Bond Valences pp 59-90

Part of the Structure and Bonding book series (STRUCTURE, volume 158) | Cite as

Using Bond Valences to Model the Structures of Ternary and Quaternary Oxides

Chapter

Abstract

The bond valence method is implemented in the modeling of crystal structures with the software program SPuDS. The approach is investigated for the perovskite, pyrochlore, spinel, and garnet structure types. Crystal structures of selected compositions were calculated and compared to experimental structures that were determined using X-ray or neutron diffraction. Bond valence sums (BVSs) of the ions and the global instability indices (G) are investigated to provide insight into the structures of these four structural classes of materials. The predictive ability is examined in the context of understanding the structures of existing compounds. The accuracy and possible uses of the crystal structures obtained from modeling using bond valences are explored.

Keywords

Bond valence Garnet Perovskite Pyrochlore Spinel SPuDS Structure modeling Structure prediction 

Abbreviations

BVS

Bond valence sum

SPuDS

Structure Prediction Diagnostic Software

v.u.

Valence units

References

  1. 1.
    Lufaso MW, Woodward PM (2001) Prediction of the crystal structures of perovskites using the software program SPuDS. Acta Crystallogr B 57:725–738Google Scholar
  2. 2.
    Lufaso MW, Barnes PW, Woodward PM (2006) Structure prediction of ordered and disordered multiple octahedral cation perovskites using SPuDS. Acta Crystallogr B 62:397–410Google Scholar
  3. 3.
    Lufaso MW (2004) Crystal structures, modeling, and dielectric property relationships of 2:1 ordered Ba3MM2′O9 (M = Mg, Ni, Zn; M′ = Nb, Ta) perovskites. Chem Mater 16:2148–2156Google Scholar
  4. 4.
    Byeon SH, Lufaso MW, Parise JB, Woodward PM, Hansen T (2003) High-pressure synthesis and characterization of perovskites with simultaneous ordering of both the A- and B-site cations, CaCu3Ga2M2O12 (M = Sb, Ta). Chem Mater 15:3798–3804Google Scholar
  5. 5.
    Byeon SH, Lee SS, Parise JB, Woodward PM, Hur NH (2005) A new ferrimagnetic oxide CaCu3Cr2Sb2O12: high-pressure synthesis, structure, and magnetic properties. Chem Mater 17:3552–3557Google Scholar
  6. 6.
    Zhou JS, Goodenough JB (2005) Universal octahedral-site distortion in orthorhombic perovskite oxides. Phys Rev Lett 94:065501Google Scholar
  7. 7.
    Mitchell RH (2002) Perovskites: modern and ancient. Almaz Press, OntarioGoogle Scholar
  8. 8.
    Brown D (2013) Bond valence theory. Struct Bond. doi:10.1007/430_2012_89 Google Scholar
  9. 9.
    Brown ID (2006) The chemical bond in inorganic chemistry: the bond valence model, International Union of Crystallography monographs on crystallography; 12. Oxford University Press, Oxford, p 278Google Scholar
  10. 10.
    Thomas NW (1998) A new global parameterization of perovskite structures. Acta Crystallogr B 54:585–599Google Scholar
  11. 11.
    Brown ID (2012) Bond valence parameters. http://www.iucr.org/resources/data/datasets/bond-valence-parameters. Accessed 30 Nov 2012
  12. 12.
    Abramov YA, Tsirelson VG, Zavodnik VE, Ivanov SA, Brown ID (1995) The chemical bond and atomic displacements in SrTiO3 from X-ray diffraction analysis. Acta Crystallogr B B51:942–951Google Scholar
  13. 13.
    Mann M, Jackson S, Kolis J (2010) Hydrothermal crystal growth of the potassium niobate and potassium tantalate family of crystals. J Solid State Chem 183:2675–2680Google Scholar
  14. 14.
    Shimizu Y, Syono Y, Akimoto S (1970) High-pressure transformations in SrGeO3, SrSiO3, BaGeO3, and BaSiO3. High Temperatures – High Pressures 2:113–120Google Scholar
  15. 15.
