Skip to main content

Medical Applications of Solid Nitrosyl Complexes

  • Chapter
  • First Online:
Nitrosyl Complexes in Inorganic Chemistry, Biochemistry and Medicine II

Part of the book series: Structure and Bonding ((STRUCTURE,volume 154))

Abstract

Solid nitrosyl compounds are under investigation as ways of delivering nitric oxide for medical applications. This contribution discusses the role of nitric oxide in biology and the need for solids that can be used to store and deliver the gas in biologically relevant amounts. The types of solid that make suitable gas storage media are discussed, as is the relationship between nitric oxide storage and other areas of gas storage research. The particular materials that show most promise for nitric oxide delivery are discussed in detail, including their preliminary medical applications on humans. Finally, a forward look is described as to how current nitric oxide technology is informing other potential gas delivery applications in medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In blood vessels, endothelial cells exist in the endothelium, which is the single-layer of cells between the hole through the middle of blood vessels where blood flows (the lumen) and the exterior wall of the blood vessel (smooth muscle layer). Relaxation of the muscle layer increases the size of the lumen and allows more blood to flow through the vessel, which is called dilation of the blood vessel (vasodilation).

  2. 2.

    Cofactors are “helper molecules” for enzymes – chemical compounds which are not part of the enzyme itself but are required for the enzyme to catalyze biochemical processes.

  3. 3.

    Necrosis is cell death caused by factors external to the cell or tissue, such as infection, toxins, or trauma. It is generally “messy” leaving behind debris in the body, and is normally detrimental to tissue.

  4. 4.

    Apoptosis is programmed cell death. It results in cell fragments which can be engulfed and removed from the body before the contents of the cell can spill out onto surrounding cells and cause damage.

  5. 5.

    Angina is a condition caused by constriction of the arteries supplying the heart, putting increased strain on the heart to maintain the same level of blood flow. Its symptoms are chest pain and choking.

  6. 6.

    Ischemia is a state of tissue oxygen deprivation through loss of blood flow to an organ. Reperfusion is the restoration of blood flow to an ischemic tissue.

  7. 7.

    Reactive oxygenating species are intermediates formed by the incomplete one-electron reduction of molecular oxygen and include singlet oxygen, superoxides, peroxides, and hydroxyl radicals. They have crucial roles in oxidative stress, signal transduction, regulation of gene expression, and host defense.

  8. 8.

    Hypoxia is a state when a tissue has an inadequate oxygen supply to allow normal cellular processes to take place.

Abbreviations

BET:

Brunauer, Emmett, and Teller

btc:

Benzenetricarboxylic acid

btt:

1,3,5-Benzenetristetrazolate

CBS:

Cystathionine-β-synthase

cGC:

Cytosolic guanylate cyclase

cGMP:

Cyclic guanosine-3,5-monophosphate

CO:

Carbon monoxide

CORM:

Carbon monoxide-releasing molecule

CSE:

Cystathionine-γ-lyase

CUS:

Coordinatively unsaturated sites

FAD:

Flavin adenine dinucleotide

FMN:

Flavin mononucleotide

GTP:

Guanosine-5-triphosphate

H2S:

Hydrogen sulfide

Hb:

Hemoglobin

HbCo:

Carboxy-hemoglobin

HO:

Heme oxygenase

MIL:

Material of the Institute Lavoisier

mmol:

Millimole

MOF:

Metal–organic framework

NADP:

Nicotinamide adenine dinucleotide phosphate

NO:

Nitric oxide

NOS:

Nitric oxide synthase

OxHb:

Oxyhemoglobin

PBS:

Phosphate buffer solution

PDF:

Pair-distribution function

ppm:

Parts per million

PTFE:

Polytetrafluoroethylene

ROS:

Radical oxygenating species

SBU:

Secondary building unit

STP:

Standard temperature and pressure

References

  1. Wang R (2004) Signal transduction and the gasotransmitters: NO, CO, and H2S in biology and medicine. Humana, Totowa

    Google Scholar 

  2. Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16(13):1792–1798. doi:10.1096/fj.02-0211hyp

    CAS  Google Scholar 

  3. Mathew ND, Schlipalius DI (2011) Ebert PR (2011). Sulfurous gases as biological messengers and toxins. Comparative genetics of their metabolism in model organisms, J Toxicol. doi:10.1155/2011/394970

    Google Scholar 

  4. Wang XB, Jin HF, Tang CS, Du JB (2011) The biological effect of endogenous sulfur dioxide in the cardiovascular system. Eur J Pharmacol 670(1):1–6. doi:10.1016/j.ejphar.2011.08.031

    CAS  Google Scholar 

  5. Balazy M, Abu-Yousef IA, Harpp DN, Park J (2003) Identification of carbonyl sulfide and sulfur dioxide in porcine coronary artery by gas chromatography/mass spectrometry, possible relevance to EDHF. Biochem Biophys Res Commun 311(3):728–734. doi:10.1016/j.bbrc.2003.10.055

