Advertisement

Oligosilanes

  • Christoph MarschnerEmail author
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 155)

Abstract

The chemistry of oligosilanes has made numerous advances since the beginning of the new millennium. While during the time from the 1960s to the 1990s research has concentrated on comparably simple systems, more recent studies have introduced much complexity into oligosilane chemistry. In the course of studies on compounds with one or several multiple bonds between silicon atoms a rich precursor and derivatization chemistry of these compounds was developed. In addition numerous functionalized oligosilanes have been prepared so that today a fairly elaborate repertoire for the synthesis of these compounds exists. Another factor which has strongly contributed to the development of oligosilane chemistry is that oligosilanes are increasingly being applied as reagents as well as activating, protecting, and stereodirecting groups in organic synthesis.

Keywords

Cyclosilanes Dendrimers Electron delocalization Oligosilanes Transition metals 

Abbreviations

Ac

Acetyl

Ar

Aryl

Bu

Butyl

cat

Catalyst

Cp

Cyclopentadienyl

Cp*

Pentamethylcyclopentadienyl

Cy

Cyclohexyl

DIBALH

Diisobutylaluminum hydride

DME

1,2-Dimethoxyethane

dmpe

Bis(dimethylphosphino)ethane

E

Electrophile

equiv

Equivalent(s)

Et

Ethyl

Fp

CpFe(CO)2

i-Bu

Isobutyl

i-Pr

Isopropyl

LDA

Lithium diisopropylamide

LiNp

Lithium napthalenide

Me

Methyl

Mes

Mesityl, 2,4,6-trimethylphenyl (not methanesulfonyl)

NBS

N-bromosuccinimide

Nu

Nucleophile

Ph

Phenyl

Pr

Propyl

Pz

Pyrazolyl

s-Bu

Sec-butyl

t-Bu

Tert-butyl

Tf

Trifluoromethanesulfonyl (triflyl)