    Casais MT, Alonso JA, Rasines I, Hidalgo MA (1995) Preparation, neutron structural study and characterization of BaNbO3: a Pauli-like metallic perovskite. Mater Res Bull 30:201–208Google Scholar
  16. 16.
    Brixner LH (1960) X-ray study and electrical properties of the system BaxSr(1-x)MoO3. J Inorg Nucl Chem 14:225–230Google Scholar
  17. 17.
    Rey MJ, Dehaudt P, Joubert JC, Lambert-Andron B, Cyrot M, Cyrot-Lackmann F (1990) Preparation and structure of the compounds SrVO3 and Sr2VO4. J Solid State Chem 86:101–108Google Scholar
  18. 18.
    Smith AJ, Welch AJE (1960) Some mixed metal oxides of perovskite structure. Acta Crystallogr 13:653–656Google Scholar
  19. 19.
    Dickens PG, Powell AV (1991) Powder neutron diffraction study of potassium uranate(V), KUO3. J Mater Chem 1:137–138Google Scholar
  20. 20.
    Levin I, Amos TG, Bell SM, Farber L, Vanderah TA, Roth RS, Toby BH (2003) Phase equilibria, crystal structures, and dielectric anomaly in the BaZrO3–CaZrO3 system. J Solid State Chem 175:170–181Google Scholar
  21. 21.
    Hutton J, Nelmes RJ, Scheel HJ (1981) Extinction corrections for a highly perfect crystal (SrTiO3). Acta Crystallogr A 37:916–920Google Scholar
  22. 22.
    Liu G, Zhao X, Eick HA (1992) The synthesis, structure and characterization of SrMoO2.6 15N0.4. J Alloys Compd 187:145–156Google Scholar
  23. 23.
    Zhao C, Feng S, Chao Z, Shi C, Xu R, Ni J (1996) Hydrothermal synthesis of the complex fluorides LiBaF3 and KMgF3 with perovskite structures under mild conditions. Chem Commun 1641–1642Google Scholar
  24. 24.
    Kijima N, Tanaka K, Marumo F (1983) Electron-density distributions in crystals of KMnF3 and KNiF3. Acta Crystallogr B 39:557–561Google Scholar
  25. 25.
    Buttner RH, Maslen EN (1988) Electron difference density in potassium zinc fluoride perovskite. Acta Crystallogr C 44:1707–1709Google Scholar
  26. 26.
    Kijima N, Tanaka K, Marumo F (1981) Electron density distribution in crystals of potassium trifluorocobaltate(II). Acta Crystallogr B 37:545–548Google Scholar
  27. 27.
    Miyata N, Tanaka K, Marumo F (1983) Electron density distribution in crystals of iron(II) potassium trifluoride. Acta Crystallogr B 39:561–564Google Scholar
  28. 28.
    Hutton J, Nelmes RJ (1981) High-resolution studies of cubic perovskites by elastic neutron diffraction II: SrTiO3, KMnF3, RbCaF3 and CsPbCl3. J Phys C: Solid State Phys 14:1713–1736Google Scholar
  29. 29.
    Brown ID, Klages P, Skowron A (2003) Influence of pressure on the lengths of chemical bonds. Acta Crystallogr B 59:439–448Google Scholar
  30. 30.
    Tavora Weber I, Audebrand N, Bouquet V, Guilloux-Viry M, Perrin A (2006) KTaO3 powders and thin films prepared by polymeric precursor method. Solid State Sci 8:606–612Google Scholar
  31. 31.
    Zhurova EA, Ivanov Y, Zavodnik V, Tsirelson V (2000) Electron density and atomic displacements in KTaO3. Acta Crystallogr B 56:594–600Google Scholar
  32. 32.
    Stitzer KE, Smith MD, zur Loye HC (2002) Crystal growth of Ba2MOsO6 (M = Li, Na) from reactive hydroxide fluxes. Solid State Sci 4:311–316Google Scholar
  33. 33.
    Martinez-Lope MJ, Alonso JA, Casais MT (2003) Synthesis, crystal and magnetic structure of the double perovskites A2NiMoO6 (A = Sr, Ba): a neutron diffraction study. Eur J Inorg Chem 2839–2844Google Scholar
  34. 34.
    Tezuka K, Henmi K, Hinatsu Y, Masaki NM (2000) Magnetic susceptibilities and Mossbauer spectra of perovskites A2FeNbO6 (A = Sr, Ba). J Solid State Chem 154:591–597Google Scholar
  35. 35.
    Martinez-Lope MJ, Alonso JA, Casais MT, Fernandez-Diaz MT (2002) Preparation, crystal and magnetic structure of the double perovskites Ba2CoBO6 (B = Mo, W). