Metal–Organic Frameworks for Second-Order Nonlinear Optics

  • Shaowu DuEmail author
  • Huabin Zhang
Part of the Structure and Bonding book series (STRUCTURE, volume 157)


In this chapter, we highlight recent advances and perspectives in the design and synthesis of NLO-active metal–organic frameworks (MOFs). Some of these compounds show impressive second harmonic generation (SHG) responses and may have potential use in NLO-applications. Noncentrosymmetric MOFs can be synthesized mainly by using chiral ligands, unsymmetrical achiral ligands, and mixed metal ions. Organic ligands containing donor-π-acceptor systems can be incorporated into MOFs to improve the SHG activity of the bulk materials through push–pull effect. Some diamondoid or octupolar MOFs have been shown to exhibit excellent SHG properties. Besides, a number of MOFs with 2D grid-type or 1D helical chain structures display good SHG activity.


Diamondoid net Metal–organic framework Noncentrosymmetric MOFs Nonlinear optics Octupolar symmetry Push–pull effect Second harmonic generation 













Carbamyldicyanomethanide anion


d-camphoric acid








4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate








6-Hydroxynicotinic acid


4,4′-Oxybis(benzoic acid)




4,4′-Sulfonyldibenzoic acid






(2-(4,5-Dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl)-5-ethyl-3-pyridinecarboxylic acid








1,3-Benzenedicarboxylic acid




5-Hydroxyisophthalic acid








4-Sulfanylmethyl-4′-phenylcarboxylate pyridine





We acknowledge the financial supports from the National Basic Research Program of China (973 Program, 2012CB821702), the National Natural Science Foundation of China (21233009 and 21173221) and the State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences.


  1. 1.
    Franken PA, Hill AE, Peters CW, Weinreich G (1961) Generation of optical harmonics. Phys Rev Lett 7:118–119CrossRefGoogle Scholar
  2. 2.
    Saleh BEA, Teich MC (1991) Fundamentals of photonics. Wiley, New YorkCrossRefGoogle Scholar
  3. 3.
    Boyd RW (1992) Nonlinear optics. Academic, San DiegoGoogle Scholar
  4. 4.
    Zyss J (1994) Molecular nonlinear optics, materials, physics and devices. Academic, New YorkGoogle Scholar
  5. 5.
    Fan YX, Eckardt RC, Byer RL, Route RK, Feigelson RS (1984) AgGaS2 infrared parametric oscillator. Appl Phys Lett 45:313–315CrossRefGoogle Scholar
  6. 6.
    Glass AM (1988) Materials for photonic switching and Information processing. MRS Bull 13:16–20Google Scholar
  7. 7.
    Donaldson WR, Tang CL (1984) Urea optical parametric oscillator. Appl Phys Lett 44:25–27CrossRefGoogle Scholar
  8. 8.
    Davydov BL, Derkacheva LD, Dunina VV, Zhabotinskii ME, Zolin VF, Koreneva LG, Samokhina MA (1970) Connection between charge transfer and laser second harmonic generation. JETP Lett 12:16–19Google Scholar
  9. 9.
    Marder SR, Perry JW, Schaefer WP (1989) Synthesis of organic salts with large second-order optical nonlinearities. Science 245:626–628CrossRefGoogle Scholar
  10. 10.
    Farrusseng D (2011) Metal–organic frameworks: applications from catalysis to gas storage. Wiley-VCH Verlag & Co. KgaA, WeinheimCrossRefGoogle Scholar
  11. 11.
    Evans OR, Lin WB (2002) Crystal engineering of NLO materials based on metal–organic coordination networks. Acc Chem Res 35:511–522CrossRefGoogle Scholar
  12. 12.
    Wang C, Zhang T, Lin WB (2012) Rational synthesis of noncentrosymmetric metal–organic frameworks for second-order nonlinear optics. Chem Rev 112:1084–1104CrossRefGoogle Scholar
  13. 13.
    Nickerl G, Henschel A, Grünker R, Gedrich K, Kaskel S (2011) Chiral metal–organic frameworks and their application in asymmetric catalysis and stereoselective separation. Chemie Ingenieur Technik 83:90–103CrossRefGoogle Scholar
  14. 14.
    Lin WB (2005) Homochiral porous metal–organic framework: why and how? J Solid State Chem 178:2486–2409CrossRefGoogle Scholar
  15. 15.
    Morris RE, Bu X (2010) Induction of chiral porous solids containing only achiral building blocks. Nat Chem 2:353–361CrossRefGoogle Scholar
  16. 16.
    Lin JD, Long XF, Lin P, Du SW (2010) A series of cation-templated, polycarboxylate-based Cd(II) or Cd(II)/Li(I) frameworks with second-order nonlinear optical and ferroelectric properties. Cryst Growth Des 10:146–157CrossRefGoogle Scholar
  17. 17.
    Lin JD, Wu ST, Li ZH, Du SW (2010) Syntheses, topological analyses, and NLO-active properties of new Cd(II)/M(II) (M = Ca, Sr) metal–organic frameworks based on R-isophthalic acids (R = H, OH, and t-Bu). Dalton Trans 39:10719–10728CrossRefGoogle Scholar
  18. 18.
    Zhao H, Qu ZR, Ye HY, Xiong RG (2008) In situ hydrothermal synthesis of tetrazole coordination polymers with interesting physical properties. Chem Soc Rev 37:84–100CrossRefGoogle Scholar
  19. 19.
    Wang YT, Fan HH, Wang HZ, Chen XM (2005) Homochiral helical wavelike (4,4) networks constructed by divalent metal ions and S-carboxymethyl-l-cysteine. J Mol Struct 740:61–67CrossRefGoogle Scholar
  20. 20.
    Xu W, Liu W, Yao FY, Zheng YQ (2011) Synthesis, crystal structure and properties of the novel chiral 3D coordination polymer with S-carboxymethyl-l-cysteine. Inorg Chim Acta 365:297–301CrossRefGoogle Scholar
  21. 21.
    Liang XQ, Li DP, Li CH, Zhou XH, Li YZ, Zuo JL, You XZ (2010) Syntheses, structures, and physical properties of camphorate coordination polymers controlled by semirigid auxiliary ligands with variable coordination positions and conformations. Cryst Growth Des 10:2596–2605CrossRefGoogle Scholar
  22. 22.
    Zhao H, Li YH, Wang XS, Qu ZR, Wang LZ, Xiong RG, Abrahams BF, Xue Z (2004) Noncentrosymmetric organic solids with very strong harmonic generation response. Chem Eur J 10:2386–2390CrossRefGoogle Scholar
  23. 23.
    Ye Q, Li YH, Song YM, Huang XF, Xiong RG, Xue Z (2005) A second-order nonlinear optical material prepared through in situ hydrothermal ligand synthesis. Inorg Chem 44:3618–3625CrossRefGoogle Scholar
  24. 24.
    Ye Q, Tang YZ, Wang XS, Xiong RG (2005) Strong enhancement of second-harmonic generation (SHG) response through multi-chiral centers and metal-coordination. Dalton Trans 1570–1573Google Scholar
  25. 25.
    Ye Q, Li YH, Wu Q, Song YM, Wang JX, Zhao H, Xiong RG, Xue Z (2005) The first metal (Nd3+, Mn2+, and Pb2+) coordination compounds of 3,5-dinitrotyrosine and their nonlinear optical properties. Chem Eur J 11:988–994CrossRefGoogle Scholar
  26. 26.
    Anthony SP, Radhakrishnan TP (2004) Helical and network coordination polymers based on a novel C2-symmetric ligand: SHG enhancement through specific metal coordination. Chem Commun 1058–1059Google Scholar
  27. 27.
    Anthony SP, Radhakrishnan TP (2004) Coordination polymers of Cu(I) with a chiral push-pull ligand: Hierarchical network structures and second harmonic generation. Cryst Growth Des 4:1223–1227CrossRefGoogle Scholar
  28. 28.
    Evans OR, Xiong RG, Wang Z, Wong GK, Lin W (1999) Crystal engineering of acentric diamondoid metal–organic coordination networks. Angew Chem Int Ed 38:536–538CrossRefGoogle Scholar
  29. 29.
    Evans OR, Lin W (2001) Crystal engineering of nonlinear optical materials based on interpenetrated diamondoid coordination networks. Chem Mater 13:2705–2712CrossRefGoogle Scholar
  30. 30.
    Lin W, Ma L, Evans OR (2000) NLO-active zinc(II) and cadmium(II) coordination networks with 8-fold diamondoid structures. Chem Commun 2263–2264Google Scholar
  31. 31.
    Fu DW, Zhang W, Xiong RG (2008) The first metal–organic framework (MOF) of imazethapyr and its SHG, piezoelectric and ferroelectric properties. Dalton Trans 3946–3948Google Scholar
  32. 32.
    Ledoux I, Zyss J, Siegel JS, Brienne J, Lehn JM (1990) Second-harmonic generation from non-dipolar non-centrosymmetric aromatic charge-transfer molecules. Chem Phys Lett 172:440–444CrossRefGoogle Scholar
  33. 33.
    Lin W, Wang Z, Ma L (1999) A novel octupolar metal–organic NLO mateiral based on a chiral 2D coordination network. J Am Chem Soc 121:11249–11250CrossRefGoogle Scholar
  34. 34.
    Liu Y, Li G, Li X, Cui Y (2007) Cation-dependent nonlinear optical behavior in an octupolar 3D anionic metal–organic open framework. Angew Chem Int Ed 46:6301–6304CrossRefGoogle Scholar
  35. 35.
    Lin W, Evans OR, Xiong RG, Wang Z (1998) Supramolecular engineering of chiral and acentric 2D networks. Synthesis, structures, and second-order nonlinear optical properties of bis(nicotinato)zinc and bis{3-[2-(4-pyridyl)ethenyl]benzoato} · cadmium. J Am Chem Soc 120:13272–13273CrossRefGoogle Scholar
  36. 36.
    Evans OR, Lin W (2001) Rational design of nonlinear optical materials based on 2D coordination networks. Chem Mater 13:3009–3017CrossRefGoogle Scholar
  37. 37.
    He YH, Lan YZ, Zhan CH, Feng YL, Su H (2009) A stable second-order NLO and luminescent Cd(II) complex based on 6-hydroxynicotinic acid. Inorg Chim Acta 362:1952–1956CrossRefGoogle Scholar
  38. 38.
    Shi JM, Xu W, Liu QY, Liu FL, Huang ZL, Lei H, Yu WT, Fang Q (2002) Polynitrile-bridged two-dimensional crystal: Eu(III) complex with strong fluorescence emission and NLO property. Chem Commun 756–757Google Scholar
  39. 39.
    Han L, Hong M, Wang R, Luo J, Lin Z, Yuan D (2003) A novel nonlinear optically active tubular coordination network based on two distinct homo-chiral helices. Chem Commun 2580–2581Google Scholar
  40. 40.
    Hu S, Zou HH, Zeng MH, Wang QX, Liang H (2008) Molecular packing variation of crimpled 2D layers and 3D uncommon 65 · 8 topology: effect of ligand on the construction of metal-quinoline-6-carboxylate polymers. Cryst Growth Des 8:2346–2351CrossRefGoogle Scholar
  41. 41.
    Zhou WW, Chen JT, Xu G, Wang MS, Zou JP, Long XF, Wang GJ, Guo GC, Huang JS (2008) Nonlinear optical and ferroelectric properties of a 3-D Cd(II) triazolate complex with a novel (63)2(610 · 85) topology. Chem Commun 2762–2764Google Scholar
  42. 42.
    Yang H, Sang RL, Xu X, Xu L (2013) An unprecedented 3-D SHG MOF material of silver(I) induced by chiral triple helices. Chem Commun 49:2909–2911CrossRefGoogle Scholar
  43. 43.
    Yu J, Cui Y, Wu C, Yang Y, Wang Z, O’Keeffe M, Chen B, Qian G (2012) Second-order nonlinear optical activity induced by ordered dipolar chromophores confined in the pores of an anionic metal–organic framework. Angew Chem Int Ed 51:10542–10545CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouP. R. China

Personalised recommendations