    CAS  Google Scholar 

  6. Gillman MA (1992) nitrous-oxide as neurotransmitter. Lancet 339(8788):307–307. doi:10.1016/0140-6736(92)91379-m

    CAS  Google Scholar 

  7. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric-oxide release accounts for the biological-activity of endothelium-derived relaxing factor. Nature 327(6122):524–526

    CAS  Google Scholar 

  8. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric-oxide. Proc Natl Acad Sci U S A 84(24):9265–9269. doi:10.1073/pnas.84.24.9265

    CAS  Google Scholar 

  9. Palmer RMJ, Ashton DS, Moncada S (1988) Vascular endothelial-cells synthesize nitric-oxide from l-arginine. Nature 333(6174):664–666. doi:10.1038/333664a0

    CAS  Google Scholar 

  10. Li HY, Poulos TL (2005) Structure-function studies on nitric oxide synthases. J Inorg Biochem 99(1):293–305. doi:10.1016/j.jinorgbio.2004.10.016

    CAS  Google Scholar 

  11. Hall CN, Garthwaite J (2009) What is the real physiological NO concentration in vivo? Nitric Oxide 21(2):92–103. doi:10.1016/j.niox.2009.07.002

    CAS  Google Scholar 

  12. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol Cell Physiol 271(5):C1424–C1437

    CAS  Google Scholar 

  13. Keefer LK (2003) Biomaterials – thwarting thrombus. Nat Mater 2(6):357–358. doi:10.1038/Nmat913

    Google Scholar 

  14. Loscalzo J, Welch G (1995) Nitric-oxide and its role in the cardiovascular-system. Prog Cardiovasc Dis 38(2):87–104. doi:10.1016/s0033-0620(05)80001-5

    CAS  Google Scholar 

  15. Radomski MW, Palmer RMJ, Moncada S (1991) Modulation of platelet-aggregation by an l-arginine nitric-oxide pathway. Trends Pharmacol Sci 12(3):87–88. doi:10.1016/0165-6147(91)90510-y

    CAS  Google Scholar 

  16. Schaffer MR, Tantry U, Gross SS, Wasserkrug HL, Barbul A (1996) Nitric oxide regulates wound healing. J Surg Res 63(1):237–240. doi:10.1006/jsre.1996.0254

    CAS  Google Scholar 

  17. Papapetropoulos A, Pyriochou A, Altaany Z, Yang GD, Marazioti A, Zhou ZM, Jeschke MG, Branski LK, Herndon DN, Wang R, Szabo C (2009) Hydrogen sulfide is an endogenous stimulator of angiogenesis. P Natl Acad Sci USA 106(51):21972–21977. doi:10.1073/pnas.0908047106

    Google Scholar 

  18. Szabo C (2007) Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 6(11):917–935

    CAS  Google Scholar 

  19. Wallace JL, Dicay M, McKnight W, Martin GR (2007) Hydrogen sulfide enhances ulcer healing in rats. FASEB J 21(14):4070–4076. doi:10.1096/fj.07-8669com

    CAS  Google Scholar 

  20. Butler A, Nicholson R (2003) Life, death, and nitric oxide. RSC, Cambridge

    Google Scholar 

  21. Ryter SW, Alam J, Choi AM (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86(2):583–650. doi:10.1152/physrev.00011.2005

    CAS  Google Scholar 

  22. Pautz A, Art J, Hahn S, Nowag S, Voss C, Kleinert H (2010) Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide Biol Chem 23(2):75–93. doi:10.1016/j.niox.2010.04.007

    CAS  Google Scholar 

  23. Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Férey G, Morris RE, Serre C (2011) Metal–organic frameworks in biomedicine. Chem Rev. doi:10.1021/cr200256v

    Google Scholar 

  24. Finer NN, Etches PC, Kamstra B, Tierney AJ, Peliowski A, Ryan CA (1994) inhaled nitric-oxide in infants referred for extracorporeal membrane-oxygenation – dose-response. J Pediatr 124(2):302–308. doi:10.1016/s0022-3476(94)70324-8

    CAS  Google Scholar 

  25. Motterlini R, Otterbein LE (2010) The therapeutic potential of carbon monoxide. Nat Rev Drug Discov 9(9):U724–U728. doi:10.1038/nrd3228

    Google Scholar 

  26. Chen ZQ, Zhang J, Stamler JS (2002) Identification of the enzymatic mechanism of nitroglycerin bioactivation. Proc Natl Acad Sci U S A 99(12):8306–8311. doi:10.1073/pnas.122225199

    CAS  Google Scholar 

  27. Keefer LK (1998) Nitric oxide-releasing compounds: from basic research to promising drugs. ChemTech 28(8):30–35

    CAS  Google Scholar 

  28. Boolell M, Allen MJ, Ballard SA, Gepi-Attee S, Muirhead GJ, Naylor AM, Osterloh IH, Gingell C (1996) Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int J Impot Res 8(2):47–52

    CAS  Google Scholar 

  29. Masters KSB, Leibovich SJ, Belem P, West JL, Poole-Warren LA (2002) Effects of nitric oxide releasing poly(vinyl alcohol) hydrogel dressings on dermal wound healing in diabetic mice. Wound Repair Regen 10(5):286–294. doi:10.1046/j.1524-475X.2002.10503.x

    Google Scholar 

  30. Zhao H, Feng Y, Guo J (2011) Polycarbonateurethane films containing complex of copper(II) catalyzed generation of nitric oxide. J Appl Polym Sci 122(3):1712–1721. doi:10.1002/app.34056

    CAS  Google Scholar 

  31. Bohl KS, West JL (2000) Nitric oxide-generating polymers reduce platelet adhesion and smooth muscle cell proliferation. Biomaterials 21(22):2273–2278. doi:10.1016/s0142-9612(00)00153-8

    CAS  Google Scholar 

  32. Kushwaha M, Anderson JM, Bosworth CA, Andukuri A, Minor WP, Lancaster JR Jr, Anderson PG, Brott BC, Jun H-W (2010) A nitric oxide releasing, self assembled peptide amphiphile matrix that mimics native endothelium for coating implantable cardiovascular devices. Biomaterials 31(7):1502–1508. doi:10.1016/j.biomaterials.2009.10.051

    CAS  Google Scholar 

  33. Riccio DA, Dobmeier KP, Hetrick EM, Privett BJ, Paul HS, Schoenfisch MH (2009) Nitric oxide-releasing S-nitrosothiol-modified xerogels. Biomaterials 30(27):4494–4502. doi:10.1016/j.biomaterials.2009.05.006

    CAS  Google Scholar 

  34. Eroy-Reveles AA, Mascharak PK (2009) Nitric oxide-donating materials and their potential in pharmacological applications for site-specific nitric oxide delivery. Future Med Chem 1(8):1497–1507. doi:10.4155/fmc.09.111

    CAS  Google Scholar 

  35. Rose MJ, Mascharak PK (2008) Fiat Lux: selective delivery of high flux of nitric oxide (NO) to biological targets using photoactive metal nitrosyls. Curr Opin Chem Biol 12(2):238–244. doi:http://dx.doi.org/10.1016/j.cbpa.2008.02.009

  36. Rose MJ, Fry NL, Marlow R, Hinck L, Mascharak PK (2008) Sensitization of ruthenium nitrosyls to visible light via direct coordination of the dye resorufin: trackable NO donors for light-triggered NO delivery to cellular targets. J Am Chem Soc 130(27):8834–8846. doi:10.1021/ja801823f

    CAS  Google Scholar 

  37. DeRosa F, Bu X, Ford PC (2005) Chromium(III) complexes for photochemical nitric oxide generation from coordinated nitrite: synthesis and photochemistry of macrocyclic complexes with pendant chromophores, trans-[Cr(L)(ONO)2]BF4. Inorg Chem 44(12):4157–4165. doi:10.1021/ic048311o

    CAS  Google Scholar 

  38. Rose MJ, Mascharak PK (2008) Photoactive ruthenium nitrosyls: effects of light and potential application as NO donors. Coord Chem Rev 252(18–20):2093–2114. doi:10.1016/j.ccr.2007.11.011

    CAS  Google Scholar 

  39. Ghosh K, Eroy-Reveles AA, Avila B, Holman TR, Olmstead MM, Mascharak PK (2004) Reactions of NO with Mn(II) and Mn(III) centers coordinated to carboxamido nitrogen: synthesis of a manganese nitrosyl with photolabile NO. Inorg Chem 43(9):2988–2997. doi:10.1021/ic030331n

    CAS  Google Scholar 

  40. Eroy-Reveles AA, Leung Y, Beavers CM, Olmstead MM, Mascharak PK (2008) Near-infrared light activated release of nitric oxide from designed photoactive manganese nitrosyls: strategy, design, and potential as NO donors. J Am Chem Soc 130(13):4447–4458. doi:10.1021/ja710265j

    CAS  Google Scholar 

  41. Flitney FW, Megson IL, Thomson JLM, Kennovin GD, Butler AR (1996) Vasodilator responses of rat isolated tail artery enhanced by oxygen-dependent, photochemical release of nitric oxide from iron–sulphur–nitrosyls. Br J Pharmacol 117(7):1549–1557. doi:10.1111/j.1476-5381.1996.tb15320.x

    CAS  Google Scholar 

  42. Heilman BJ, St John J, Oliver SRJ, Mascharak PK (2012) Light-triggered eradication of Acinetobacter baumannii by means of NO delivery from a porous material with an entrapped metal nitrosyl. J Am Chem Soc 134(28):11573–11582. doi:10.1021/ja3022736

    Google Scholar 

  43. Halpenny GM, Heilman B, Mascharak PK (2012) Nitric oxide (NO)-induced death of gram-negative bacteria from a light-controlled NO-releasing platform. Chem Biodivers 9(9):1829–1839. doi:10.1002/cbdv.201100320

    CAS  Google Scholar 

  44. Halpenny GM, Gandhi KR, Mascharak PK (2010) Eradication of pathogenic bacteria by remote delivery of NO via light triggering of nitrosyl-containing materials. ACS Med Chem Lett 1(4):180–183. doi:10.1021/ml1000646

    CAS  Google Scholar 

  45. Eroy-Reveles AA, Leung Y, Mascharak PK (2006) Release of nitric oxide from a Sol−Gel hybrid material containing a photoactive manganese nitrosyl upon illumination with visible light. J Am Chem Soc 128(22):7166–7167. doi:10.1021/ja061852n

    CAS  Google Scholar 

  46. Rodrigues FP, Pestana CR, Polizello ACM, Pardo-Andreu GL, Uyemura SA, Santos AC, Alberici LC, da Silva RS, Curti C (2012) Release of NO from a nitrosyl ruthenium complex through oxidation of mitochondrial NADH and effects on mitochondria. Nitric Oxide 26(3):174-181. doi:http://dx.doi.org/10.1016/j.niox.2012.02.001

  47. Wright PA, Royal Society of Chemistry (Great Britain) (2008) Microporous framework solids. RSC materials monographs. RSC Publishing, Cambridge

    Google Scholar 

  48. Ma S, Zhou HC (2010) Gas storage in porous metal–organic frameworks for clean energy applications. Chem Commun (Camb) 46(1):44–53. doi:10.1039/b916295j

    CAS  Google Scholar 

  49. Morris RE, Wheatley PS (2008) Gas storage in nanoporous materials. Angew Chem Int Ed 47(27):4966–4981. doi:10.1002/anie.200703934

    Google Scholar 

  50. Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastre J (2006) Metal–organic frameworks-prospective industrial applications. J Mater Chem 16(7):626–636

    CAS  Google Scholar 

  51. Thallapally PK, Kirby KA, Atwood JL (2007) Comparison of porous and nonporous materials for methane storage. New J Chem 31(5):628–630. doi:10.1039/b610321a

    CAS  Google Scholar 

  52. Suh MP, Park HJ, Prasad TK, Lim D-W (2011) Hydrogen storage in metal–organic frameworks. Chem Rev. doi:10.1021/cr200274s

    Google Scholar 

  53. Herm ZR, Swisher JA, Smit B, Krishna R, Long JR (2011) Metal−organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture. J Am Chem Soc 133(15):5664–5667. doi:10.1021/ja111411q

    CAS  Google Scholar 

  54. Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae T-H, Long JR (2011) Carbon dioxide capture in metal–organic frameworks. Chem Rev. doi:10.1021/cr2003272

    Google Scholar 

  55. Rouquerol Fo, Rouquerol J, Sing KSW (1999) Adsorption by powders and porous solids : principles, methodology and applications. Academic, San Diego, London

    Google Scholar 

  56. Murray LJ, Dinca M, Long JR (2009) Hydrogen storage in metal–organic frameworks. Chem Soc Rev 38(5):1294–1314. doi:10.1039/b802256a

    CAS  Google Scholar 

  57. Chui SSY, Lo SMF, Charmant JPH, Orpen AG, Williams ID (1999) A chemically functionalizable nanoporous material [Cu-3(TMA)(2)(H2O)(3)](n). Science 283(5405):1148–1150

    CAS  Google Scholar 

  58. Dinca M, Long JR (2007) High-enthalpy hydrogen adsorption in cation-exchanged variants of the microporous metal–organic framework Mn-3[(Mn4Cl)(3)(BTT)(8)(CH3OH)(10)](2). J Am Chem Soc 129(36):11172–11176. doi:10.1021/Ja072871f

    Google Scholar 

  59. Zhou W, Wu H, Yildirim T (2008) Enhanced H2 adsorption in isostructural metal–organic frameworks with open metal sites: strong dependence of the binding strength on metal ions. J Am Chem Soc 130(46):15268–15269. doi:10.1021/ja807023q

    Google Scholar 

  60. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295(5554):469–472. doi:10.1126/science.1067208

    CAS  Google Scholar 

  61. Wu H, Simmons JM, Liu Y, Brown CM, Wang XS, Ma S, Peterson VK, Southon PD, Kepert CJ, Zhou HC, Yildirim T, Zhou W (2010) Metal–organic frameworks with exceptionally high methane uptake: where and how is methane stored? Chemistry 16(17):5205–5214. doi:10.1002/chem.200902719

    CAS  Google Scholar 

  62. Ma S, Sun D, Simmons JM, Collier CD, Yuan D, Zhou H-C (2008) Metal–organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J Am Chem Soc 130(3):1012–1016. doi:10.1021/ja0771639

    Google Scholar 

  63. Fletcher AJ, Thomas KM, Rosseinsky MJ (2005) Flexibility in metal–organic framework materials: impact on sorption properties. J Solid State Chem 178(8):2491–2510

    CAS  Google Scholar 

  64. Serre C, Mellot-Draznieks C, Surble S, Audebrand N, Filinchuk Y, Ferey G (2007) Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 315(5820):1828–1831. doi:10.1126/science.1137975

    Google Scholar 

  65. Tanaka D, Nakagawa K, Higuchi M, Horike S, Kubota Y, Kobayashi Tatsuo C, Takata M, Kitagawa S (2008) Kinetic gate-opening process in a flexible porous coordination polymer13. Angew Chem Int Ed 47(21):3914–3918