THF

Tetrahydrofuran

TMEDA

N,N,N,N′-tetramethyl- 1,2-ethylenediamine

TMS

Trimethylsilyl

Tol

4-Methylphenyl

XRD

X-ray diffraction

References

  1. 1.
    Hengge E (1974) Properties and preparations of Si–Si linkages. In: Hengge E (ed) Silicon Chemistry II, Springer, Berlin, HeidelbergGoogle Scholar
  2. 2.
    West R (1982) 9.4 – Organopolysilanes. In: Wilkinson G, Stone FGA, Abel EW (eds) Comprehensive organometallic chemistry. Pergamon, OxfordGoogle Scholar
  3. 3.
    West R (1995) 3 – Organopolysilanes. In: Abel EW, Stone FGA (eds) Comprehensive organometallic chemistry II. Elsevier, OxfordGoogle Scholar
  4. 4.
    Lukevics E, Pudova O (1998) Molecular structure of compounds with silicon–silicon bonds. Main Group Met Chem 21:123Google Scholar
  5. 5.
    Beckmann J (2007) 3.09 – Oligosilanes. In: Crabtree RH, Mingos DMP (eds) Comprehensive organometallic chemistry III. Elsevier, OxfordGoogle Scholar
  6. 6.
    Marschner C, Baumgartner J (2013) 4.4.5 Product subclass 5: disilanes and oligosilanes. In: Oestreich M (ed) Science of synthesis: Houben–Weyl methods of molecular transformations. Thieme, StuttgartGoogle Scholar
  7. 7.
    Kornev AN (2004) The tris(trimethylsilyl)silyl group in organic, coordination and organometallic chemistry. Russ Chem Rev 73:1065Google Scholar
  8. 8.
    Lee VY, Sekiguchi A (2010) Organometallic compounds of low-coordinate Si, Ge, Sn and Pb: from phantom species to stable compounds. Wiley, ChichesterGoogle Scholar
  9. 9.
    Baumgartner J, Grogger C (2013) Catenated silicon compounds (cyclic and acyclic). In: Chivers T (ed) Comprehensive inorganic chemistry II, ElsevierGoogle Scholar
  10. 10.
    Kipping FS, Sands JE (1921) Organic derivatives of silicon. Part XXV. Saturated and unsaturated silicohydrocarbons, Si4Ph8. J Chem Soc Trans 119:830Google Scholar
  11. 11.
    Kipping FS (1924) Organic derivatives of silicon. Part XXX. Complex silicohydrocarbons [SiPh2]n. J Chem Soc Trans 125:2291Google Scholar
  12. 12.
    Gilman H, Schwebke GL (1963) Decaphenylcyclopentasilane. J Am Chem Soc 85:1016Google Scholar
  13. 13.
    Burkhard CA, Rochow EG, Booth HS, Hartt J (1947) The present state of organosilicon chemistry. Chem Rev 41:97Google Scholar
  14. 14.
    Burkhard CA (1949) Polydimethylsilanes. J Am Chem Soc 71:963Google Scholar
  15. 15.
    Gilman H, Atwell WH, Schwebke GL (1964) Ultraviolet properties of compounds containing the silicon–silicon bond. J Organomet Chem 2:369Google Scholar
  16. 16.
    Kumada M, Tamao K (1968) Aliphatic polysilanes. Adv Organomet Chem 6:19Google Scholar
  17. 17.
    Sandorfy C (1955) LCAO MO calculations on saturated hydrocarbons and their substituted derivatives. Can J Chem 33:1337Google Scholar
  18. 18.
    Plitt HS, Downing JW, Raymond MK, Balaji V, Michl J (1994) Photophysics and potential-energy hypersurfaces of permethylated oligosilanes. Faraday Trans 90:1653Google Scholar
  19. 19.
    Bande A, Michl J (2009) Conformational dependence of σ-electron delocalization in linear chains: permethylated oligosilanes. Chem Eur J 15:8504Google Scholar
  20. 20.
    Alberti A, Chatgilialoglu C (1990) Addition of tris(trimethylsilyl)silyl radicals to the carbonyl group. Tetrahedron 46:3963Google Scholar
  21. 21.
    Chatgilialoglu C (1995) Structural and chemical properties of silyl radicals. Chem Rev 95:1229Google Scholar
  22. 22.
    Postigo A, Kopsov S, Ferreri C, Chatgilialoglu C (2007) Radical reactions in aqueous medium using (Me3Si)3SiH. Org Lett 9:5159Google Scholar
  23. 23.
    Chatgilialoglu C, Timokhin VI (2008) Silyl radicals in chemical synthesis. Adv Organomet Chem 57:117Google Scholar
  24. 24.
    Chatgilialoglu C (2008) (Me3Si)3SiH: twenty years after its discovery as a radical-based reducing agent. Chem Eur J 14:2310Google Scholar
  25. 25.
    Postigo A, Kopsov S, Zlotsky SS, Ferreri C, Chatgilialoglu C (2009) Hydrosilylation of C–C multiple bonds using (Me3Si)3SiH in water. Comparative study of the radical initiation step. Organometallics 28:3282Google Scholar
  26. 26.
    Chatgilialoglu C, Lalevee J (2012) Recent applications of the (TMS)3SiH radical-based reagent. Molecules 17:527Google Scholar
  27. 27.
    Boxer MB, Albert BJ, Yamamoto H (2009) The super silyl group in diastereoselective aldol and cascade reactions. Aldrichimica Acta 42:3Google Scholar
  28. 28.
    Brook MA, Balduzzi S, Mohamed M, Gottardo C (1999) The photolytic and hydrolytic lability of sisyl (Si(SiMe3)3) ethers, an alcohol protecting group. Tetrahedron 55:10027Google Scholar
  29. 29.
    Brook MA, Gottardo C, Balduzzi S, Mohamed M (1997) The sisyl (tris(trimethylsilyl)silyl) group: a fluoride resistant, photolabile alcohol protecting group. Tetrahedron Lett 38:6997Google Scholar
  30. 30.
    Ottosson H, Steel PG (2006) Silylenes, silenes, and disilenes: novel silicon-based reagents for organic synthesis? Chem Eur J 12:1576Google Scholar
  31. 31.
    Klare HFT, Oestreich M (2010) Silylium ions in catalysis. Dalton Trans 39:9176Google Scholar
  32. 32.
    Tamao K, Kawachi A (1995) Silyl anions. Adv Organomet Chem 38:1Google Scholar
  33. 33.
    Lickiss PD, Smith CM (1995) Silicon derivatives of the metals of groups 1 and 2. Coord Chem Rev 145:75Google Scholar
  34. 34.
    Belzner J, Dehnert U (2003) Alkaline and alkaline earth silyl compounds – preparation and structure. In: Rappoport Z, Apeloig Y (eds) The chemistry of organic silicon compounds. Wiley, ChichesterGoogle Scholar
  35. 35.
    Lerner H-W (2005) Silicon derivatives of group 1, 2, 11 and 12 elements. Coord Chem Rev 249:781Google Scholar
  36. 36.
    Sekiguchi A, Lee VY, Nanjo M (2000) Lithiosilanes and their application to the synthesis of polysilane dendrimers. Coord Chem Rev 210:11Google Scholar
  37. 37.
    Lee VY, Sekiguchi A (2011) Novel organometallic reagents: geminal dianionic derivatives of the heavy group 14 elements. Inorg Chem 50:12303Google Scholar
  38. 38.
    Tamao K, Tsuji H, Terada M, Asahara M, Yamaguchi S, Toshimitsu A (2000) Conformation control of oligosilanes based on configurationally constrained bicyclic disilane units. Angew Chem Int Ed 39:3287Google Scholar
  39. 39.
    Tsuji H, Terada M, Toshimitsu A, Tamao K (2003) σσ* Transition in anti,cisoid alternating oligosilanes: clear-cut evidence for suppression of conjugation effect by a cisoid turn. J Am Chem Soc 125:7486Google Scholar
  40. 40.
    Tsuji H, Michl J, Tamao K (2003) Recent experimental and theoretical aspects of the conformational dependence of UV absorption of short chain peralkylated oligosilanes. J Organomet Chem 685:9Google Scholar
  41. 41.
    Mallesha H, Tsuji H, Tamao K (2004) UV Absorption and mass spectra of n-alkylsilyl end-capped anti, cisoid-alternating oligosilanes up to docosasilane (Si22). Organometallics 23:1639Google Scholar
  42. 42.
    Tsuji H, Fukazawa A, Yamaguchi S, Toshimitsu A, Tamao K (2004) all-anti-Pentasilane: conformation control of oligosilanes based on the bis(tetramethylene)-tethered trisilane unit. Organometallics 23:3375Google Scholar
  43. 43.
    Fukazawa A, Tsuji H, Tamao K (2006) all-anti-Octasilane: conformation control of silicon chains using the bicyclic trisilane as a building block. J Am Chem Soc 128:6800Google Scholar
  44. 44.
    Marschner C, Baumgartner J, Wallner A (2006) Structurally and conformationally defined small methyl polysilanes. Dalton Trans 5667Google Scholar
  45. 45.
    Wallner A, Wagner H, Baumgartner J, Marschner C, Rohm HW, Kockerling M, Krempner C (2008) Structure, conformation, and UV absorption behavior of partially trimethylsilylated oligosilane chains. Organometallics 27:5221Google Scholar
  46. 46.
    Wallner A, Emanuelsson R, Baumgartner J, Marschner C, Ottosson H (2013) Coupling of disilane and trisilane segments through zero, one, two, and three disilanyl bridges in cyclic and bicyclic saturated carbosilanes. Organometallics 32:396Google Scholar
  47. 47.
    Wallner A, Hlina J, Konopa T, Wagner H, Baumgartner J, Marschner C, Flörke U (2010) Cyclic and bicyclic methylpolysilanes and some oligosilanylene-bridged derivatives. Organometallics 29:2660Google Scholar
  48. 48.
    Sanji T, Kato M, Tanaka M (2005) Self-assembly of oligosilane−cyclodextrin complexes using host-stabilized π interactions. Macromolecules 38:4034Google Scholar
  49. 49.
    El-Sayed I, Hatanaka Y, Onozawa S, Tanaka M (2001) Unusual locking of silicon chains into all-transoid conformation by pentacoordinate silicon atoms. J Am Chem Soc 123:3597Google Scholar
  50. 50.
    Klausen RS, Widawsky JR, Steigerwald ML, Venkataraman L, Nuckolls C (2012) Conductive molecular silicon. J Am Chem Soc 134:4541Google Scholar
  51. 51.
    Lambert JB, Pflug JL, Stern CL (1995) Synthesis and structure of a dendritic polysilane. Angew Chem Int Ed Engl 34:98Google Scholar
  52. 52.
    Lambert JB, Pflug JL, Denari JM (1996) First-generation dendritic polysilanes. Organometallics 15:615Google Scholar
  53. 53.
    Lambert J, Basso E, Qing N, Lim S, Pflug J (1998) Two-dimensional silicon-29 inadequate as a structural tool for branched and dendritic polysilanes. J Organomet Chem 554:113Google Scholar
  54. 54.
    Lambert JB, Wu H (1998) Synthesis and crystal structure of a nanometer-scale dendritic polysilane. Organometallics 17:4904Google Scholar
  55. 55.
    Lambert JB, Liu X, Wu H, Pflug JL (1999) Anionic vs. radical intermediates in the fragmentation reactions of dendritic polysilanes. J Chem Soc Perkin Trans 2:2747Google Scholar
  56. 56.
    Lambert JB, Wu H (2000) Atom connectivity and spectral assignments from the 29Si–29Si inadequate experiment on a nanometer scale dendritic polysilane. Magn Reson Chem 38:388Google Scholar
  57. 57.
    Lambert J (2003) Dendritic polysilanes. J Organomet Chem 685:113Google Scholar
  58. 58.
    Sekiguchi A, Nanjo M, Kabuto C, Sakurai H (1995) Polysilane dendrimers. J Am Chem Soc 117:4195Google Scholar
  59. 59.
    Nanjo M, Sunaga T, Sekiguchi A, Horn E (1999) Crystal structures of the first generation of phenyl-substituted and permethyl-substituted dendritic polysilanes. Inorg Chem Commun 2:203Google Scholar
  60. 60.
    Watanabe A, Nanjo M, Sunaga T, Sekiguchi A (2001) Dynamics of the excited state of polysilane dendrimers: origin of the broad visible emission of branched silicon chains. J Phys Chem A 105:6436Google Scholar
  61. 61.
    Fischer R, Baumgartner J, Kickelbick G, Hassler K, Marschner C (2004) Adamantanes, nortricyclenes, and dendrimers with extended silicon backbones. Chem Eur J 10:1021Google Scholar
  62. 62.
    Chtchian S, Kempe R, Krempner C (2000) Synthesis, structure and spectroscopic properties of branched oligosilanes. J Organomet Chem 613:208Google Scholar
  63. 63.
    Reinke H, Krempner C (2003) Structure and UV spectroscopic properties of a novel dendritic oligosilane. J Organomet Chem 685:134Google Scholar
  64. 64.
    Krempner C, Chtchian S, Reinke H (2004) First synthesis of a dihydrido functionalized double-cored oligosilane dendrimer. Inorg Chim Acta 357:3733Google Scholar
  65. 65.
    Krempner C, Köckerling M, Mamat C (2006) Novel double-cored oligosilane dendrimers – conformational dependence of the UV absorption spectra. Chem Commun 720Google Scholar
  66. 66.
    Krempner C, Reinke H (2006) The unusual UV absorption behavior of chloro functionalized oligosilane dendrimers. Inorg Chem Commun 9:259Google Scholar
  67. 67.
    Krempner C, Reinke H (2007) An approach to dendritic oligosilanes: controlling the conformation through ring formation. Organometallics 26:2053Google Scholar
  68. 68.
    Krempner C, Köckerling M (2008) Nanoscale double-core oligosilane dendrimers: synthesis, structure, and electronic properties. Organometallics 27:346Google Scholar
  69. 69.
    Krempner C (2012) Polysilane dendrimers. Polymers 4:408Google Scholar
  70. 70.
    Hengge E, Janoschek R (1995) Homocyclic silanes. Chem Rev 95:1495Google Scholar
  71. 71.
    Hengge E, Stüger H (1998) Recent advances in the chemistry of cyclopolysilanes. In: Rappoport Z, Apeloig Y (eds) The chemistry of organic silicon compounds. Wiley, Chichester, New YorkGoogle Scholar
  72. 72.
    West R (1982) Electron delocalization and “aromatic” behavior in cyclic polysilanes. Pure Appl Chem 54:1041Google Scholar
  73. 73.
    Brough LF, West R (1981) The permethylcyclosilanes (Me2Si)5 through (Me2Si)35. J Am Chem Soc 103:3049Google Scholar
  74. 74.
    Carlson CW, Haller KJ, Zhang XH, West R (1984) Organosilicon rotanes. J Am Chem Soc 106:5521Google Scholar
  75. 75.
    Tsumuraya T, Batcheller SA, Masamune S (1991) Compounds with silicon–silicon, germanium–germanium, and tin–tin double bonds in addition to strained ring systems with the silicon-, germanium-, and tin-framework. Angew Chem 30:902Google Scholar
  76. 76.
    Weidenbruch M (1995) Cyclotrisilanes. Chem Rev 95:1479Google Scholar
  77. 77.
    Masamune S, Hanzawa Y, Murakami S, Bally T, Blount JF (1982) Cyclotrisilane (R2Si)3 and disilene (R2Si:SiR2) system: synthesis and characterization. J Am Chem Soc 104:1150Google Scholar
  78. 78.
    Schäfer A, Weidenbruch M, Peters K, von Schnering H-G (1984) Hexa-tert-butylcyclotrisilane, a strained molecule with unusually long Si–Si and Si–C bonds. Angew Chem Int Ed Engl 23:302Google Scholar
  79. 79.
    Matsumoto H, Sakamoto A, Nagai Y (1986) The persilylcyclotrisilane [(Et3Si)2Si]3. J Chem Soc Chem Commun 1768Google Scholar
  80. 80.
    Kira M, Iwamoto T, Maruyama T, Kuzuguchi T, Yin D, Kabuto C, Sakurai H (2002) Hexakis(trialkylsilyl)cyclotrisilanes and photochemical generation of bis(trialkylsilyl)silylenes. J Chem Soc Dalton Trans 1539Google Scholar
