, Nguyen M, Gong X, Cao Y, Wu H, Moses D, Heeger AJ (2003) Stabilization of semiconducting polymers with silsesquioxane. Adv Funct Mater 13(1):25–29. doi: 10.1002/adfm.200390000 CrossRefGoogle Scholar
  86. 86.
    Chou CH, Hsu SL, Dinakaran K, Chiu MY, Wei KH (2005) Synthesis and characterization of luminescent polyfluorenes incorporating side-chain-tethered polyhedral oligomeric silsesquioxane units. Macromolecules 38(3):745–751. doi: 10.1021/Ma0479520 Google Scholar
  87. 87.
    Chu Y-L, Cheng C-C, Chen Y-P, Yen Y-C, Chang F-C (2012) A new supramolecular POSS electroluminescent material. J Mater Chem 22(18):9285–9292. doi: 10.1039/c2jm00095d CrossRefGoogle Scholar
  88. 88.
    Choi S-S, Lee HS, Hwang SS, Choi DH, Baek K-Y (2010) High photo- and electroluminescence efficiencies of ladder-like structured polysilsesquioxane with carbazole groups. J Mater Chem 20(44):9852–9854. doi: 10.1039/c0jm02561e CrossRefGoogle Scholar
  89. 89.
    Yang X, Froehlich JD, Chae HS, Harding BT, Li S, Mochizuki A, Jabbour GE (2010) Efficient light-emitting devices based on platinum-complexes-anchored polyhedral oligomeric silsesquioxane materials. Chem Mater 22(16):4776–4782. doi: 10.1021/cm101314b CrossRefGoogle Scholar
  90. 90.
    Ren Z, Chen Z, Fu W, Zhang R, Shen F, Wang F, Ma Y, Yan S (2011) Ladder polysilsesquioxane for wide-band semiconductors: synthesis, optical properties and doped electrophosphorescent device. J Mater Chem 21(30):11306–11311. doi: 10.1039/c1jm11087j CrossRefGoogle Scholar
  91. 91.
    Ren Z, Sun D, Li H, Fu Q, Ma D, Zhang J, Yan S (2012) Synthesis of dibenzothiophene-containing ladder polysilsesquioxane as a blue phosphorescent host material. Chem Eur J 18(13):4115–4123. doi: 10.1002/chem.201103684 Google Scholar
  92. 92.
    Duchateau R (2002) Incompletely condensed silsesquioxanes: versatile tools in developing silica-supported olefin polymerization catalysts. Chem Rev 102(10):3525–3542. doi: 10.1021/cr010386b CrossRefGoogle Scholar
  93. 93.
    Quadrelli EA, Basset J-M (2010) On silsesquioxanes’ accuracy as molecular models for silica-grafted complexes in heterogeneous catalysis. Coord Chem Rev 254(5–6):707–728. doi: 10.1016/j.ccr.2009.09.031 CrossRefGoogle Scholar
  94. 94.
    Cho HM, Weissman H, Wilson SR, Moore JS (2006) A Mo(VI) alkylidyne complex with polyhedral oligomeric silsesquioxane ligands: homogeneous analogue of a silica-supported alkyne metathesis catalyst. J Am Chem Soc 128(46):14742–14743. doi: 10.1021/ja065101x CrossRefGoogle Scholar
  95. 95.
    Vautravers NR, Cole-Hamilton DJ (2009) Diazaphospholidine terminated polyhedral oligomeric silsesquioxanes in the hydroformylation of vinyl acetate. Chem Commun (Cambridge) (1):92–94. doi: 10.1039/b814582b
  96. 96.
    Janssen M, Wilting J, Mueller C, Vogt D (2010) Continuous rhodium-catalyzed hydroformylation of 1-octene with polyhedral oligomeric silsesquioxanes (POSS) enlarged triphenylphosphine. Angew Chem Int Ed 49(42):7738–7741. doi: 10.1002/anie.201001926 Google Scholar
  97. 97.