    CAS  Google Scholar 

  66. Fukushima T, Horike S, Inubushi Y, Nakagawa K, Kubota Y, Takata M, Kitagawa S (2010) Solid solutions of soft porous coordination polymers: fine-tuning of gas adsorption properties. Angew Chem Int Ed Engl. doi:10.1002/anie.201002349

    Google Scholar 

  67. Horike S, Inubushi Y, Hori T, Fukushima T, Kitagawa S (2012) A solid solution approach to 2D coordination polymers for CH4/CO2 and CH4/C2H6 gas separation: equilibrium and kinetic studies. Chem Sci 3(1)

    Google Scholar 

  68. Cheng Y, Kajiro H, Noguchi H, Kondo A, Ohba T, Hattori Y, Kaneko K, Kanoh H (2011) Tuning of gate opening of an elastic layered structure MOF in CO2 sorption with a trace of alcohol molecules. Langmuir 27(11):6905–6909. doi:10.1021/la201008v

    CAS  Google Scholar 

  69. Uchida S, Kawamoto R, Tagami H, Nakagawa Y, Mizuno N (2008) Highly selective sorption of small unsaturated hydrocarbons by nonporous flexible framework with silver ion. J Am Chem Soc 130(37):12370–12376. doi:10.1021/ja801453c

    CAS  Google Scholar 

  70. Kinoshita Y, Matsubara, I, Higuciu T, Saito Y (1959) Bull Chem Soc Japan 32(11):1221

    Google Scholar 

  71. Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AÖ, Snurr RQ, O’Keeffe M, Kim J, Yaghi OM (2010) Ultrahigh porosity in metal–organic frameworks. Science 329(5990):424–428. doi:10.1126/science.1192160

    CAS  Google Scholar 

  72. Eddaoudi M, Moler DB, Li HL, Chen BL, Reineke TM, O’Keeffe M, Yaghi OM (2001) Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal–organic carboxylate frameworks. Acc Chem Res 34(4):319–330

    CAS  Google Scholar 

  73. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Hydrogen storage in microporous metal–organic frameworks. Science 300(5622):1127–1129

    CAS  Google Scholar 

  74. Byrne PJ (2009) Structural studies of ionic liquids and ionothermally-prepared materials. University of St Andrews

    Google Scholar 

  75. Bloch ED, Murray LJ, Queen WL, Chavan S, Maximoff SN, Bigi JP, Krishna R, Peterson VK, Grandjean F, Long GJ, Smit B, Bordiga S, Brown CM, Long JR (2011) Selective binding of O2 over N2 in a redox–active metal–organic framework with open iron(II) coordination sites. J Am Chem Soc 133(37):14814–14822. doi:10.1021/ja205976v

    CAS  Google Scholar 

  76. An J, Farha OK, Hupp JT, Pohl E, Yeh JI, Rosi NL (2012) Metal-adeninate vertices for the construction of an exceptionally porous metal–organic framework. Nat Commun 3:604

    Google Scholar 

  77. Cohen SM (2011) Postsynthetic methods for the functionalization of metal–organic frameworks. Chem Rev. doi:10.1021/cr200179u

    Google Scholar 

  78. Li J-R, Kuppler RJ, Zhou H-C (2009) Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev 38(5):1477–1504

    CAS  Google Scholar 

  79. Li J-R, Sculley J, Zhou H-C (2011) Metal–organic frameworks for separations. Chem Rev. doi:10.1021/cr200190s

    Google Scholar 

  80. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 38(5):1450–1459

    CAS  Google Scholar 

  81. Yoon M, Srirambalaji R, Kim K (2011) Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis. Chem Rev. doi:10.1021/cr2003147

    Google Scholar 

  82. Corma A, Garcia H, Llabres I, Xamena FX (2010) Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev 110(8):4606–4655. doi:10.1021/cr9003924

    Google Scholar 

  83. Allendorf MD, Bauer CA, Bhakta RK, Houk RJT (2009) Luminescent metal–organic frameworks. Chem Soc Rev 38(5):1330–1352

    CAS  Google Scholar 

  84. Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT (2011) Metal–organic framework materials as chemical sensors. Chem Rev. doi:10.1021/cr200324t

    Google Scholar 

  85. Kurmoo M (2009) Magnetic metal–organic frameworks. Chem Soc Rev 38(5):1353–1379

    CAS  Google Scholar 

  86. Cruz WV, Leung PCW, Seff K (1979) Crystal structure of nitric oxide and nitrogen dioxide sorption complexes of partially cobalt(II)-exchanged zeolite A. Inorg Chem 18(6):1692–1696. doi:10.1021/ic50196a059

    CAS  Google Scholar 

  87. Jeong GH, Kim Y, Seff K (2006) Crystal structures of the NO and NO2 sorption complexes of fully dehydrated fully Mn2+-exchanged zeolite X (FAU). Microporous Mesoporous Mater 93(1–3):12–22. doi:10.1016/j.micromeso.2006.01.020

    Google Scholar 

  88. Lee YM, Kim Y, Seff K (2005) Crystal structures of the NO and N2O4 sorption complexes of fully dehydrated fully Cd2+-exchanged zeolite X (FAU): coordination of neutral NO and N2O4 to Cd2+. J Phys Chem B 109(11):4900–4908. doi:10.1021/Jp040698t

    Google Scholar 

  89. Wheatley PS, Butler AR, Crane MS, Fox S, Xiao B, Rossi AG, Megson IL, Morris RE (2006) NO-releasing zeolites and their antithrombotic properties. J Am Chem Soc 128(2):502–509. doi:10.1021/Ja0503579

    Google Scholar 

  90. Wheatley PS, McKinlay AC, Morris RE (2008) A comparison of zeolites and metal organic frameworks as storage and delivery vehicles for biologically active nitric oxide. In: Antoine Gédéon PM, Florence B (eds) Studies in surface science and catalysis, vol 174, Part A. Elsevier, Amsterdam, Netherlands. pp 441–446. doi:10.1016/s0167-2991(08)80236-4

    Google Scholar 

  91. Fox S, Wilkinson TS, Wheatley PS, Xiao B, Morris RE, Sutherland A, Simpson AJ, Barlow PG, Butler AR, Megson IL, Rossi AG (2010) NO-loaded Zn2+-exchanged zeolite materials: a potential bifunctional anti-bacterial strategy. Acta Biomater 6(4):1515–1521. doi:http://dx.doi.org/10.1016/j.actbio.2009.10.038

    Google Scholar 

  92. Wei F, Yuan Yang J, Hou Q, Hua Zhu J (2010) Moisture-saturated zeolites – a new strategy for releasing nitric oxide. New J Chem 34(12):2897–2905

    CAS  Google Scholar 

  93. Mowbray M, Tan XJ, Wheatley PS, Morris RE, Weller RB (2008) Topically applied nitric oxide induces T-lymphocyte infiltration in human skin, but minimal inflammation. J Invest Dermatol 128(2):352–360. doi:10.1038/sj.jid.5701096

    CAS  Google Scholar 

  94. McKinlay AC (2010) New nitric oxide releasing materials. University of St Andrews, St Andrews

    Google Scholar 

  95. Xiao B, Wheatley PS, Zhao XB, Fletcher AJ, Fox S, Rossi AG, Megson IL, Bordiga S, Regli L, Thomas KM, Morris RE (2007) High-capacity hydrogen and nitric oxide adsorption and storage in a metal–organic framework. J Am Chem Soc 129(5):1203–1209. doi:10.1021/Ja066098k

    Google Scholar 

  96. Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309(5743):2040–2042. doi:10.1126/science.1116275

    CAS  Google Scholar 

  97. Ohkubo T, Takehara Y, Kuroda Y (2012) Water-initiated ordering around a copper ion of copper acetate confined in slit-shaped carbon micropores. Microporous Mesoporous Mater 154:82–86. doi:10.1016/j.micromeso.2011.09.011

    Google Scholar 

  98. Ingleson MJ, Heck R, Gould JA, Rosseinsky MJ (2009) Nitric oxide chemisorption in a postsynthetically modified metal−organic framework. Inorg Chem 48(21):9986–9988. doi:10.1021/ic9015977

    CAS  Google Scholar 

  99. Nguyen JG, Tanabe KK, Cohen SM (2010) Postsynthetic diazeniumdiolate formation and NO release from MOFs. Cryst Eng Comm 12(8):2335–2338

    CAS  Google Scholar 

  100. McKinlay AC, Xiao B, Wragg DS, Wheatley PS, Megson IL, Morris RE (2008) Exceptional behavior over the whole adsorption-storage-delivery cycle for NO in porous metal organic frameworks. J Am Chem Soc 130(31):10440–10444. doi:10.1021/ja801997r

    CAS  Google Scholar 

  101. Harding JL, Reynolds MM (2012) Metal organic frameworks as nitric oxide catalysts. J Am Chem Soc. doi:10.1021/ja210771m

    Google Scholar 

  102. Xiao B, Byrne PJ, Wheatley PS, Wragg DS, Zhao X, Fletcher AJ, Thomas KM, Peters L, EvansJohn SO, Warren JE, Zhou W, Morris RE (2009) Chemically blockable transformation and ultraselective low-pressure gas adsorption in a non-porous metal organic framework. Nat Chem 1(4):289–294

    CAS  Google Scholar 

  103. Allan PK, Chapman KW, Chupas PJ, Hriljac JA, Renouf CL, Lucas TCA, Morris RE (2012) Pair distribution function-derived mechanism of a single-crystal to disordered to single-crystal transformation in a hemilabile metal–organic framework. Chem Sci 3(8):2559–2564. doi:10.1039/c2sc20261a

    CAS  Google Scholar 

  104. Allan PK, Xiao B, Teat SJ, Knight JW, Morris RE (2010) In situ single-crystal diffraction studies of the structural transition of metal–organic framework copper 5-sulfoisophthalate, Cu-SIP-3. J Am Chem Soc 132(10):3605–3611. doi:10.1021/Ja910600b