  81. 81.
    Kira M, Maruyama T, Kabuto C, Ebata K, Sakurai H (1994) Stable tetrakis(trialkylsilyl)disilenes; synthesis, X-ray structures, and UV/VIS spectra. Angew Chem Int Ed Engl 33:1489Google Scholar
  82. 82.
    Klinkhammer KW (1997) Tris(trimethylsilyl)silanides of the heavier alkali metals – a structural study. Chem Eur J 3:1418Google Scholar
  83. 83.
    Klinkhammer KW (1998) Rearrangement of bis(hypersilyl)silylene and related compounds: an unusual way to three-membered rings. In: Auner N, Weis J (eds) Organosilicon chemistry III. Wiley-VCH, WeinheimGoogle Scholar
  84. 84.
    Hassler K, Dzambaski A, Baumgartner J (2007) Dihaloheptasilanes X2Si[SiMe(SiMe3)2]2 as potential precursors for silylenes, disilenes and cyclotrisilanes. Silicon Chem 3:271Google Scholar
  85. 85.
    Abersfelder K, Scheschkewitz D (2008) Syntheses of trisila analogues of allyl chlorides and their transformations to chlorocyclotrisilanes, cyclotrisilanides, and a trisilaindane. J Am Chem Soc 130:4114Google Scholar
  86. 86.
    Abersfelder K, White AJP, Rzepa HS, Scheschkewitz D (2010) A tricyclic aromatic isomer of hexasilabenzene. Science 327:564Google Scholar
  87. 87.
    Wiberg N, Niedermayer W, Fischer G, Nöth H, Suter M (2002) Synthesis, structure and dehalogenation of the disilene RClSi=SiClR [R = (tBu3Si)2MeSi]. Eur J Inorg Chem 2002:1066Google Scholar
  88. 88.
    Wiberg N, Auer H, Wagner S, Polborn K, Kramer G (2001) Disilenes R*XSi:SiXR* (R* = SitBu3) with silicon-bound H- and Hal atoms as X: formation, isomerization, and reaction. J Organomet Chem 619:110Google Scholar
  89. 89.
    Wiberg N, Niedermayer W (2001) Silylenes R*XSi (R* = SitBu3; X = H, Me, Ph, Hal, R*): synthesis and reactions. J Organomet Chem 628:57Google Scholar
  90. 90.
    Wiberg N, Vasisht S-K, Fischer G, Mayer P, Huch V, Veith M (2007) Reactivity of the unusually structured silicon cluster compound Si8(SitBu3)6. Z Anorg Allg Chem 633:2425Google Scholar
  91. 91.
    Klapoetke TM, Vasisht SK, Fischer G, Mayer P (2010) A reactive Si4 cage: K(SitBu3)3Si4. J Organomet Chem 695:667Google Scholar
  92. 92.
    Wiberg N, Niedermayer W, Polborn K, Mayer P (2002) Reactivity of the isolable disilene R*PhSi=SiPhR* (R*=SitBu3). Chem Eur J 8:2730Google Scholar
  93. 93.
    Wiberg N, Finger CMM, Polborn K (1993) Tetrakis(tri-tert-butylsilyl)-tetrahedro-tetrasilane (tBu3Si)4Si4: the first molecular silicon compound with a Si4 tetrahedron. Angew Chem Int Ed Engl 32:1054Google Scholar
  94. 94.
    Fischer G, Huch V, Mayer P, Vasisht SK, Veith M, Wiberg N (2005) Silicon compounds. Part 162. Si8(SitBu3)6: a hitherto unknown cluster structure in silicon chemistry. Angew Chem Int Ed 44:7884Google Scholar
  95. 95.
    Lee VY, Matsuno T, Ichinohe M, Sekiguchi A (2001) Interconversion of cyclotrimetallenes and dihalocyclotrimetallanes consisting of group 14 elements. Heteroat Chem 12:223Google Scholar
  96. 96.
    Fischer R, Konopa T, Baumgartner J, Marschner C (2004) Small cyclosilanes: syntheses and reactions toward mono- and dianions. Organometallics 23:1899Google Scholar
  97. 97.
    Lange H, Herzog U, Rheinwald G, Lang H, Roewer G (2002) Synthesis of cycloalkyl substituted cyclotetrasilanes. Main Group Met Chem 25:155Google Scholar
  98. 98.
    Lee VY, Takanashi K, Kato R, Matsuno T, Ichinohe M, Sekiguchi A (2007) Heavy analogues of the 6π-electron anionic ring systems: cyclopentadienide ion and cyclobutadiene dianion. J Organomet Chem 692:2800Google Scholar
  99. 99.
    Lee VY, Takanashi K, Matsuno T, Ichinohe M, Sekiguchi A (2004) Cyclobutadiene dianions consisting of heavier group 14 elements: synthesis and characterization. J Am Chem Soc 126:4758Google Scholar
  100. 100.
    Takanashi K, Lee VY, Ichinohe M, Sekiguchi A (2006) A (tetrasilacyclobutadiene)tricarbonyliron complex [{η4-(tBu2MeSi)4Si4}Fe(CO)3]: the silicon cousin of Pettit’s (cyclobutadiene)tricarbonyliron complex [(η4-H4C4)Fe(CO)3]. Angew Chem Int Ed 45:3269Google Scholar
  101. 101.
    Sekiguchi A, Matsuno T, Ichinohe M (2001) Cyclotetrasilenyl: the first isolable silyl radical. J Am Chem Soc 123:12436Google Scholar
  102. 102.
    Kyushin S, Sakurai H, Matsumoto H (1995) Hepta-tert-butylcyclotetrasilane: a highly crowded cyclotetrasilane. J Organomet Chem 499:235Google Scholar
  103. 103.
    Kyushin S, Kawai H, Matsumoto H (2004) (trans-1,2,2,3,4,4-Hexa-tert-butyl-1,3-cyclotetrasilanediyl)dipotassium: supramolecular structure of the silylpotassium-benzene complex. Organometallics 23:311Google Scholar
  104. 104.
    Chen YS, Gaspar PP (1982) Octakis(trimethylsilyl)cyclotetrasilane. A stable cyclotetrasilane from a silylene precursor. Organometallics 1:1410Google Scholar
  105. 105.
    Fischer R, Baumgartner J, Kickelbick G, Marschner C (2003) The first stable β-fluorosilylanion. J Am Chem Soc 125:3414Google Scholar
  106. 106.
    McNerney B, Whittlesey B, Krempner C (2011) Synthesis and reactivity of new pyrazolyl-functionalized potassium silanides. Eur J Inorg Chem 1699Google Scholar
  107. 107.
    Iwamoto T, Tsushima D, Kwon E, Ishida S, Isobe H (2012) Persilastaffanes: design, synthesis, structure, and conjugation between silicon cages. Angew Chem Int Ed 51:2340Google Scholar
  108. 108.
    Kobayashi H, Iwamoto T, Kira M (2005) A stable fused bicyclic disilene as a model for silicon surface. J Am Chem Soc 127:15376Google Scholar
  109. 109.
    Zirngast M, Flörke U, Baumgartner J, Marschner C (2009) Oligosilylated group 4 titanocenes in the oxidation state +3. Chem Commun 5538Google Scholar
  110. 110.
    Arp H, Zirngast M, Marschner C, Baumgartner J, Rasmussen K, Zark P, Müller T (2012) Synthesis of oligosilanyl compounds of group 4 metallocenes with the oxidation state +3. Organometallics 31:4309Google Scholar
  111. 111.
    Wagner H, Wallner A, Fischer J, Flock M, Baumgartner J, Marschner C (2007) Rearrangement of cyclic silanes with aluminum trichloride. Organometallics 26:6704Google Scholar
  112. 112.
    Hengge E, Kovar D (1979) Darstellung und Charakterisierung eines neuen cyclischen Siliciumchlorides Si4Cl8. Z Anorg Allg Chem 458:163Google Scholar
  113. 113.
    Koe JR, Powell DR, Buffy JJ, West R (2000) Octachlorocyclotetrasilane, perchloropolysilane and new dialkoxy- and diaminopolysilanes. In: Auner N, Weis J (eds) Organosilicon chemistry IV: from molecules to materials. Wiley-VCH, WeinheimGoogle Scholar
  114. 114.
    Koe JR, Fujiki M (2002) Heteroatom polysilylenes. Silicon Chem 1:77Google Scholar
  115. 115.
    Lee DW, Park YW, Han JS, Yoo BR (2009) Dephenylation of decaphenylcyclopentasilane with HCl catalyzed by aluminum chloride: facile synthetic route to cyclopentasilane. Bull Korean Chem Soc 30:2443Google Scholar
  116. 116.
    Hengge E, Bauer G (1973) Cyclopentasilane, the first unsubstituted cyclic silicon hydride. Angew Chem Int Ed Engl 12:316Google Scholar
  117. 117.
    Shimoda T, Matsuki Y, Furusawa M, Aoki T, Yudasaka I, Tanaka H, Iwasawa H, Wang D, Miyasaka M, Takeuchi Y (2006) Solution-processed silicon films and transistors. Nature 440:783Google Scholar
  118. 118.
    Kayser C, Kickelbick G, Marschner C (2002) Simple synthesis of oligosilyl-α, ω-dipotassium compounds. Angew Chem Int Ed 41:989Google Scholar
  119. 119.
    Fischer R, Frank D, Gaderbauer W, Kayser C, Mechtler C, Baumgartner J, Marschner C (2003) α,ω-Oligosilyl Dianions and Their Application in the Synthesis of Homo- and Heterocyclosilanes. Organometallics 22: 3723Google Scholar
  120. 120.
    Zirngast M, Baumgartner J, Marschner C (2008) Synthesis of cyclic and bicyclic polysilanes of variable ring sizes. Organometallics 27:6472Google Scholar
  121. 121.
    Ishikawa M, Watanabe M, Iyoda J, Ikeda H, Kumada M (1982) Aluminum chloride catalyzed skeletal rearrangement of permethylated cyclic polysilanes. Organometallics 1:317Google Scholar
  122. 122.
    Blinka TA, West R (1986) Metal halide catalyzed rearrangements of alkylcyclosilanes. Organometallics 5:128Google Scholar
  123. 123.
    Wagner H, Baumgartner J, Marschner C, Poelt P (2011) Rearrangement/fragmentation reactions of oligosilanes with aluminum chloride. Organometallics 30:3939Google Scholar
  124. 124.
    Hlina J, Mechtler C, Wagner H, Baumgartner J, Marschner C (2009) Multiple silyl exchange reactions: a way to spirooligosilanes. Organometallics 28:4065Google Scholar
  125. 125.
    Abersfelder K, Russell A, Rzepa HS, White AJP, Haycock PR, Scheschkewitz D (2012) Contraction and expansion of the silicon scaffold of stable Si6R6 isomers. J Am Chem Soc 134:16008Google Scholar
  126. 126.
    Uhlig F, Gspaltl P, Trabi M, Hengge E (1995) Zur darstellung von permethylierten cyclosilanylalkalimetall-derivaten. J Organomet Chem 493:33Google Scholar
  127. 127.
    Englich U, Graschy S, Hengge E, Herrmann U, Marschner C, Mechtler C, Pinter E, Ruhland-Senge K, Uhlig F (2000) On some reactions of undecamethylcyclohexasilanyl-substituted silanes. J Organomet Chem 598:202Google Scholar
  128. 128.
    Zirngast M, Flock M, Baumgartner J, Marschner C (2008) Formation of formal disilene fluoride adducts. J Am Chem Soc 130:17460Google Scholar
  129. 129.
    Englich U, Hengge E, Herrmann U, Marschner C, Ruhland-Senge K, Uhlig F (2000) Cyclohexasilanes with exocyclic organogermanium, -tin or -lead groups. J Organomet Chem 605:22Google Scholar
  130. 130.
    Stueger H, Fuerpass G, Mitterfellner T, Baumgartner J (2010) Synthesis and reactivity of NH2 derivatives of dodecamethylcyclohexasilane. Organometallics 29:618Google Scholar
  131. 131.
    Rautz H, Stüger H, Kickelbick G, Pietzsch C (2001) Synthesis, structural characterization and 57Fe-Mossbauer spectra of ferrocenylhexasilanes. J Organomet Chem 627:167Google Scholar
  132. 132.
    Stueger H, Fuerpass G, Renger K, Baumgartner J (2005) Synthesis, structures, and unusual photoluminescence of O- and N-functional cyclohexasilanes. Organometallics 24:6374Google Scholar
  133. 133.
    Chernyavskii AI, Larkin DY, Chernyavskaya NA (2003) Reactions of dodecamethylcyclohexasilane and polydimethylsilane with metal chlorides. J Organomet Chem 679:17Google Scholar
  134. 134.
    Chernyavskii AI, Buzin MI, Chernyavskaya NA (2009) Synthesis of cyclolinear permethylpolycarbosilanes with oligosilane fragments in the backbone and study of their properties. Russ Chem Bull 58:2266Google Scholar
  135. 135.
    Chernyavskii AI, Larkin DY, Buzin MI, Chernyavskaya NA (2011) Synthesis of organosilicon polymers with cyclohexasilane fragments in the main chain. Russ Chem Bull 60:304Google Scholar
  136. 136.
    Stueger H, Albering J, Flock M, Fuerpass G, Mitterfellner T (2011) cis,cis-1,3,5-Trihydroxynonamethylcyclohexasilane: A Cyclopolysilane with Unusual Properties. Organometallics 30: 2531Google Scholar
  137. 137.
    Larkin DY, Korlyukov AA, Matukhina EV, Buzin MI, Chernyavskaya NA, Antipin MY, Chernyavskii AI (2005) Bifunctional decamethylcyclohexasilanes X2Si6Me10 (X = Cl, H, or OH): molecular and crystal structures and mesomorphic properties. Russ Chem Bull 54:1612Google Scholar
  138. 138.
    Korlyukov AA, Larkin DY, Chernyavskaya NA, Antipin MY, Chernyavskii AI (2001) Molecular structure of 1,3-dihydroxydecamethylcyclohexasilane. Mendeleev Commun 195Google Scholar
  139. 139.
    Renger K, Kleewein A, Stuger H (2001) Fluorescence of siloxy substituted cyclohexasilanes. Phos Sulf Silicon Relat Elem 449:168Google Scholar
  140. 140.
    Grogger C, Rautz H, Stüger H (2001) Donor-acceptor substituted cyclohexasilanes: materials with potential nonlinear optical properties. Monatsh Chem 132:453Google Scholar
  141. 141.
    Kaats-Richters VEM, Cleij TJ, Jenneskens LW, Lutz M, Spek AL, van Walree CA (2003) Synthesis and structure of cis-1,4-Di(1-pyrenyl)decamethylcyclohexasilane. Organometallics 22:2249Google Scholar
  142. 142.
    Fischer R, Konopa T, Ully S, Baumgartner J, Marschner C (2003) Route Si6 revisited. J Organomet Chem 685:79Google Scholar
  143. 143.
    Wallner A, Hoelbling M, Baumgartner J, Marschner C (2007) Structural and spectroscopic studies of silylated cyclo- and bicyclosilanes. Silicon Chem 3:175Google Scholar
  144. 144.
    Wagner H, Baumgartner J, Müller T, Marschner C (2009) Shuttling germanium atoms into branched polysilanes. J Am Chem Soc 131:5022Google Scholar
  145. 145.
    Matsumura K, Brough LF, West R (1978) Medium-ring cyclosilanes from the reaction of dimethyldichlorosilane with lithium. J Chem Soc Chem Commun 1092Google Scholar
  146. 146.
    Shafiee F, Haller KJ, West R (1986) X-ray crystal and molecular structures of hexacosamethylcyclotridecasilane, (Me2Si)13, and dotriacontamethylcyclohexadecasilane, (Me2Si)16. J Am Chem Soc 108:5478Google Scholar
  147. 147.
    Setaka W, Hamada N, Kira M (2004) Novel synthesis and bridgehead functionalization of permethylbicyclo[2.2.2]octasilane. Chem Lett 33:626Google Scholar
  148. 148.
    Setaka W, Hamada N, Kabuto C, Kira M (2005) Intramolecular charge-transfer fluorescence of 1-phenyltridecamethylbicyclo[2.2.2]octasilane. Chem Commun 4666Google Scholar
  149. 149.
    Fischer J, Baumgartner J, Marschner C (2005) Synthesis and structure of sila-adamantane. Science 310:825Google Scholar
  150. 150.
    Nied D, Koeppe R, Klopper W, Schnoeckel H, Breher F (2010) Synthesis of a pentasilapropellane. Exploring the nature of a stretched silicon–silicon bond in a nonclassical molecule. J Am Chem Soc 132:10264Google Scholar
  151. 151.
    Abersfelder K, White AJP, Berger RJF, Rzepa HS, Scheschkewitz D (2011) A stable derivative of the global minimum on the Si6H6 potential energy surface. Angew Chem Int Ed 50:7936Google Scholar