    Tang S, Jin R, Zhang H, Yao H, Zhuang J, Liu G, Li H (2012) Recoverable organorhodium-functionalized polyhedral oligomeric silsesquioxane: a bifunctional heterogeneous catalyst for asymmetric transfer hydrogenation of aromatic ketones in aqueous medium. Chem Commun (Cambridge) 48(50):6286–6288. doi: 10.1039/c2cc31927f CrossRefGoogle Scholar
  98. 98.
    McCusker C, Carroll JB, Rotello VM (2005) Cationic polyhedral oligomeric silsesquioxane (POSS) units as carriers for drug delivery processes. Chem Commun (Cambridge) (8):996–998. doi: 10.1039/b416266h
  99. 99.
    Ding D, Pu K-Y, Li K, Liu B (2011) Conjugated oligoelectrolyte-polyhedral oligomeric silsesquioxane loaded pH-responsive nanoparticles for targeted fluorescence imaging of cancer cell nucleus. Chem Commun (Cambridge) 47(35):9837–9839. doi: 10.1039/c1cc13237g CrossRefGoogle Scholar
  100. 100.
    Li K, Liu Y-T, Pu K-Y, Feng S-S, Zhan R-Y, Liu B (2011) Polyhedral oligomeric silsesquioxanes-containing conjugated polymer loaded PLGA nanoparticles with trastuzumab (Herceptin) functionalization for HER2-positive cancer cell detection. Adv Funct Mater 21(2):287–294. doi: 10.1002/adfm.201001435 CrossRefGoogle Scholar
  101. 101.
    Wu X, Sun Y, Xie W, Liu Y, Song X (2010) Development of novel dental nanocomposites reinforced with polyhedral oligomeric silsesquioxane (POSS). Dent Mater 26(5):456–462. doi: 10.1016/ CrossRefGoogle Scholar
  102. 102.
    Ghanbari H, de MA, Seifalian AM (2011) Cardiovascular application of polyhedral oligomeric silsesquioxane nanomaterials: a glimpse into prospective horizons. Int J Nanomed 6:775–786. doi: 10.2147/IJN.S14881
  103. 103.
    Bakhshi R, Darbyshire A, Evans JE, You Z, Lu J, Seifalian AM (2011) Polymeric coating of surface modified nitinol stent with POSS-nanocomposite polymer. Colloids Surf B 86(1):93–105. doi: 10.1016/j.colsurfb.2011.03.024 CrossRefGoogle Scholar
  104. 104.
    Gilman JW (1999) Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl Clay Sci 15(1–2):31–49. doi: 10.1016/S0169-1317(99)00019-8
  105. 105.
    Devaux E, Bourbigot S, El Achari A (2002) Crystallization behavior of PA-6 clay nanocomposite hybrid. J Appl Polym Sci 86:2416. doi: 10.1002/app.10920 CrossRefGoogle Scholar
  106. 106.
    Jash P, Wilkie CA (2005) Effects of surfactants on the thermal and fire properties of poly(methyl methacrylate)/clay nanocomposites. Polym Degrad Stab 88(3):401–406. doi: 10.1016/j.polymdegradstab.2004.12.004
  107. 107.
    Bourbigot S, Duquesne S, Jama C (2006) Polymer nanocomposites: how to reach low flammability? Macromol Symp (Fillers, Filled Polymers and Polymer Blends) 233:180–190. doi: 10.1002/masy.200690016
  108. 108.
    Qian Y, Wei P, Zhao X, Jiang P, Yu H (2013) Flame retardancy and thermal stability of polyhedral oligomeric silsesquioxane nanocomposites. Fire Mater 37(1):1–16. doi: 10.1002/fam.1126 CrossRefGoogle Scholar
  109. 109.
    Mantz RA, Jones PF, Chaffee KP, Lichtenhan JD, Gilman JW, Ismail IMK, Burmeister MJ (1996) Thermolysis of polyhedral oligomeric silsesquioxane (POSS) macromers and POSS–Siloxane copolymers. Chem Mater 8(6):1250–1259. doi: 10.1021/cm950536x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Inorganic ChemistrySaarland UniversitySaarbrückenGermany

Personalised recommendations