    Google Scholar 

  105. Shimomura S, Higuchi M, Matsuda R, Yoneda K, Hijikata Y, Kubota Y, Mita Y, Kim J, Takata M, Kitagawa S (2010) Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer. Nat Chem 2(8):633–637

    CAS  Google Scholar 

  106. Mohideen MIH, Xiao B, Wheatley PS, McKinlay AC, Li Y, Slawin AMZ, Aldous DW, Cessford NF, Duren T, Zhao XB, Gill R, Thomas KM, Griffin JM, Ashbrook SE, Morris RE (2011) Protecting group and switchable pore-discriminating adsorption properties of a hydrophilic–hydrophobic metal–organic framework. Nat Chem 3(4):304–310. doi:10.1038/Nchem.1003

    Google Scholar 

  107. Wu LY, Wang R (2005) Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev 57(4):585–630. doi:10.1124/pr.57.4.3

    CAS  Google Scholar 

  108. Sjostrand T (1951) Endogenous formation of carbon monoxide; the CO concentration in the inspired and expired air of hospital patients. Acta Physiol Scand 22(2–3):137–141

    CAS  Google Scholar 

  109. Sjostrand T (1949) Endogenous formation of carbon monoxide in man. Nature 164(4170):580

    CAS  Google Scholar 

  110. Tenhunen R, Marver HS, Schmid R (1968) The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci 61(2):748–755

    CAS  Google Scholar 

  111. Von Burg DR (1999) Toxicology update. J Appl Toxicol 19(5):379–386. doi:10.1002/(sici)1099-1263(199909/10)19:5<379::aid-jat563>3.0.co;2-8

    Google Scholar 

  112. Li L, Hsu A, Moore PK (2009) Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system and in inflammation – a tale of three gases! Pharmacol Therapeut 123(3):386–400. doi:10.1016/j.pharmthera.2009.05.005

    Google Scholar 

  113. Awata S, Nakayama K, Suzuki I, Sugahara K, Kodama H (1995) changes in cystathionine gamma-lyase in various regions of rat-brain during development. Biochem Mol Biol Int 35(6):1331–1338

    CAS  Google Scholar 

  114. Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16(3):1066–1071

    CAS  Google Scholar 

  115. Wang H, Koster TK, Trease NM, Segalini J, Taberna PL, Simon P, Gogotsi Y, Grey CP (2011) Real-time NMR studies of electrochemical double-layer capacitors. J Am Chem Soc 133(48):19270–19273. doi:10.1021/ja2072115

    CAS  Google Scholar 

  116. Albert T (2009) Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices. J Chromatogr B 877(28):3366–3377. doi:10.1016/j.jchromb.2009.05.026

    Google Scholar 

  117. Furne J, Saeed A, Levitt MD (2008) Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. Am J Physiol Regul Integr Comp Physiol 295(5):R1479–R1485. doi:10.1152/ajpregu.90566.2008

    CAS  Google Scholar 

  118. Sasakura K, Hanaoka K, Shibuya N, Mikami Y, Kimura Y, Komatsu T, Ueno T, Terai T, Kimura H, Nagano T (2011) Development of a highly selective fluorescence probe for hydrogen sulfide. J Am Chem Soc 133(45):18003–18005. doi:10.1021/ja207851s

    CAS  Google Scholar 

  119. Beauchamp RO, Bus JS, Popp JA, Boreiko CJ, Andjelkovich DA (1984) A critical-review of the literature on hydrogen–sulfide toxicity. CRC Crit Rev Toxicol 13(1):25–97. doi:10.3109/10408448409029321

    CAS  Google Scholar 

  120. Jaeschke H (1996) Preservation injury: mechanisms, prevention and consequences. J Hepatol 25(5):774–780

    CAS  Google Scholar 

  121. Clavien PA, Harvey PRC, Strasberg SM (1992) Preservation and reperfusion injuries in liver allografts – an overview and synthesis of current studies. Transplantation 53(5):957–978

    CAS  Google Scholar 

  122. Nakao A, Choi AMK, Murase N (2006) Protective effect of carbon monoxide in transplantation. J Cell Mol Med 10(3):650–671. doi:10.2755/jcmm010.003.16

    Google Scholar 

  123. Abraham NG, Kappas A (2005) Heme oxygenase and the cardiovascular-renal system. Free Radic Bio Med 39(1):1–25. doi:10.1016/j.freeadbiomed.2005.03.010

    CAS  Google Scholar 

  124. Nakao A, Otterbein LE, Overhaus M, Sarady JK, Tsung A, Kimizuka K, Nalesnik MA, Kaizu T, Uchiyama T, Liu F, Murase N, Bauer AJ, Bach FH (2004) Biliverdin protects the functional integrity of a transplanted syngeneic small bowel. Gastroenterology 127(2):595–606. doi:10.1053/j.gastro.2004.05.059

    CAS  Google Scholar 

  125. Luckraz H, Tsui SS, Parameshwar J, Wallwork J, Large SR (2001) Improved outcome with organs from carbon monoxide poisoned donors for intrathoracic transplantation. Ann Thorac Surg 72(3):709–713