  152. 152.
    Watanabe H, Suzuki H, Takahashi S, Ohyama K, Sekiguchi Y, Ohmori H, Nishiyama M, Sugo M, Yoshikawa M, Hirai N, Kanuma Y, Adachi T, Makino M, Sakata K, Kobayashi K, Kudo T, Matsuyama H, Kamigata N, Kobayashi M, Kijima M, Shirakawa H, Honda K, Goto M (2002) Peralkylated four- and five-membered cyclosilanes containing a heteroatom: synthesis, structure, and properties. Eur J Inorg Chem 1772Google Scholar
  153. 153.
    Fischer J, Gaderbauer W, Baumgartner J, Marschner C (2006) Group 14 hetero- mono- and bicyclosilanes. Heterocycles 67:507Google Scholar
  154. 154.
    Markov J, Fischer R, Wagner H, Noormofidi N, Baumgartner J, Marschner C (2004) Open, cyclic, and bicyclic compounds of double silylated phosphorus and boron. Dalton Trans 2166Google Scholar
  155. 155.
    Wagner H, Baumgartner J, Marschner C (2007) 1,1′-Oligosilylferrocene compounds. Organometallics 26:1762Google Scholar
  156. 156.
    Uhl W, Jasper B, Lawerenz A, Marschner C, Fischer J (2007) Heterocyclic compounds containing five-membered ESi4-rings (E = Ga, In). Z Anorg Allg Chem 633:2321Google Scholar
  157. 157.
    Gaderbauer W, Balatoni I, Wagner H, Baumgartner J, Marschner C (2010) Synthesis and structural diversity of oligosilanylzinc compounds. Dalton Trans 39:1598Google Scholar
  158. 158.
    Gaderbauer W, Zirngast M, Baumgartner J, Marschner C, Tilley TD (2006) Synthesis of polysilanylmagnesium compounds. Organometallics 25:2599Google Scholar
  159. 159.
    Xiao X-Q, Zhao H, Xu Z, Lai G, Li Z (2013) Synthesis and characterization of heterocyclic disilylchalcogenides. Dalton Trans 42:3994Google Scholar
  160. 160.
    Ackerhans C, Roesky HW, Vidovic D, Magull J (2003) Symmetric tetraalkynyldisilanes. Eur J Inorg Chem 66Google Scholar
  161. 161.
    Wrackmeyer B, Milius W, Badshah A (2002) Hexa(1-alkynyl)disilanes. Synthesis, structure and 1,1-ethylboration. J Organomet Chem 656:97Google Scholar
  162. 162.
    Böhme U, Günther B, Rittmeister B (2003) Selective synthesis of N-methylanilinooligosilanes. Eur J Inorg Chem 751Google Scholar
  163. 163.
    Kawakami Y, Omote M, Imae I, Shirakawa E (2003) Separation of optically active ethynylsilane derivatives and their polymerization by transition-metal catalysts. Macromolecules 36:7461Google Scholar
  164. 164.
    Uhlig W (2003) Tailor-made synthesis of functionally substituted oligosilanes from silyl triflates and (aminosilyl)lithium compounds. Z Naturforsch B 58:183Google Scholar
  165. 165.
    Uhlig W (2003) Tailor-made synthesis of functional substituted oligo- and polysilanes from silyl triflates and (aminosilyl)lithium compounds. J Organomet Chem 685:70Google Scholar
  166. 166.
    Gleiter R, Classen J, Rausch BJ, Oeser T, Rominger F (2002) Interaction of cyclic thiadiynes with CpCo(COD) – selectivity and reactivity. J Organomet Chem 641:3Google Scholar
  167. 167.
    Werz DB, Schulte JH, Rausch BJ, Gleiter R, Rominger F (2004) Structural properties of bis(hexacarbonyldicobalt) complexes with heteroatoms next to the former triple bonds - a contribution to the mechanism of the Pauson–Khand reaction. Eur J Inorg Chem 2585Google Scholar
  168. 168.
    Sakamaki K, Ohshita J, Kunai A, Nakao H, Adachi A, Okita K (2001) Synthesis and properties of novel σ–π alternating polymers with triphenylamine and organosilicon units. Appl Organomet Chem 15:939Google Scholar
  169. 169.
    Morisaki Y, Fujimura F, Chujo Y (2003) Synthesis and properties of novel σ–π-conjugated polymers with alternating organosilicon and [2.2]Paracyclophane units in the main chain. Organometallics 22:3553Google Scholar
  170. 170.
    Ohshita J, Yoshimoto K, Tada Y, Harima Y, Kunai A, Kunugi Y, Yamashita K (2003) Hole-transporting properties of organosilanylene–diethynylpyrene and diethynylanthracene alternating polymers. Applications to patterning of light-emitting images. J Organomet Chem 678:33Google Scholar
  171. 171.
    Ohshita J, Arase H, Sumida T, Mimura N, Yoshimoto K, Tada Y, Kunugi Y, Harima Y, Kunai A (2005) Preparation of polymers containing Fe(0)-coordinated 2,5-diethynylsilole units. Inorg Chim Acta 358:4156Google Scholar
  172. 172.
    Tanaka D, Ohshita J, Ooyama Y, Mizumo T, Harima Y (2012) Synthesis of disilanylene polymers with donor-acceptor-type π-conjugated units and applications to dye-sensitized solar cells. J Organomet Chem 719:30Google Scholar
  173. 173.
    Tsuji H, Sasaki M, Shibano Y, Toganoh M, Kataoka T, Araki Y, Tamao K, Ito O (2006) Photoinduced electron transfer of dialkynyldisilane-linked zinc porphyrin-[60]fullerene dyad. Bull Chem Soc Jpn 79:1338Google Scholar
  174. 174.
    Hamon P, Justaud F, Cador O, Hapiot P, Rigaut S, Toupet L, Ouahab L, Stueger H, Hamon J-R, Lapinte C (2008) Redox-active organometallics: magnetic and electronic couplings through carbon–silicon hybrid molecular connectors. J Am Chem Soc 130:17372Google Scholar
  175. 175.
    Payne MM, Parkin SR, Anthony JE (2005) Functionalized higher acenes: hexacene and heptacene. J Am Chem Soc 127:8028Google Scholar
  176. 176.
    Purushothaman B, Parkin SR, Anthony JE (2010) Synthesis and stability of soluble hexacenes. Org Lett 12:2060Google Scholar
  177. 177.
    Mechtler C, Zirngast M, Baumgartner J, Marschner C (2004) Synthesis and reactions of alkynyl oligosilanes. Eur J Inorg Chem 2004:3254Google Scholar
  178. 178.
    Mechtler C, Zirngast M, Gaderbauer W, Wallner A, Baumgartner J, Marschner C (2006) Synthesis of oligosilyldi- and trianions. J Organomet Chem 691:150Google Scholar
  179. 179.
    Zirngast M, Marschner C, Baumgartner J (2008) Group 4 metallocene complexes of tris(trimethylsilyl)silylacetylene and related alkynes. Organometallics 27:2570Google Scholar
  180. 180.
    Zirngast M, Marschner C, Baumgartner J (2006) Cobalt-assisted silicon−silicon bond activation. Organometallics 25:4897Google Scholar
  181. 181.
    Kira M, Kadowaki T, Yin D, Sakamoto K, Iwamoto T, Kabuto C (2007) Synthesis and structure of ethynylsilyllithiums. Organometallics 26:4890Google Scholar
  182. 182.
    Kabe Y, Sato A, Kadoi S, Chiba K, Ando W (2000) Zirconocene coupling route to 1,2-disilacyclobutanes. Chem Lett 1082Google Scholar
  183. 183.
    Park SK, Baek DJ (2003) Photoreactions of 1-(3-hydroxy-2-pyridyl)-2-(pentamethyldisilanyl)ethyne, aza analogue of 1-o-hydroxyphenyl-2-(pentamethyldisilanyl)ethyne. J Photochem Photobiol A 157:15Google Scholar
  184. 184.
    Park SK (2000) Photoreaction of 4,4′-bis(pentamethyldisilanylethynyl)biphenyl with methanol or acetone. J Photochem Photobiol A 135:155Google Scholar
  185. 185.
    Park SK, Shim SC (2000) Novel photoinduced intramolecular cycloaddition reactions of 1-(o-alkoxymethylphenyl)-2-pentamethyldisilanyl ethynes. J Photochem Photobiol A 136:219Google Scholar
  186. 186.
    Park SK, Baek DJ (2004) Photoreactions of 1-(3-acetoxy or methoxycarbonylmethoxy-2-pyridyl)-2-(pentamethyldisilanyl)ethynes. J Photochem Photobiol A 163:87Google Scholar
  187. 187.
    Naka A, Ishikawa M (2000) Silicon–carbon unsaturated compounds. 62. Reactions of silenes produced thermally from pivaloyl- and adamantoyltris(trimethylsilyl)silane with mono(silyl)acetylenes. J Organomet Chem 611:248Google Scholar
  188. 188.
    Naka A, Ohnishi H, Ohshita J, Ikadai J, Kunai A, Ishikawa M (2005) Silicon–carbon unsaturated compounds. 70. Thermolysis and photolysis of acylpolysilanes with mesitylacetylene. Organometallics 24:5356Google Scholar
  189. 189.
    Iwamoto T, Okita J, Kabuto C, Kira M (2002) Sila-metalation route to hydrido(trialkylsilyl)silyllithiums. J Am Chem Soc 124:11604Google Scholar
  190. 190.
    Braunschweig H, Colling M, Kollann C, Merz K, Radacki K (2001) [(OC)5Cr=BSi(SiMe3)3]: a terminal borylene complex with an electronically unsaturated boron atom. Angew Chem Int Ed 40:4198Google Scholar
  191. 191.
    Blank B, Colling-Hendelkens M, Kollann C, Radacki K, Rais D, Uttinger K, Whittell GR, Braunschweig H (2007) Aminoborylene complexes of group 6 elements and iron: a synthetic, structural, and quantum chemical study. Chem Eur J 13:4770Google Scholar
  192. 192.
    Braunschweig H, Colling M, Kollann C, Englert U (2002) The first silyl- and germylboryl complexes: synthesis from novel (dichloro)silyl- and (dichloro)germylboranes, structure and reactivity. J Chem Soc Dalton Trans 2289Google Scholar
  193. 193.
    Fan M, Paine RT, Duesler EN, Nöth H (2006) Synthesis and molecular structure of tris[(trimethylsilyl)silyl](diisopropylamino)(diphenylphosphino)borane. Z Anorg Allg Chem 632:2443Google Scholar
  194. 194.
    Nakata N, Sekiguchi A (2006) A stable silaborene: synthesis and characterization. J Am Chem Soc 128:422Google Scholar
  195. 195.
    Arp H, Marschner C, Baumgartner J (2010) The quest for silylhydroboranes: (Me3Si)3SiBH2. Dalton Trans 39:9270Google Scholar
  196. 196.
    Klemp C, Üffing C, Baum E, Schnöckel H (2000) Synthesis and structure of two mixed substituted dialanes Al2X2(Si(SiMe3)3)2·2THF (X = Cl, Br). Z Anorg Allg Chem 626:1787Google Scholar
  197. 197.
    Vollet J, Stösser G, Schnöckel H (2007) New structures of low valent Al hypersilanides: a negatively charged isomer with a closo-Al4Si-structure potentially indicates a new entry in polyhedral AlmSin-frameworks. Inorg Chim Acta 360:1298Google Scholar
  198. 198.
    Schormann M, Klimek KS, Hatop H, Varkey SP, Roesky HW, Lehmann C, Roepken C, Herbst-Irmer R, Noltemeyer M (2001) Sodium–potassium alloy for the reduction of monoalkyl aluminum(III) compounds. J Solid State Chem 162:225Google Scholar
  199. 199.
    Wochele R, Schwarz W, Klinkhammer KW, Locke K, Weidlein J (2000) New hypersilanides of the earth metals aluminium, gallium, and indium. Z Anorg Allg Chem 626:1963Google Scholar
  200. 200.
    Farwell JD, Hitchcock PB, Lappert MF (2007) Synthesis and characterisation of [AlMen{Si(SiMe3)3}3-n(thf)] (n = 1 or 2). J Organomet Chem 692:5492Google Scholar
  201. 201.
    Wochele R, Schwarz W, Klinkhammer KW, Weidlein J (2000) Tris(tris(trimethylsilyl)silyl)gallium, Ga{Si(Si(CH3)3)3}3. Z Anorg Allg Chem 626:833Google Scholar
  202. 202.
    Kehrwald M, Koestler W, Rodig A, Linti G, Blank T, Wiberg N (2001) On the chemistry of gallium. Part 18. Ga10[Si(SiMe3)3]6, [Ga10(SitBu3)6], and [Ga13(SitBu3)6] – syntheses and structural characterization of novel gallium cluster compounds. Organometallics 20:860Google Scholar
  203. 203.
    Linti G, Coban S, Rodig A, Sandholzer N (2003) Silicon-containing heterocyclic compounds of gallium and indium. Novel hydridogallanates. Z Anorg Allg Chem 629:1329Google Scholar
  204. 204.
    Linti G, Coban S, Dutta D (2004) The hexagallane [Ga6{SiMe(SiMe3)2}6] and the closo-hexagallanate [Ga6{Si(CMe3)3}4 (CH2C6H5)2]2−. The transition to an unusual precloso-cluster. Z Anorg Allg Chem 630:319Google Scholar
  205. 205.
    Nakata N, Izumi R, Lee VY, Ichinohe M, Sekiguchi A (2004) 1,3-Disila-2-gallata- and -indataallenic anions [>Si-M-Si<]·Li+ (M = Ga, In): compounds featuring double bonds between elements of groups 13 and 14. J Am Chem Soc 126:5058Google Scholar
  206. 206.
    Buehler M, Linti G (2006) Synthesis and structure of tetrameric tris(trimethylsilyl)silylindium(I) and of new silyl substituted indium compounds. Z Anorg Allg Chem 632:2453Google Scholar
  207. 207.
    Krempner C, Jäger-Fiedler U, Mamat C, Spannenberg A, Weichert K (2005) Highly reactive oligosilyltriflates – synthesis, structure and rearrangement. New J Chem 29:1581Google Scholar
  208. 208.
    Fischer J, Baumgartner J, Marschner C (2005) Silylgermylpotassium compounds. Organometallics 24:1263Google Scholar
  209. 209.
    Hashimoto H, Yagihashi Y, Ignatovich L, Kira M (2001) Synthesis, characterization, and photoreactions of 1,2-disiladigermacyclobutane. Heteroat Chem 12:398Google Scholar
  210. 210.
    Iwamoto T, Okita J, Yoshida N, Kira M (2010) Structure and reactions of an isolable Ge=Si double bonded compound, tetra(t-butyldimethylsilyl)germasilene. Silicon 2:209Google Scholar
  211. 211.
    Katir N, Matioszek D, Ladeira S, Escudié J, Castel A (2011) Stable N-heterocyclic carbene complexes of hypermetallyl germanium(II) and tin(II) compounds. Angew Chem Int Ed 50:5352Google Scholar
  212. 212.
    Matioszek D, Katir N, Ladeira S, Castel A (2011) Novel stable silyl, germyl, and stannyl germanium(II) compounds containing an amidinato ligand. Organometallics 30:2230Google Scholar
  213. 213.
    Schnepf A (2003) [Ge9{Si(SiMe3)3}3]: a soluble polyhedral Ge9 cluster stabilized by only three silyl ligands. Angew Chem Int Ed 42:2624Google Scholar
  214. 214.
    Schnepf A (2007) {Ge10Si[Si(SiMe3)3]4(SiMe3)2Me}: a Ge10Si framework reveals a structural transition onto elemental germanium. Chem Commun 192Google Scholar
  215. 215.
    Schenk C, Kracke A, Fink K, Kubas A, Klopper W, Neumaier M, Schnöckel H, Schnepf A (2011) The formal combination of three singlet biradicaloid entities to a singlet hexaradicaloid metalloid Ge14[Si(SiMe3)3]5[Li(THF)2]3 cluster. J Am Chem Soc 133:2518Google Scholar
  216. 216.
    Schenk C, Schnepf A (2007) [AuGe18{Si(SiMe3)3}6]: a soluble Au–Ge cluster on the way to a molecular cable? Angew Chem Int Ed 46:5314Google Scholar
  217. 217.
    Schenk C, Henke F, Santiso-Quinones G, Krossing I, Schnepf A (2008) [Si(SiMe3)3]6Ge18M (M = Cu, Ag, Au): metalloid cluster compounds as unusual building blocks for a supramolecular chemistry. Dalton Trans 4436Google Scholar
  218. 218.
    Henke F, Schenk C, Schnepf A (2009) [Si(SiMe3)3]6Ge18M (M = Zn, Cd, Hg): Neutral metalloid cluster compounds of germanium as highly soluble building blocks for supramolecular chemistry. Dalton Trans 9141Google Scholar
  219. 219.
    Schenk C, Schnepf A (2009) {Ge9R3Cr(CO)5} and {Ge9R3Cr(CO)3}: a metalloid cluster (Ge9R3 ) as a flexible ligand in coordination chemistry [R = Si(SiMe3)3]. Chem Commun 3208Google Scholar
  220. 220.
    Henke F, Schenk C, Schnepf A (2011) [Si(SiMe3)3]3Ge9M(CO)3 (M = Cr, Mo, W): coordination chemistry with metalloid clusters. Dalton Trans 40:6704Google Scholar
  221. 221.
    Li F, Muñoz-Castro A, Sevov SC (2012) [Ge9{Si(SiMe3)3}3{SnPh3}]: A tetrasubstituted and neutral deltahedral nine-atom cluster. Angew Chem Int Ed 124:8709Google Scholar
  222. 222.
    Li F, Sevov SC (2012) Rational synthesis of [Ge9{Si(SiMe3)3}3] from its parent zintl ion Ge9 4−. Inorg Chem 51:2706Google Scholar
  223. 223.
    Freeman WP, Dysard JM, Tilley TD, Rheingold AL (2002) Synthesis and reactivity of η5-germacyclopentadienyl complexes of iron. Organometallics 21:1734Google Scholar
  224. 224.
    Usui Y, Hosotani S, Ogawa A, Nanjo M, Mochida K (2005) Successive formation of hydrido(germyl)platinum, germaplatinacycle, and germylene-bridged dinuclear platinum complexes from the reaction of a zerovalent platinum complex with α, ω-dihydrodigermanes. Organometallics 24:4337Google Scholar
  225. 225.
    Lee VY, Ichinohe M, Sekiguchi A, Takagi N, Nagase S (2000) The first three-membered unsaturated rings consisting of different heavier group 14 elements: 1-disilagermirene with a Si:Si double bond and its isomerization to a 2-disilagermirene with a Si:Ge double bond. J Am Chem Soc 122:9034Google Scholar
  226. 226.
    Lee VY, Ichinohe M, Sekiguchi A (2001) A new pathway in the reaction of disilene with carbonyl compounds: an “ene” reaction instead of cycloaddition. Chem Commun 2146Google Scholar
  227. 227.
    Lee VY, Ichinohe M, Sekiguchi A (2001) Reaction of disilagermirenes with phenylacetylene: from a germasilene -Ge:Si- to a metalladiene of the type -Si:Ge-C:C-. J Organomet Chem 636:41Google Scholar
  228. 228.
    Lee VY, Ichinohe M, Sekiguchi A (2002) 2,4-Disila-1-germatricyclo[2.1.0.02,5]Pentane: a new type of cage compound of group 14 elements with an extremely long Ge-C bridge bond and an “umbrella”-type configuration of a Ge atom. J Am Chem Soc 124:9962Google Scholar
  229. 229.
    Lee VY, Ichinohe M, Sekiguchi A (2002) Interaction of 1-disilagermirene with carbonyl compounds. Main Group Met Chem 25:1Google Scholar
  230. 230.
    Lee VY, Ichinohe M, Sekiguchi A (2003) Disilagermirenes: heavy cyclopropenes of Si and Ge atoms. J Organomet Chem 685:168Google Scholar
  231. 231.
    Lee VY, Takanashi K, Ichinohe M, Sekiguchi A (2003) A chemical trick: how to make a digermene from a disilene, formation of 3Δ-1,2,3,4-disiladigermetene. J Am Chem Soc 125:6012Google Scholar
  232. 232.
    Lee VY, Takanashi K, Nakamoto M, Sekiguchi A (2004) 3Δ-1,2,3,4-Disilagermastannetene: the first cyclic germastannene. Russ Chem Bull 53:1102Google Scholar
  233. 233.
    Lee VY, Sekiguchi A (2004) Unexpected hydrolithiation of M:M′ double bond (M, M′ = Si, Ge) with tBuLi. Chem Lett 33:84Google Scholar
  234. 234.
    Lee VY, Takanashi K, Ichinohe M, Sekiguchi A (2004) The first bicyclo[1.1.0]butane dianion of heavier group 14 elements. Angew Chem Int Ed 43:6703Google Scholar
  235. 235.
    Lee VY, Yasuda H, Ichinohe M, Sekiguchi A (2007) Heavy cyclopropene analogues R4SiGe2 and R4Ge3 (R = SiMetBu2) – new members of the cyclic digermenes family. J Organomet Chem 692:10Google Scholar
  236. 236.
    Lee VY, Yasuda H, Sekiguchi A (2007) Interplay of EnE’3-nC valence isomers (E, E′ = Si, Ge): bicyclo[1.1.0]Butanes with very short bridging bonds and their isomerization to alkyl-substituted cyclopropenes. J Am Chem Soc 129:2436Google Scholar
  237. 237.
    Takanashi K, Lee VY, Ichinohe M, Sekiguchi A (2007) (η5-Cyclopentadienyl)(η4-tetrasila- and η4-trisilagermacyclobutadiene)cobalt: sandwich complexes featuring heavy cyclobutadiene ligands. Eur J Inorg Chem 5471Google Scholar
  238. 238.
    Lee VY, Takanashi K, Matsuno T, Ichinohe M, Sekiguchi A (2010) The hexasiladigermacubane dianion. Appl Organometal Chem 24:834Google Scholar
  239. 239.
    Schürmann M, Uhlig F (2002) 1,2,3,4,5,6-Hexasila-7,8-distannabicyclo[2.2.2]octanes: a novel approach toward bicyclo derivatives of group 14 elements. Organometallics 21:986Google Scholar
  240. 240.
    Hermann U, Reeske G, Schürmann M, Uhlig F (2001) Syntheses and reactivity of stannyloligosilanes. III lithiated stannasilanes – building blocks for monocyclic Si–Sn rings. Z Anorg Allg Chem 627:453Google Scholar
  241. 241.
    Costisella B, Englich U, Prass I, Schürmann M, Ruhlandt-Senge K, Uhlig F (2000) Syntheses and reactivity of stannyloligosilanes. 2. Branched stannyloligosilanes. Organometallics 19:2546Google Scholar
  242. 242.
    Baumgartner J, Fischer R, Fischer J, Wallner A, Marschner C, Flörke U (2005) Structural aspects of trimethylsilylated branched group 14 compounds. Organometallics 24:6450Google Scholar
  243. 243.
    Arp H, Baumgartner J, Marschner C, Müller T (2011) A cyclic disilylated stannylene: synthesis, dimerization, and adduct formation. J Am Chem Soc 133:5632Google Scholar
  244. 244.
    Arp H, Baumgartner J, Marschner C, Zark P, Müller T (2012) Coordination chemistry of cyclic disilylated stannylenes and plumbylenes to group 4 metallocenes. J Am Chem Soc 134:10864Google Scholar
  245. 245.
    Klinkhammer K (2002) Dihypersilylstannylene and dihypersilylplumbylene – two Lewis-amphoteric carbene homologues. Polyhedron 21:587Google Scholar
  246. 246.
    Becker M, Foerster C, Franzen C, Hartrath J, Kirsten E, Knuth J, Klinkhammer KW, Sharma A, Hinderberger D (2008) Persistent radicals of trivalent tin and lead. Inorg Chem 47:9965Google Scholar
  247. 247.
    Abersfelder K, Nguyen T, Scheschkewitz D (2009) Stannyl-substituted disilenes and a disilastannirane. Z Anorg Allg Chem 635:2093Google Scholar
  248. 248.
    Schrenk C, Schellenberg I, Poettgen R, Schnepf A (2010) The formation of a metalloid Sn10[Si(SiMe3)3]6 cluster compound and its relation to the α↔β tin phase transition. Dalton Trans 39:1872Google Scholar
  249. 249.
    Schrenk C, Neumaier M, Schnepf A (2012) {Sn9[Si(SiMe3)3]3} and {Sn8Si[Si(SiMe3)3]3}: variations of the E9 cage of metalloid group 14 clusters. Inorg Chem 51:3989Google Scholar
  250. 250.
    Schrenk C, Winter F, Pöttgen R, Schnepf A (2012) {Sn9[Si(SiMe3)3]2}2−: a metalloid tin cluster compound with a Sn9 core of oxidation state zero. Inorg Chem 51:8583Google Scholar
  251. 251.
    Schrenk C, Helmlinger J, Schnepf A (2012) {Sn10[Si(SiMe3)3]5}: an anionic metalloid tin cluster from an isolable SnI halide solution. Z Anorg Allg Chem 638:589Google Scholar
  252. 252.
    Schrenk C, Schnepf A (2010) Sn[Si(SiMe3)3]3 and Sn3[Si(SiMe3)3]4: first insight into the mechanism of the disproportionation of a tin monohalide gives access to the shortest double bond of tin. Chem Commun 46:6756Google Scholar
  253. 253.
    Schrenk C, Kubas A, Fink K, Schnepf A (2011) [Sn4Si{Si(SiMe3)3}4{SiMe3}2]: a model compound for the unexpected first-order transition from a singlet biradicaloid to a classical bonded molecule. Angew Chem Int Ed 50:7273Google Scholar
  254. 254.
    Klinkhammer KW, Schwarz W (1995) Bis(hypersilyl)tin and bis(hypersilyl)lead, two electron-rich carbene homologs. Angew Chem Int Ed Engl 34:1334Google Scholar
  255. 255.
    Hino S, Olmstead M, Phillips AD, Wright RJ, Power PP (2004) Terphenyl ligand stabilized lead(II) derivatives: steric effects and lead–lead bonding in diplumbenes. Inorg Chem 43:7346Google Scholar
  256. 256.
    Klinkhammer KW, Xiong Y, Yao S (2004) Molecular lead clusters? From unexpected discovery to rational synthesis. Angew Chem Int Ed 43:6202Google Scholar
  257. 257.
    Foerster C, Klinkhammer KW, Tumanskii B, Krueger H-J, Kelm H (2007) Stable mononuclear lead(III) compound: a lead-centered radical. Angew Chem Int Ed 46:1156Google Scholar
  258. 258.
    Arp H, Baumgartner J, Marschner C, Zark P, Müller T (2012) Dispersion energy enforced dimerization of a cyclic disilylated plumbylene. J Am Chem Soc 134:6409Google Scholar
  259. 259.
    Trommer K, Herzog U, Schulze N, Roewer G (2001) Disproportionation of chlorodisilanes containing vinyl, diethylamino or phenyl substituents. Main Group Met Chem 24:425Google Scholar
  260. 260.
    Zirngast M, Baumgartner J, Marschner C (2008) Preparation, structure and reactivity of Et2N(Me3Si)2SiK. Eur J Inorg Chem 1078Google Scholar
  261. 261.
    Gollner W, Renger K, Stueger H (2003) Linear and cyclic polysilanes containing the bis(trimethylsilyl)amino group: synthesis, reactions, and spectroscopic characterization. Inorg Chem 42:4579Google Scholar
  262. 262.
    Gehrhus B, Hitchcock PB, Zhang L (2004) An isolable radical anion and dianion of a cyclotetrasilane: synthesis and structure of [Si{1,2-(NEt)2C6H4}]4 −• and [Si{1,2-(NEt)2C6H4}]4 2−. Angew Chem Int Ed 43:1124Google Scholar
  263. 263.
    Antolini F, Gehrhus B, Hitchcock PB, Lappert MF (2005) Crystalline Na-Si(NN) derivatives [Si(NN) = Si{(NCH2tBu)2C6H4-1,2}]: the silylenoid [Si(NN)OMe], the dianion [(NN)Si-Si(NN)]2−, and the radical anion c-[Si(NN)]3 . Chem Commun 5112Google Scholar
  264. 264.
    Gehrhus B, Hitchcock PB, Jansen H (2006) The stable silylene Si[(NCH2But)2C6H4-1,2]: reactions with group 14 element halides. J Organomet Chem 691:811Google Scholar
  265. 265.
    Gehrhus B, Hitchcock PB, Pongtavornpinyo R, Zhang L (2006) Insights into the making of a stable silylene. Dalton Trans 1847Google Scholar
  266. 266.
    West R, Schmedake TA, Haaf M, Becker J, Mueller T (2001) A disilanyl dianion and a silyl dianion from a stable silylene. Chem Lett 68Google Scholar
  267. 267.
    Naka A, Hill NJ, West R (2004) Free radical reactions of stable silylenes and germylenes. Organometallics 23:6330Google Scholar
  268. 268.
    Villinger A, Westenkirchner A, Wustrack R, Schulz A (2008) GaCl3-Assisted cyclization reactions in hypersilyl(trimethylsilyl)aminodichlorophosphine. Inorg Chem 47:9140Google Scholar
  269. 269.
    Kuzora R, Schulz A, Villinger A, Wustrack R (2009) Hypersilylated cyclodiphosphadiazanes and cyclodiphosphadiazenium salts. Dalton Trans 9304Google Scholar
  270. 270.
    Kuprat M, Kuzora R, Lehmann M, Schulz A, Villinger A, Wustrack R (2010) Silver tetrakis(hexafluoroisopropoxy)aluminate as hexafluoroisopropyl transfer reagent for the chlorine/hexafluoroisopropyl exchange in imino phosphanes. J Organomet Chem 695:1006Google Scholar
  271. 271.
    Beweries T, Kuzora R, Rosenthal U, Schulz A, Villinger A (2011) [P(μ-NTer)]2: a biradicaloid that is stable at high temperature. Angew Chem Int Ed 50:8974Google Scholar
  272. 272.
    Tang Y, Zakharov LN, Rheingold AL, Kemp RA (2005) Synthesis and structure of lithium amides and solvated derivatives containing bulky bis(silyl)amide ligands. Polyhedron 24:1739Google Scholar
  273. 273.
    Wang Z-X, Chai Z-Y, Li Y-X (2005) Reaction of aryl azides with tris(trimethylsilyl)silyllithium: synthesis of tmeda or THF adducts of [Li{N(Ar)Si(SiMe3)3}] and 1,4-trimethylsilyl migration from oxygen to nitrogen. J Organomet Chem 690:4252Google Scholar
  274. 274.
    Takeuchi K, Ikoshi M, Ichinohe M-A, Sekiguchi A (2011) Silicon version of enamines: amino-substituted disilenes by the reactions of the disilyne RSi≡SiR (R = SiiPr[CH(SiMe3)2]2) with amines. J Organomet Chem 696:1156Google Scholar
  275. 275.
    Azarifar D (2003) Reactions of hydrazines and ureas with silenes. Organometallics 22:1314Google Scholar
  276. 276.
    Hardwick JA, Pavelka LC, Baines KM (2012) The addition of amides to group 14 (di)-metallenes. Dalton Trans 41:609Google Scholar
  277. 277.
    Kato T, Polishchuk O, Gornitzka H, Baceiredo A, Bertrand G (2000) The peculiar behavior of a diphosphirenium salt towards sodium η5-cyclopentadienyl(dicarbonyl)ferrate. J Organomet Chem 613:33Google Scholar
  278. 278.
    Von Hänisch C, Matern E (2005) Synthesis and characterization of the 1,2-diphosphinyldisilanes [Me4Si2(PH2)2] and [Me4Si2(PHMe)2] as well as their reactions with n-butyllithium. Z Anorg Allg Chem 631:1655Google Scholar
  279. 279.
    Traut S, von Hänisch C, Kathagen H-J (2009) Metalation and oxidative coupling of the unique cyclic silylphosphanes (iPr2Si)3PH and (iPr2Si)4PH. Eur J Inorg Chem 777Google Scholar
  280. 280.
    Von Hänisch C, Traut S, Stahl S (2007) Synthesis and metalation of the diphosphinyldisilane iPr4Si2(PH2)2, of the cyclic silylphosphine (iPr2Si)3PH as well as of the cyclic siloxyphosphine tBu2Si(OSiiPr2)2PH. Z Anorg Allg Chem 633:2199Google Scholar
  281. 281.
    Tekautz G, Baumgartner J, Dransfeld A, Hassler K (2007) Silicon-phosphorus and silicon-arsenic cage compounds with bicyclo[2.2.1]heptane, bicyclo[3.2.1]octane and tricyclo[3.3.3.1.03,7]nonane backbones. Eur J Inorg Chem 4071Google Scholar
  282. 282.
    Cappello V, Baumgartner J, Dransfeld A, Flock M, Hassler K (2006) Hypersilylphosphanylidene: a facile low-temperature generation and formation of bis(hypersilyl)diphosphene and the bis(hypersilyl)triphosphaallyl anion. Eur J Inorg Chem 2393Google Scholar
  283. 283.
    Cappello V, Baumgartner J, Dransfeld A, Hassler K (2006) Monophosphanes and diphosphanes with the hypersilyl substituent. Eur J Inorg Chem 4589Google Scholar
  284. 284.
    Dzambasky A, Baumgartner J, Hassler K (2009) Phosphanes with bulky oligosilyl substituents. J Organomet Chem 694:757Google Scholar
  285. 285.
    Noblet P, Cappello V, Tekautz G, Baumgartner J, Hassler K (2011) Heptaphosphanortricyclenes with oligosilyl substituents: syntheses and reactions. Eur J Inorg Chem 101Google Scholar
  286. 286.
    Noblet P, Dransfeld A, Fischer R, Flock M, Hassler K (2011) Derivatization of tris(trimethylsilyl)heptaphosphane. J Organomet Chem 696:652Google Scholar
  287. 287.
    Chan WTK, García F, Hopkins AD, Martin LC, McPartlin M, Wright DS (2007) An unexpected pathway in the cage opening and aggregation of P4. Angew Chem Int Ed 46:3084Google Scholar
  288. 288.
    Garcia F, Hopkins AD, Kowenicki RA, McPartlin M, Tesa Y (2004) A one-pot synthesis to [(Me3Si)3SiSb]4; a potential precursor for Sb4 2−. Dalton Trans 2051Google Scholar
  289. 289.
    Linti G, Köstler W (2002) Synthesis and structures of novel ring compounds of bismuth with tris(trimethylsilyl)silyl and -stannyl substituents – [(Me3Si)3Si]4Bi4 and [(Me3Si)3Sn]6Bi8. Z Anorg Allg Chem 628:63Google Scholar
  290. 290.
    Linti G, Kostler W, Pritzkow H (2002) Bismuthanides and bismuthanediides – synthesis and structural characterization of [R2Bi] and [(RBi)12Na21]3− salts with bulky silyl substituents. Eur J Inorg Chem 2643Google Scholar
  291. 291.
    Balduzzi S, Brook MA (2000) Alkoxyallylsilanes: functional protecting groups. Tetrahedron 56:1617Google Scholar
  292. 292.
    Brook AG, Habtemariam A (2003) Insertion reactions of nitrosobenzene and ketenes into silaaziridines. Can J Chem 81:1164Google Scholar
  293. 293.
    Guliashvili T, Tibbelin J, Ryu J, Ottosson H (2010) Unsuccessful attempts to add alcohols to transient 2-amino-2-siloxy-silenes – leading to a new benign route for base-free alcohol protection. Dalton Trans 39:9379Google Scholar
  294. 294.
    Boxer MB, Yamamoto H (2005) Remarkable tris(trimethylsilyl)silyl group for diastereoselective [2+2] cyclizations. Org Lett 7:3127Google Scholar
  295. 295.
    Boxer MB, Yamamoto H (2006) Tris(trimethylsilyl)silyl-governed aldehyde cross-aldol cascade reaction. J Am Chem Soc 128:48Google Scholar
  296. 296.
    Boxer MB, Yamamoto H (2007) “Super silyl” group for diastereoselective sequential reactions: access to complex chiral architecture in one pot. J Am Chem Soc 129:2762Google Scholar
  297. 297.
    Boxer MB, Akakura M, Yamamoto H (2008) Ketone super silyl enol ethers in sequential reactions: diastereoselective generation of tertiary carbinols in one pot. J Am Chem Soc 130:1580Google Scholar
  298. 298.
    Boxer MB, Yamamoto H (2008) Super silyl group for a sequential diastereoselective aldol−polyhalomethyllithium addition reaction. Org Lett 10:453Google Scholar
  299. 299.
    Albert BJ, Yamamoto H (2010) A triple-aldol cascade reaction for the rapid assembly of polyketides. Angew Chem Int Ed 49: 2747Google Scholar
  300. 300.
    Yamaoka Y, Yamamoto H (2010) Super silyl stereo-directing groups for complete 1,5-syn and -anti stereoselectivities in the aldol reactions of β-siloxy methyl ketones with aldehydes. J Am Chem Soc 132:5354Google Scholar
  301. 301.
    Albert BJ, Yamaoka Y, Yamamoto H (2011) Rapid total syntheses utilizing “supersilyl” chemistry. Angew Chem Int Ed 50:2610Google Scholar
  302. 302.
    Brady PB, Yamamoto H (2012) Rapid and stereochemically flexible synthesis of polypropionates: super-silyl-governed aldol cascades. Angew Chem Int Ed 51:1942Google Scholar
  303. 303.
    Marciniec B, Maciejewski H (2001) Transition metal-siloxide complexes; synthesis, structure and application to catalysis. Coord Chem Rev 223:301Google Scholar
  304. 304.
    Hoffmann D, Reinke H, Krempner C (2002) Dihydroxyoligosilanes as novel ligands in coordination chemistry-first synthesis of 2,5-dioxa-3,4-disilatitanacyclopentanes. J Organomet Chem 662:1Google Scholar
  305. 305.
    Krempner C, Reinke H, Weichert K, Spannenberg A (2004) Diastereoselective formation of a meso-disilane-1,2-diol – a dianionic siloxide ligand for Ti and Zr. Polyhedron 23:2475Google Scholar
  306. 306.
    Krempner C, Kopf J, Mamat C, Reinke H, Spannenberg A (2004) Novel polysilanols by selective functionalizations of oligosilanes. Angew Chem Int Ed 43:5406Google Scholar
  307. 307.
    Flemming A, Mamat C, Koeckerling M, Krempner C, Miethchen R (2006) Novel carbohydrate-based mono- and bidentate oligosilyl ethers. Synthesis 2685Google Scholar
  308. 308.
    Jaeger-Fiedler U, Koeckerling M, Ludwig R, Wulf A, Krempner C (2006) Hydroxy-substituted oligosilane dendrimers: controlling the electronic properties through hydrogen bonding. Angew Chem Int Ed 45:6755Google Scholar
  309. 309.
    Krempner C, Koeckerling M, Reinke H, Weichert K (2006) Trisilane-1,3-diolato complexes of Ti and Zr: syntheses and X-ray crystal structures. Inorg Chem 45:3203Google Scholar
  310. 310.
    Krempner C, Reinke H, Weichert K (2007) Synthesis and structure of titanium and zirconium disilane-1,2-diolates. Polyhedron 26:3633Google Scholar
  311. 311.
    Krempner C, Reinke H, Weichert K (2007) Synthesis and structure of cyclic aluminum disiloxides. Organometallics 26:1386Google Scholar
  312. 312.
    Krempner C, Ludwig R, Flemming A, Miethchen R, Koeckerling M (2007) Twisted oxygen-containing oligosilanes-unprecedented examples of σ-n mixed conjugated systems. Chem Commun 1810Google Scholar
  313. 313.
    Krempner C, Reinke H, Weichert K (2007) Synthesis and structure of cyclic trinuclear zinc disiloxides. Eur J Inorg Chem 1067Google Scholar
  314. 314.
    Krempner C, Jager-Fiedler U, Kockerling M, Reinke H (2009) Synthesis and structures of titanium and zirconium trisiloxides. Organometallics 28:382Google Scholar
  315. 315.
    Jaeger-Fiedler U, Koeckerling M, Reinke H, Krempner C (2010) Discrete oxygen containing oligosilane dendrimers-modelling oxygen defects in silicon nanomaterials. Chem Commun 46:4535Google Scholar
  316. 316.
    Weichert K, Carlson B, Reinke H, Krempner C (2010) A dimeric aluminium hydroxide supported by a new disiloxide ligand. Dalton Trans 39:11513Google Scholar
  317. 317.
    Samuel MS, Jenkins HA, Hughes DW, Baines KM (2003) Mechanistic studies of the addition of carbonyl compounds to tetramesityldisilene and tetramesitylgermasilene. Organometallics 22:1603Google Scholar
  318. 318.
    Milnes KK, Baines KM (2007) Comparative study of the reactivity of Brook and Couret silenes: aldehyde addition. Organometallics 26:2392Google Scholar
  319. 319.
    Hardwick JA, Baines KM (2010) Probing the mechanism of aldehyde addition to a disilene and two silenes: solvent effects. Organometallics 29:1305Google Scholar
  320. 320.
    Ohshita J, Sakurai H, Masaoka S, Tamai M, Kunai A, Ishikawa M (2001) Reactions of lithium silenolates with benzophenone. J Organomet Chem 633:131Google Scholar
  321. 321.
    Naka A, Ikadai J, Motoike S, Yoshizawa K, Kondo Y, Kang S-Y, Ishikawa M (2002) Silicon–carbon unsaturated compounds. 65. Thermal and photochemical isomerization of trimethylsiloxy- and bis(trimethylsilyl)-substituted silacyclobut-3-enes. Organometallics 21:2033Google Scholar
  322. 322.
    Naka A, Ishikawa M (2002) Reactions of silenes produced thermally from pivaloyl- and adamantoyltris(trimethylsilyl)silane with bis(trimethylsilyl)butadiyne. Chem Lett 364Google Scholar
  323. 323.
    Naka A, Ishikawa M (2003) Silicon–carbon unsaturated compounds. 68. Reactions of silenes produced thermally and photochemically from acylpolysilanes with diketones. J Organomet Chem 685:162Google Scholar
  324. 324.
    Ohshita J, Takayama H, Ishikawa M, Kunai A (2003) Thermal isomerization of 1,2-diadamantoyltetrakis(trimethylsilyl)disilane via a 2,3-disilabutadiene intermediate. J Organomet Chem 672:72Google Scholar
  325. 325.
    Naka A, Ohnishi H, Miyahara I, Hirotsu K, Shiota Y, Yoshizawa K, Ishikawa M (2004) Silicon–carbon unsaturated compounds. 69. Reactions of silenes produced thermally from pivaloyl- and adamantoyltris(trimethylsilyl)silane with silyl-substituted butadiynes and enynes. Organometallics 23:4277Google Scholar
  326. 326.
    Naka A, Motoike S, Senba N, Ohshita J, Kunai A, Yoshizawa K, Ishikawa M (2008) Silicon–carbon unsaturated compounds. 74. Thermal behavior of 1-silacyclobut-3-enes generated from the reaction of acylpolysilanes with tert-butylacetylene. Organometallics 27:2750Google Scholar
  327. 327.
    Naka A, Ueda S, Ohshita J, Kunai A, Miura T, Kobayashi H, Ishikawa M (2008) Silicon–carbon unsaturated compounds. 75. Thermal isomerization of 2-alkyl- and 2-aryl-2-trimethylsiloxy-1,1-bis(trimethylsilyl)-1-silacyclohex-4-enes. Organometallics 27:2922Google Scholar
  328. 328.
    Saadi J, Akakura M, Yamamoto H (2011) Rapid, one-pot synthesis of β-siloxy-α-haloaldehydes. J Am Chem Soc 133:14248Google Scholar
  329. 329.
    Schmohl K, Wandschneider D, Reinke H, Heintz A, Oehme H (2002) The cationic rearrangement of (3-hydroxy-1-propenyl)tris(trimethylsilyl)-silanes into (1-trimethylsilyl-2-propenyl)bis(trimethylsilyl)silanols – experimental and theoretical studies. Eur J Inorg Chem 597Google Scholar
  330. 330.
    Nozawa T, Nagata M, Ichinohe M, Sekiguchi A (2011) Isolable p- and m-[(tBu2MeSi)2Si]2C6H4: disilaquinodimethane vs triplet bis(silyl radical). J Am Chem Soc 133:5773Google Scholar
  331. 331.
    Takeuchi K, Ichinohe M, Sekiguchi A (2011) Hydroboration of disilyne RSi≡SiR (R = SiiPr[CH(SiMe3)2]2), giving boryl-substituted disilenes. Organometallics 30:2044Google Scholar
  332. 332.
    Tanaka H, Inoue S, Ichinohe M, Driess M, Sekiguchi A (2011) Synthesis and striking reactivity of an isolable tetrasilyl-substituted trisilaallene. Organometallics 30:3475Google Scholar
  333. 333.
    Wiberg N, Vasisht SK, Fischer G, Mayer P (2004) Disilynes. III. A relatively stable disilyne RSi≡SiR (R = SiMe(SitBu3)2). Z Anorg Allg Chem 630:1823Google Scholar
  334. 334.
    Likhar PR, Zirngast M, Baumgartner J, Marschner C (2004) Preparation and structural characterisation of methoxybis(trimethylsilyl)silyl potassium and its condensation product. Chem Commun 1764Google Scholar
  335. 335.
    Herzog U (2000) Synthesis and NMR investigation of selenobutyl substituted silanes and oligosilanes. J Prakt Chem 342:379Google Scholar
  336. 336.
    Herzog U, Bohme U, Rheinwald G (2000) 1,2-Dithiolate derivatives of monosilanes and disilanes. J Organomet Chem 612:133Google Scholar
  337. 337.
    Herzog U, Bohme U, Roewer G, Rheinwald G, Lang H (2000) Formation and characterization of cyclic and polycyclic silthianes containing Si–Si bonds. J Organomet Chem 602:193Google Scholar
  338. 338.
    Ackerhans C, Roesky HW, Noltemeyer M (2001) Synthesis and structure of a S4Si4 cage compound. Organometallics 20:1282Google Scholar
  339. 339.
    Herzog U (2001) Synthesis and NMR investigations of tellurobutyl-substituted silanes. Main Group Met Chem 24:31Google Scholar
  340. 340.
    Herzog U, Bohme U, Brendler E, Rheinwald G (2001) Group 14 chalcogenides featuring a bicyclo[3.3.0]octane skeleton. J Organomet Chem 630:139Google Scholar
  341. 341.
    Herzog U, Bohme U, Rheinwald G (2001) Synthesis and characterization of 2,5,7-trichalcogena-1,3,4,6-tetrasilanorbornanes (RMeSiSiMe)2E3 (R = Me, Ph; E = S, Se, Te). J Organomet Chem 627:144Google Scholar
  342. 342.
    Herzog U, Rheinwald G (2001) 3,7,10-Trichalcogenaoctasila[3.3.3]propellanes. Eur J Inorg Chem 3107Google Scholar
  343. 343.
    Herzog U, Rheinwald G (2001) New chalcogen derivatives of silicon possessing adamantane and noradamantane structures. J Organomet Chem 628:133Google Scholar
  344. 344.
    Herzog U, Rheinwald G (2001) Five- and six-membered ring group 14 chalcogenides of the types (Me2ME)3 (M = Si, Ge, Sn), E(Si2Me4)2E, Me4Si2(E)2MRx (MRx = C(CH2)5, SiMe2, GeMe2, SnMe2, SnPh2, BPh) and [Me4Si2(E)2SiMe-]2 (E = S, Se, Te). J Organomet Chem 627:23Google Scholar
  345. 345.
    Herzog U, Rheinwald G (2001) Novel chalcogenides of silicon with bicyclo[2.2.2]octane skeletons, MeSi(SiMe2E)3MR (E = S, Se, Te; M = Si, Ge, Sn; R = Me, Ph). Organometallics 20:5369Google Scholar
  346. 346.
    Herzog U, Rheinwald G (2002) Silicon-lead chalcogenides of the types Me4Si2(E)2PbPh2 and Ph2Pb(E)2Si2Me2(E)2PbPh2 (E = S, Se) and related compounds containing tin and antimony. J Organomet Chem 648:220Google Scholar
  347. 347.
    Lange H, Herzog U (2002) Bis(oligosilanyl)chalcogenides [(Me3Si)xMe3-xSi]2E, alkali metal oligosilanyl chalcogenolates (Me3Si)xMe3-xSi-EMI and oligosilanylchalcogenols (Me3Si)xMe3-xSi-EH (E = S, Se, Te). Syntheses and NMR study. J Organomet Chem 660:36Google Scholar
  348. 348.
    Herzog U, Borrmann H (2003) Organosilicon chalcogenides with trisilane units – adamantanes and noradamantanes. J Organomet Chem 681:5Google Scholar
  349. 349.
    Herzog U, Borrmann H (2003) Tetrakis(trimethylsilyl)cyclodisilthiane and -selenane. Inorg Chem Commun 6:718Google Scholar
  350. 350.
    Herzog U, Boehme U (2003) Five-, six- and eight-membered ring organosilicon chalcogenides of the types Z2(SiMe2)2E (Z = Me2Si, H2C; E = S, Se, Te), Z(SiMe2E)2MR2 (Z = Me2Si, H2C, O; E = S, Se, Te; M = Si, Ge, Sn, R = Me, Ph) and (SiMe2ZSiMe2E)2 (Z = Me2Si, H2C; E = S, Se). Silicon Chem 2:77Google Scholar
  351. 351.
    Herzog U, Borrmann H (2003) Heteronoradamantanes Me2Si2(RM)2E5 (RM = MeGe, PhSn; E = S, Se). J Organomet Chem 675:42Google Scholar
  352. 352.
    Herzog U, Borrmann H (2004) Organosilicon chalcogenides with trisilane units – bicyclo[3.3.1]nonanes, bicyclo[3.2.2]nonanes and spiro[4.4]nonanes. J Organomet Chem 689:564Google Scholar
  353. 353.
    Lange H, Herzog U, Borrmann H, Walfort B (2004) Organosilicon hypersilylchalcogenolates and related compounds. J Organomet Chem 689:4897Google Scholar
  354. 354.
    Harrison DJ, McDonald R, Rosenberg L (2005) Borane-catalyzed hydrosilylation of thiobenzophenone: a new route to silicon–sulfur bond formation. Organometallics 24:1398Google Scholar
  355. 355.
    Harrison DJ, Edwards DR, McDonald R, Rosenberg L (2008) Toward selective functionalization of oligosilanes: borane-catalysed dehydrogenative coupling of silanes with thiols. Dalton Trans 3401Google Scholar
  356. 356.
    Alberti A, Benaglia M, Macciantelli D, Hudson A, Masson S (2002) Phosphoryldithioformates: part V. Unusual linewidth variations in the ESR spectra of some spin adducts of (dimenthoxy)phosphoryl methyl dithioformate. Magn Reson Chem 40:387Google Scholar
  357. 357.
    Alberti A, Guerra M, Hapiot P, Lequeux T, Macciantelli D, Masson S (2005) Redox and spin-trapping properties of phosphoryldithioacetates. Phys Chem Chem Phys 7:250Google Scholar
  358. 358.
    Nikawa H, Nakahodo T, Tsuchiya T, Wakahara T, Rahman GMA, Akasaka T, Maeda Y, Liu MTH, Meguro A, Kyushin S, Matsumoto H, Mizorogi N, Nagase S (2005) S-heterocyclic carbene with a disilane backbone. Angew Chem Int Ed 44:7567Google Scholar
  359. 359.
    Lee VY, Miyazaki S, Yasuda H, Sekiguchi A (2008) Isomeric metamorphosis: Si3E (E = S, Se, and Te) bicyclo[1.1.0]butane and cyclobutene. J Am Chem Soc 130:2758Google Scholar
  360. 360.
    Bonasia PJ, Gindelberger DE, Dabbousi BO, Arnold J (1992) New reagents for the synthesis of compounds containing metal–tellurium bonds: sterically hindered silyltellurolate derivatives and the X-ray crystal structures of [(THF)2LiTeSi(SiMe3)3]2 and [(12-crown-4)2Li][TeSi(SiMe3)3]. J Am Chem Soc 114:5209Google Scholar
  361. 361.
    Traut S, Haehnel AP, von Hänisch C (2011) Dichloro organosilicon bismuthanes as precursors for rare compounds with a bismuth–pnictogen or bismuth–tellurium bond. Dalton Trans 40:1365Google Scholar
  362. 362.
    Traut S, von Hänisch C, Peter H, Stahl S (2012) Cyclic and polycyclic tellurium–tin and tellurium–lead compounds – synthesis, structures and thermal decomposition. Chem Commun 48:6984Google Scholar
  363. 363.
    Kyushin S, Sakurai H, Betsuyaku T, Matsumoto H (1997) Highly stable silyl radicals (EtnMe3-nSi)3Si• (n = 1−3). Organometallics 16:5386Google Scholar
  364. 364.
    Kira M, Obata T, Kon I, Hashimoto H, Ichinohe M, Sakurai H, Kyushin S, Matsumoto H (1998) Persistent tris(t-butyldimethylsilyl)silyl radical and its new generation methods. Chem Lett 27:1097Google Scholar
  365. 365.
    Kyushin S, Sakurai H, Matsumoto H (1998) Highly planar silane [(i-Pr)3Si]3SiH and silyl radical [(i-Pr)3Si]3Si•. Chem Lett 27:107Google Scholar
  366. 366.
    Lee VY, Sekiguchi A (2005) Si-, Ge-, and Sn-centered free radicals: from phantom species to grams-order-scale materials. Eur J Inorg Chem 1209Google Scholar
  367. 367.
    Lee VY, Nakamoto M, Sekiguchi A (2008) Making stable radicals of heavy elements of groups 14 and 13: the might of silyl substitution. Chem Lett 37:128Google Scholar
  368. 368.
    Corey JY (2011) Reactions of hydrosilanes with transition metal complexes and characterization of the products. Chem Rev 111:863Google Scholar
  369. 369.
    Eisen MS (1998) Transition-metal silyl complexes. In: Rappoport Z, Apeloig Y (eds) The chemistry of functional groups. John Wiley & Sons, Chichester, UKGoogle Scholar
  370. 370.
    Aitken C, Harrod JF, Samuel E (1985) Polymerization of primary silanes to linear polysilanes catalyzed by titanocene derivatives. J Organomet Chem 279:C11Google Scholar
  371. 371.
    Tilley TD (1993) The coordination polymerization of silanes to polysilanes by a “σ-bond metathesis” mechanism. Implications for linear chain growth. Acc Chem Res 26:22Google Scholar
  372. 372.
    Sadow AD, Tilley TD (2003) Cationic hafnium silyl complexes and their enhanced reactivity in σ-bond metathesis processes with Si–H and C–H bonds. J Am Chem Soc 125:9462Google Scholar
  373. 373.
    Marschner C (1998) A new and easy route to polysilanylpotassium compounds. Eur J Inorg Chem 221Google Scholar
  374. 374.
    Kayser C, Frank D, Baumgartner J, Marschner C (2003) Reactions of oligosilyl potassium compounds with group 4 metallocene dichlorides. J Organomet Chem 667:149Google Scholar
  375. 375.
    Fischer R, Zirngast M, Flock M, Baumgartner J, Marschner C (2005) Synthesis of a hafnocene disilene complex. J Am Chem Soc 127:70Google Scholar
  376. 376.
    Zirngast M, Flock M, Baumgartner J, Marschner C (2009) Group 4 metallocene complexes of disilenes, digermenes, and a silagermene. J Am Chem Soc 131:15952Google Scholar
  377. 377.
    Nakata N, Fujita T, Sekiguchi A (2006) A stable Schrock-type hafnium−silylene complex. J Am Chem Soc 128:16024Google Scholar
  378. 378.
    Yu X, Cai H, Guzei IA, Xue Z (2004) Unusual equilibria involving group 4 amides, silyl complexes, and silyl anions via ligand exchange reactions. J Am Chem Soc 126:4472Google Scholar
  379. 379.
    Qiu H, Cai H, Woods JB, Wu Z, Chen T, Yu X, Xue Z-L (2005) Disilyl complexes of zirconium, hafnium, and tantalum. Their synthesis, characterization, and exchanges with silyl anions. Organometallics 24:4190Google Scholar
  380. 380.
    Cai H, Yu X, Chen S, Qiu H, Guzei IA, Xue Z-L (2007) Amide-silyl ligand exchanges and equilibria among group 4 amide and silyl complexes. Inorg Chem 46:8071Google Scholar
  381. 381.
    Chen S-J, Dougan BA, Chen X-T, Xue Z-L (2012) Preparation of zirconium guanidinate complexes from the direct insertion of a carbodiimine and aminolysis using a guanidine. Comparison of the reactions. Organometallics 31:3443Google Scholar
  382. 382.
    Frank D, Baumgartner J, Marschner C (2002) First successful reaction of a silyl anion with hafnium tetrachloride. Chem Commun 1190Google Scholar
  383. 383.
    Frank D, Baumgartner J, Marschner C (2005) Cp-free hafnium silyl substituted compounds. In: Auner N, Weis J (eds) Organosilicon chemistry VI: from molecules to materials. Wiley-VCH, WeinheimGoogle Scholar
  384. 384.
    Turculet L, Tilley TD (2004) Synthesis and reactivity of d0 alkyl, silyl, and hydride complexes of titanium and zirconium featuring an aryl-substituted tripodal triamido ligand derived from cis,cis-1,3,5-triaminocyclohexane. Organometallics 23:1542Google Scholar
  385. 385.
    Castillo I, Tilley TD (2002) Hafnium imido complexes containing silyl ligands. J Organomet Chem 643–644:431Google Scholar
  386. 386.
    Nguyen T, Scheschkewitz D (2005) Activation of a Si=Si bond by η1-coordination to a transition metal. J Am Chem Soc 127:10174Google Scholar
  387. 387.
    Spencer MD, Shelby QD, Girolami GS (2007) Titanium-catalyzed dehydrocoupling of silanes: direct conversion of primary monosilanes to titanium(0) oligosilane complexes with agostic α-Si–H···Ti interactions. J Am Chem Soc 129:1860Google Scholar
  388. 388.
    Wu Z, Cai H, Yu X, Blanton JR, Diminnie JB, Pan H-J, Xue Z, Bryan JC (2002) Synthesis of tantalum(V) amido silyl complexes and the unexpected formation of (Me2N)3Ta(η2-ONMe2)[OSi(SiMe3)3] from the reaction of (Me2N)4Ta[Si(SiMe3)3] with O2. Organometallics 21:3973Google Scholar
  389. 389.
    Burckhardt U, Casty GL, Gavenonis J, Tilley TD (2002) Neutral and anionic silyl hydride derivatives of the tantalum imido fragment Cp(DippN:)Ta (Cp = η5-C5Me5; dipp = 2,6-iPr2C6H3). reactive σ-bonds and intramolecular C–H bond activations involving the silyl ligands. Organometallics 21:3108Google Scholar
  390. 390.
    Gavenonis J, Tilley TD (2002) Tantalum alkyl and silyl complexes of the bulky (terphenyl)imido ligand [2,6-(2,4,6-Me3C6H2)2C6H3N:]2− ([ArN:]2−). generation and reactivity of [(ArN:)(ArNH)Ta(H)(OSO2CF3)], which reversibly transfers hydride to an aromatic ring of the arylamide ligand. Organometallics 21:5549Google Scholar
  391. 391.
    Gavenonis J, Tilley TD (2004) Synthesis and reactivity of alkyl, hydride, and silyl derivatives of the (terphenyl)imido fragments Cp*(ArMesN:)Ta (Cp* = η5-C5Me5; ArMes = 2,6-(2,4,6-Me3C6H2)2C6H3) and Cp*(ArTripN:)Ta (ArTrip = 2,6-(2,4,6-iPr3C6H2)2C6H3). Organometallics 23:31Google Scholar
  392. 392.
    Chen T, Sorasaenee KR, Wu Z, Diminnie JB, Xue Z (2003) Synthesis, characterization and X-ray structures of new molybdenum bis(imide) amide and silyl complexes. Inorg Chim Acta 345:113Google Scholar
  393. 393.
    Wagner H, Baumgartner J, Marschner C (2005) Silyl-, germyl-, and stannyl-substituted group 6 pentacarbonyl metalates. Organometallics 24:4649Google Scholar
  394. 394.
    Li H, Hope-Weeks LJ, Krempner C (2011) A supramolecular approach to zwitterionic alkaline metal silanides and formation of heterobimetallic silanides. Chem Commun 4117Google Scholar
  395. 395.
    Bera H, Braunschweig H, Doerfler R, Hammond K, Oechsner A, Radacki K, Uttinger K (2009) Synthesis, structure and reactivity of disila- and distanna ansa half-sandwich complexes of molybdenum and tungsten. Chem Eur J 15:12092Google Scholar
  396. 396.
    Braunschweig H, Doerfler R, Hammond K, Mies J, Radacki K (2010) Synthesis and structure of trisilane-1,3-diyl ansa half-sandwich complexes of group 6 metals. Eur J Inorg Chem 5383Google Scholar
  397. 397.
    Roddick DM, Tilley TD, Rheingold AL, Geib SJ (1987) Coordinatively unsaturated tris(trimethylsilyl)silyl complexes of chromium, manganese, and iron. J Am Chem Soc 109:945Google Scholar
  398. 398.
    Heyn RH, Tilley TD (2002) Coordinatively and electronically unsaturated tris(trimethylsilyl)silyl complexes of manganese and iron. Inorg Chim Acta 341:91Google Scholar
  399. 399.
    Cervantes-Lee F, Kapoor RN, Pannell KH (2000) Synthesis and characterization of organosilane complexes of pentamethylcyclopentadienyl dicarbonyl iron, [η5-C5(CH3)5]Fe(CO)2Sin (Sin = SiMe3; Si2Me5; Si3Me7; 2-Si3Me7). Rev Soc Quim Mex 44:122Google Scholar
  400. 400.
    Pannell KH, Kobayashi T, Cervantes-Lee F, Zhang Y (2000) α- versus β-elimination photochemistry of oligosilyl- and oligosilylmethyl-iron complexes: photochemistry of FpSiMe2SiMe2CH2Fp (Fp = (η5-C5H5)Fe(CO)2). Organometallics 19:1Google Scholar
  401. 401.
    Sharma S, Pannell KH (2000) Syntheses and photochemically induced rearrangements of tetrasilyl- and trisilylgermyl complexes of iron: (η5-C5R5)Fe(CO)2(SiMe2)3EMe2Ph (R = H, Me; E = Ge, Si). Organometallics 19:1225Google Scholar
  402. 402.
    Sharma HK, Pannell KH (2001) Reactivity of the base-stabilized bis(silylene)iron complex (η5-C5H5)Fe(CO)(η2-SiMe2-OtBu-SiMe2): elevated temperature trapping of SiMe2 by R3EH (R = Me3Si, E = Si, Ge) and elimination of Me2(OtBu)SiSiMe2H by n-Bu3SnH. Organometallics 20:7Google Scholar
  403. 403.
    Zhang Y, Cervantes-Lee F, Pannell KH (2001) Photochemistry of bridged disilyldiiron complexes (SiMe2)[(η5-C5H4)Fe(CO)2SiMe2SiMe2R]2, R = Me. Ph J Organomet Chem 634:102Google Scholar
  404. 404.
    Pannell KH, Kobayashi T, Cervantes-Lee F (2003) Photochemical transformation of a cyclic polysilane to a cyclic carbosilane via ((η5-C5H5)Fe(CO)2)CH2-, FpCH2-, substitution. J Organomet Chem 685:189Google Scholar
  405. 405.
    Zhang Y, Cervantes-Lee F, Pannell KH (2003) Synthesis, structure, and photochemistry of disilyl derivatives of the Fp (Fp = (η5-C5H5)Fe(CO)2) system: [cyclic] FpMeSi(CH2)4SiMeFp and FpPhMeSiSiMePhFp. Organometallics 22:2517Google Scholar
  406. 406.
    Zhang Y, Pannell KH (2003) Photochemistry of the three possible isomeric cyclic disilyliron complexes, FpSi2R5 (Si2R5 = 1,2,2-trimethyldisilacyclohexyl, (1-methylsilacyclopentyl)dimethylsilyl, and 1-(trimethylsilyl)silacyclopentyl, Fp = (η5-C5H5)Fe(CO)2). Organometallics 22:1766Google Scholar
  407. 407.
    Sharma HK, Pannell KH (2004) The substituent-dependent base-treatment chemistry of (η5-C5H5)Fe(CO)2SiR2SiR2Cl: formation of 1,2-disila-3-metallacyclobutanes, their ring-opened polymers, migrations and substitutions. Chem Commun 2556Google Scholar
  408. 408.
    Sharma HK, Cervantes-Lee F, Pannell KH (2006) Photochemical ring-contraction of a tetrasilaferracyclohexane of the (η5-C5H4)Fe(CO)2 system to trisilaferracyclopentanes. Organometallics 25:3969Google Scholar
  409. 409.
    Tobita H, Sato T, Okazaki M, Ogino H (2000) Synthesis and structures of bis(silylene)iron complexes containing new six-membered chelate rings. J Organomet Chem 611:314Google Scholar
  410. 410.
    Okazaki M, Satoh K, Akagi T, Iwata M, Jung KA, Shiozawa R, Okada H, Ueno K, Tobita H, Ogino H (2002) Convenient preparation of Li[(η5-C5Me5)M(CO)2] (M = Ru, Fe) by the reaction of (η5-C5Me5)M(CO)2H with n-BuLi. J Organomet Chem 645:201Google Scholar
  411. 411.
    Hashimoto H, Matsuda A, Tobita H (2005) Nonphotochemical synthesis of a base-free silyl(silylene)iron complex and its reaction with CO: another direct evidence for reversible 1,2- and 1,3-group migrations. Chem Lett 34:1374Google Scholar
  412. 412.
    Watanabe T, Hashimoto H, Tobita H (2004) Selective and stepwise bromodemethylation of the silyl ligand in iron(II) silyl complexes with boron tribromide. Organometallics 23:4150Google Scholar
  413. 413.
    Malisch W, Jehle H, Lager M, Nieger M (2000) Metal-fragment substituted disilanols. In: Auner N, Weis J (eds) Organosilicon chemistry IV: from molecules to materials. Wiley-VCH Verlag GmbHGoogle Scholar
  414. 414.
    Loidl B, Fallmann H, Stüger H, Grogger C (2003) New aspects of electrochemical synthesis in organosilicon chemistry. Proc Electrochem Soc 12:89Google Scholar
  415. 415.
    Stueger H, Braunwarth M, Fuerpass G, Baumgartner J, Saf R (2006) Impact of transition metal substituents on polysilane properties: iron versus ruthenium. Monatsh Chem 137:595Google Scholar
  416. 416.
    Grogger C, Fallmann H, Fürpass G, Stüger H, Kickelbick G (2003) The [Cp(CO)2Fe] (Fp) group as a donor in donor/acceptor substituted disilanes: synthesis, structure and electronic properties of Fp-Si2Me4-C6H4CH:C(CN)2. J Organomet Chem 665:186Google Scholar