    CAS  Google Scholar 

  126. Nakao A, Kimizuka K, Stolz DB, Neto JS, Kaizu T, Choi AM, Uchiyama T, Zuckerbraun BS, Bauer AJ, Nalesnik NA, Otterbein LE, Geller DA, Murase N (2003) Protective effect of carbon monoxide inhalation for cold-preserved small intestinal grafts. Surgery 134(2):285–292. doi:10.1067/Msy.2003.238

    Google Scholar 

  127. Nakao A, Kimizuka K, Stolz DB, Neto JS, Kaizu T, Choi AMK, Uchiyama T, Zuckerbraun BS, Nalesnik MA, Otterbein LE, Murase N (2003) Carbon monoxide inhalation protects rat intestinal grafts from ischemia/reperfusion injury. Am J Pathol 163(4):1587–1598

    CAS  Google Scholar 

  128. Nakao A, Toyokawa H, Kimizuka K, Kiyomoto T, Bailey RJ, Nalesnik MA, Murase N (2004) Carbon monoxide inhalation protects heart allograft from chronic rejection. Am J Transplant 4:461–461

    Google Scholar 

  129. Nakao A, Toyokawa H, Tsung A, Nalesnik MA, Stolz DB, Kohmoto J, Ikeda A, Tomiyama K, Harada T, Takahashi T, Yang R, Fink MP, Morita K, Choi AMK, Murase N (2006) Ex vivo application of carbon monoxide in University of Wisconsin solution to prevent intestinal cold ischemia/reperfusion injury. Am J Transplant 6(10):2243–2255. doi:10.1111/j.1600-6143.2006.01465.x

    Google Scholar 

  130. Wagner F, Asfar P, Calzia E, Radermacher P, Szabo C (2009) Bench-to-bedside review: hydrogen sulfide – the third gaseous transmitter: applications for critical care. Crit Care 13(3)

    Google Scholar 

  131. Lowicka E, Beltowski J (2007) Hydrogen sulfide (H2S) – the third gas for interest for pharmacologists. Pharmacol Rep 59(1):4–24

    CAS  Google Scholar 

  132. Blackstone E, Morrison M, Roth MB (2005) H2S induces a suspended animation-like state in mice. Science 308(5721):518–518. doi:10.1126/science.1108581

    Google Scholar 

  133. Dagani R (2005) Torpor on demand – mice exposed to H2S enter reversible state of suspended animation. Chem Eng News 83(17):8–8

    CAS  Google Scholar 

  134. Haouzi P, Notet V, Chenuel B, Chalon B, Sponne I, Ogier V, Bihain B (2008) H2S induced hypometabolism in mice is missing in sedated sheep. Respir Physiol Neurobiol 160(1):109–115. doi:10.1016/j.resp.2007.09.001

    CAS  Google Scholar 

  135. Haouzi P, Bell H, Philmon M (2011) Hydrogen sulfide oxidation and the arterial chemoreflex: effect of methemoglobin. Respir Physiol Neurobiol 177(3):273–283. doi:10.1016/j.resp.2011.04.025

    CAS  Google Scholar 

  136. Li J, Zhang G, Cai S, Redington AN (2008) Effect of inhaled hydrogen sulfide on metabolic responses in anesthetized, paralyzed, and mechanically ventilated piglets. Pediatr Crit Care Med 9(1):110–112. doi:10.1097/01.pcc.0000298639.08519.oc

    Google Scholar 

  137. Allan PK, Wheatley PS, Aldous D, Mohideen MI, Tang C, Hriljac JA, Megson IL, Chapman KW, De Weireld G, Vaesen S, Morris RE (2012) Metal–organic frameworks for the storage and delivery of biologically active hydrogen sulfide. Dalton Trans 41(14):4060–4066

    CAS  Google Scholar 

  138. Hamon L, Leclerc H, Ghoufi A, Oliviero L, Travert A, Lavalley J-C, Devic T, Serre C, Férey Gr, De Weireld G, Vimont A, Maurin G (2011) Molecular insight into the adsorption of H2S in the flexible MIL-53(Cr) and rigid MIL-47(V) MOFs: infrared spectroscopy combined to molecular simulations. J Phys Chem C 115(5):2047–2056. doi:10.1021/jp1092724

    Google Scholar 

  139. Hamon L, Vimont A, Serre C, Devic T, Ghoufi A, Maurin G, Loiseau T, Millange F, Daturi M, Ferey G, De Weireld G (2009) Study of hydrogen sulphide adsorption on Mil-47(V) and Mil-53(Al, Cr, Fe) metal–organic frameworks by isotherms measurements and in-situ IR experiments. Character Porous Solids VIII 446(318):25–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell E. Morris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Allan, P.K., Morris, R.E. (2013). Medical Applications of Solid Nitrosyl Complexes. In: Mingos, D. (eds) Nitrosyl Complexes in Inorganic Chemistry, Biochemistry and Medicine II. Structure and Bonding, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2013_105

Download citation

Publish with us

Policies and ethics