  417. 417.
    Turculet L, Feldman JD, Tilley TD (2003) Coordinatively and electronically unsaturated zwitterionic iron silyl complexes featuring the tripodal phosphine ligand [PhB(CH2PiPr2)3]. Organometallics 22:4627Google Scholar
  418. 418.
    Fasulo ME, Glaser PB, Tilley TD (2011) Cp*(PiPr3)RuOTf: a reagent for access to ruthenium silylene complexes. Organometallics 30:5524Google Scholar
  419. 419.
    Glaser PB, Tilley TD (2004) Synthesis and reactivity of silyl and silylene ligands in the coordination sphere of the 14-electron fragment Cp(iPr3P)Os+. Organometallics 23:5799Google Scholar
  420. 420.
    Hashimoto H, Suzuki K, Setaka W, Kabuto C, Kira M (2004) Iron complexes of (E)- and (Z)-1,2-dichlorodisilenes. J Am Chem Soc 126:13628Google Scholar
  421. 421.
    Takanashi K, Lee VY, Sekiguchi A (2009) Tetrasilacyclobutadiene and cyclobutadiene tricarbonylruthenium complexes: [η4-(tBu2MeSi)4Si4]Ru(CO)3 and [η4-(Me3Si)4C4]Ru(CO)3. Organometallics 28:1248Google Scholar
  422. 422.
    Yasuda H, Lee VY, Sekiguchi A (2009) η5-1,2,3-Trisilacyclopentadienyl – a ligand for transition metal complexes: rhodium half-sandwich and ruthenium sandwich. J Am Chem Soc 131:9902Google Scholar
  423. 423.
    Lee VY, Takanashi K, Sekiguchi A (2010) A two-and-a-half-layer sandwich: potassium salt of anionic (η4-tetrasilacyclobutadiene)(η5-cyclopentadienyl)ruthenium. Dalton Trans 39:9229Google Scholar
  424. 424.
    Lee VY, Kato R, Sekiguchi A, Krapp A, Frenking G (2007) Heavy ferrocene: a sandwich complex containing Si and Ge atoms. J Am Chem Soc 129:10340Google Scholar
  425. 425.
    Takanashi K, Lee VY, Matsuno T, Ichinohe M, Sekiguchi A (2005) Tetrasilacyclobutadiene (tBu2MeSi)4Si4: a new ligand for transition-metal complexes. J Am Chem Soc 127:5768Google Scholar
  426. 426.
    Kon Y, Sakamoto K, Kabuto C, Kira M (2005) A cobalt silacyclobutadiene complex. Organometallics 24:1407Google Scholar
  427. 427.
    Klei SR, Tilley TD, Bergman RG (2002) Reactions of Cp(PMe3)Ir(Me)OTf with silanes: role of base-free silylene complexes in rearrangements of the resulting silicon-based ligands. Organometallics 21:3376Google Scholar
  428. 428.
    Hashimoto H, Sekiguchi Y, Iwamoto T, Kabuto C, Kira M (2002) Synthesis and X-ray structure of a platinum η 2-disilene complex. Organometallics 21:454Google Scholar
  429. 429.
    Hashimoto H, Sekiguchi Y, Sekiguchi Y, Iwamoto T, Kabuto C, Kira M (2003) Comparison of structures between platinum and palladium complexes of a tetrasilyldisilene. Can J Chem 81:1241Google Scholar
  430. 430.
    Kira M, Sekiguchi Y, Iwamoto T, Kabuto C (2004) 14-Electron disilene palladium complex having strong π-complex character. J Am Chem Soc 126:12778Google Scholar
  431. 431.
    Iwamoto T, Sekiguchi Y, Yoshida N, Kabuto C, Kira M (2006) Ligand dependence of π-complex character in disilene–palladium complexes. Dalton Trans 177Google Scholar
  432. 432.
    Abe T, Iwamoto T, Kira M (2010) A stable 1,2-disilacyclohexene and its 14-electron palladium(0) complex. J Am Chem Soc 132:5008Google Scholar
  433. 433.
    Hartmann M, Haji-Abdi A, Abersfelder K, Haycock PR, White AJP, Scheschkewitz D (2010) Synthesis, characterisation and complexation of phosphino disilenes. Dalton Trans 39:9288Google Scholar
  434. 434.
    Bravo-Zhivotovskii D, Peleg-Vasserman H, Kosa M, Molev G, Botoshanskii M, Apeloig Y (2004) The direct synthesis of a silene-organometallic complex. Angew Chem Int Ed 43:745Google Scholar
  435. 435.
    Arii H, Takahashi M, Noda A, Nanjo M, Mochida K (2008) Spectroscopic and structural studies of thermally unstable intermediates generated in the reaction of [Pt(PPh3)22-C2H4)] with dihydrodisilanes. Organometallics 27:1929Google Scholar
  436. 436.
    Arii H, Takahashi M, Nanjo M, Mochida K (2009) Synthesis and structure of a trinuclear platinum complex with μ3-silylyne ligands derived from a disilane. Organometallics 28:4629Google Scholar
  437. 437.
    Arii H, Takahashi M, Nanjo M, Mochida K (2010) Syntheses of mono- and dinuclear silylplatinum complexes bearing a diphosphino ligand via stepwise bond activation of unsymmetric disilanes. Dalton Trans 39:6434Google Scholar
  438. 438.
    Arii H, Takahashi M, Takahashi H, Mochida K, Kawashima T (2012) Formation of unique platinum-silyl complexes by the reactions of a zero-valent platinum complex with various trisilanes. Chem Lett 41:1538Google Scholar
  439. 439.
    Chen W, Shimada S, Hayashi T, Tanaka M (2001) Synthesis of a tridentate hydrosilane and its reaction with palladium(0) complexes. Chem Lett 1096Google Scholar
  440. 440.
    Shimada S, Rao MLN, Hayashi T, Tanaka M (2001) Isolation of dinuclear (μ-silylene)(silyl)nickel complexes and Si–Si bond formation on a dinuclear nickel framework. Angew Chem Int Ed 40:213Google Scholar
  441. 441.
    Shimada S, Li Y-H, Choe Y-K, Tanaka M, Bao M, Uchimaru T (2007) Multinuclear palladium compounds containing palladium centers ligated by five silicon atoms. Proc Natl Acad Sci USA 104:7758Google Scholar
  442. 442.
    Li Y-H, Shimada S (2010) Ligand-dependent selective formation of unique silylpalladium complexes by the reaction of 1-(dimethylsilyl)-2-silylbenzene and [{1,2-C6H4(SiMe2)(SiH2)}Pd(R2PCH2CH2PR2)]. Organometallics 29:4406Google Scholar
  443. 443.
    Sanow LM, Chai M, McConnville DB, Galat KJ, Simons RS, Rinaldi PL, Youngs WJ, Tessier CA (2000) Platinum–silicon four-membered rings of two different structural types. Organometallics 19:192Google Scholar
  444. 444.
    Braddock-Wilking J, Bandrowsky T, Praingam N, Rath NP (2009) Sila- and germaplatinacycles produced from a stepwise E–E bond forming reaction. Organometallics 28:4098Google Scholar
  445. 445.
    Hoffmann F, Böhme U, Roewer G (2009) Structure and reactivity of (η5-cyclopentadienyl)(triphenylphosphine)-(undecamethylcyclohexasilyl)nickel(II)-hexane. Z Naturforsch B 64:1423Google Scholar
  446. 446.
    Klett J, Klinkhammer KW, Niemeyer M (1999) Ligand exchange between arylcopper compounds and bis(hypersilyl)tin or bis(hypersilyl)lead: synthesis and characterization of hypersilylcopper and a stannanediyl complex with a Cu−Sn bond. Chem Eur J 5:2531Google Scholar
  447. 447.
    Klinkhammer KW (2000) Synthesis and crystal structure of the two lithium hypersilylcuprates LiCu2[Si(SiMe3)3]3 and [Li7(OtBu)6][Cu2{Si(SiMe3)3}3]. Z Anorg Allg Chem 626:1217Google Scholar
  448. 448.
    Klinkhammer KW, Klett J, Xiong Y, Yao S (2003) Homo- and heteroleptic hypersilylcuprates – valuable reagents for the synthesis of molecular compounds with a Cu–Si bond. Eur J Inorg Chem 3417Google Scholar
  449. 449.
    Wilfling M, Klinkhammer KW (2010) Gold(I)-mediated silicon–silicon bond metathesis at room temperature. Angew Chem Int Ed 49:3219Google Scholar
  450. 450.
    Wiberg N, Niedermayer W, Lerner H-W, Bolte M (2001) Compounds of silicon. Part 147. Sterically overloaded compounds of silicon. Part 28. Disupersilylsilanides M(SiHR*2)2 of metals of the zinc group (M = Zn, Cd, Hg; R* = SitBu3). Syntheses, characterization, and structures. Z Anorg Allg Chem 627:1043Google Scholar
  451. 451.
    Woods JB, Yu X, Chen T, Xue Z-L (2004) A trisilyl zincate containing bidentate [(Me3Si)2Si(CH2)2Si(SiMe3)2]2− ligands. Organometallics 23:5910Google Scholar
  452. 452.
    Nanjo M, Oda T, Mochida K (2003) Preparation and structural characterization of trimethylsilyl-substituted germylzinc halides, (Me3Si)3GeZnX (X = Cl, Br, and I) and silylzinc chloride, R(Me3Si)2SiZnCl (R = SiMe3 and Ph). J Organomet Chem 672:100Google Scholar
  453. 453.
    Li H, Hung-Low F, Krempner C (2012) Synthesis and structure of zwitterionic silylborates and silylzincates with pendant polydonor arms. Organometallics 31:7117Google Scholar
  454. 454.
    Dobrovetsky R, Kratish Y, Tumanskii B, Botoshansky M, Bravo-Zhivotovskii D, Apeloig Y (2012) Radical activation of Si–H bonds by organozinc and silylzinc reagents: synthesis of geminal dizinciosilanes and zinciolithiosilanes. Angew Chem Int Ed 51:4671Google Scholar
  455. 455.
    Apeloig Y, Korogodsky G, Bravo-Zhivotovskii D, Blaser D, Boese R (2000) The syntheses and molecular structure of a branched oligosilyl anion with a record of nine silicon atoms and of the first branched oligosilyl dianion. Eur J Inorg Chem 1091Google Scholar
  456. 456.
    Apeloig Y, Yuzefovich M, Bendikov M, Bravo-Zhivotovskii D, Blaser D, Boese R (2001) Branched star-type polysilyllithium compounds: The effects of β-silyl substitution and of complexation on their molecular structure. Angew Chem Int Ed 40:3016Google Scholar
  457. 457.
    Bravo-Zhivotovskii D, Yuzefovich M, Sigal N, Korogodsky G, Klinkhammer K, Tumanskii B, Shames A, Apeloig Y (2002) The synthesis of the first compound with Li–Si–Hg bonding: [{Li(iPr3Si)2Si}2Hg] – a Source for the [Li(iPr3Si)2Si] radical. Angew Chem Int Ed 41:649Google Scholar
  458. 458.
    Bravo-Zhivotovskii D, Ruderfer I, Melamed S, Botoshansky M, Tumanskii B, Apeloig Y (2005) Nonsolvated, aggregated 1,1-dilithiosilane and the derived silyl radicals. Angew Chem Int Ed 44:739Google Scholar
  459. 459.
    Bravo-Zhivotovskii D, Ruderfer I, Yuzefovich M, Kosa M, Botoshansky M, Tumanskii B, Apeloig Y (2005) Mercury-substituted silyl radical intermediates in formation and fragmentation of geminal dimercury silyl compounds. Organometallics 24:2698Google Scholar
  460. 460.
    Kravchenko V, Bravo-Zhivotovskii D, Tumanskii B, Botoshansky M, Segal N, Molev G, Kosa M, Apeloig Y (2005) Kinetic stabilization of polysilyl radicals. In: Auner N, Weis J (eds) Organosilicon chemistry VI: from molecules to materials, Wiley-VCH, WeinheimGoogle Scholar
  461. 461.
    Bravo-Zhivotovskii D, Molev G, Kravchenko V, Botoshansky M, Schmidt A, Apeloig Y (2006) Novel aggregation motif of gem-dilithiosilanes: coaggregation of two R2SiLi2 molecules with two RLi molecules. Organometallics 25:4719Google Scholar
  462. 462.
    Bravo-Zhivotovskii D, Dobrovetsky R, Nemirovsky D, Molev V, Bendikov M, Molev G, Botoshansky M, Apeloig Y (2008) The synthesis and isolation of a metal-substituted bis-silene. Angew Chem Int Ed 47:4343Google Scholar
  463. 463.
    Molev G, Tumanskii B, Sheberla D, Botoshansky M, Bravo-Zhivotovskii D, Apeloig Y (2009) Isolable photoreactive polysilyl radicals. J Am Chem Soc 131:11698Google Scholar
  464. 464.
    Dobrovetsky R, Bravo-Zhivotovskii D, Tumanskii B, Botoshansky M, Apeloig Y (2010) Synthesis, isolation, and characterization of 1,1-diGrignard and 1,1-dizincio silanes. Angew Chem Int Ed 49:7086Google Scholar
  465. 465.
    Apeloig Y, Bravo-Zhivotovskii D, Yuzefovich M, Bendikov M, Shames AI (2000) Polysilyl radicals: EPR study of the formation and decomposition of star polysilanes. Appl Magn Reson 18:425Google Scholar
  466. 466.
    Campion BK, Heyn RH, Tilley TD (1990) Carbon dioxide activation by a transition metal-silicon bond. Formation of silanecarboxylate complexes [Cp2Sc[μ-O2CSiR3)]2. Inorg Chem 29:4355Google Scholar
  467. 467.
    Campion BK, Heyn RH, Tilley TD (1990) Reactivity of a scandium-silicon bond toward carbon monoxide and CN(2,6-Me2C6H3). Generation and reactivity of an apparent silene intermediate resulting from isocyanide coupling at scandium. J Am Chem Soc 112:2011Google Scholar
  468. 468.
    Radu NS, Tilley TD, Rheingold AL (1992) Synthesis and characterization of the neutral lanthanide silyl complexes (η5-C5Me5)2LnSiH(SiMe3)2 (Ln=Nd, Sm). J Am Chem Soc 114:8293Google Scholar
  469. 469.
    Campion BK, Heyn RH, Tilley TD (1993) Synthesis and reactions of silyl and germyl derivatives of scandocene. Structure of Cp2Sc[Si(SiMe3)3](THF). Organometallics 12:2584Google Scholar
  470. 470.
    Radu NS, Tilley TD (1995) Autocatalytic mechanism for σ-bond metathesis reactions of (η5-C5Me5)2SmCH(SiMe3)2 with silicon–hydrogen bonds. J Am Chem Soc 117:5863Google Scholar
  471. 471.
    Radu NS, Hollander FJ, Tilley TD, Rheingold AL (1996) Samarium-mediated redistribution of silanes and formation of trinuclear samarium–silicon clusters. Chem Commun 2459Google Scholar
  472. 472.
    Radu NS, Tilley TD, Rheingold AL (1996) Neutral lanthanide silyl complexes via σ-bond metathesis reactions. J Organomet Chem 516:41Google Scholar
  473. 473.
    Sadow AD, Tilley TD (2005) Synthesis and characterization of scandium silyl complexes of the type Cp*2ScSiHRR. σ-bond metathesis reactions and catalytic dehydrogenative silation of hydrocarbons. J Am Chem Soc 127:643Google Scholar
  474. 474.
    Niemeyer M (2005) Reactions of hypersilyl potassium with rare earth bis(trimethylsilylamides): addition versus peripheric deprotonation. In: Auner N, Weis J (eds) Organosilicon chemistry IV: from molecules to materials, Wiley-VCH, WeinheimGoogle Scholar
  475. 475.
    King WA, Marks TJ (1995) Metal-silicon bonding energetics in organo-Group 4 and organo-f-element complexes. Implications for bonding and reactivity. Inorg Chim Acta 229:343Google Scholar
  476. 476.
    Diaconescu PL, Odom AL, Agapie T, Cummins CC (2001) Uranium-group 14 element single bonds: isolation and characterization of a uranium(IV) silyl species. Organometallics 20:4993Google Scholar
  477. 477.
    Radu NS, Engeler MP, Gerlach CP, Tilley TD, Rheingold AL (1995) Isolation of the first d0 metalloxy ketene complexes via “double insertion” of carbon monoxide into thorium–silicon bonds. J Am Chem Soc 117:3621Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut für Anorganische ChemieTechnische Universität GrazGrazAustria

Personalised recommendations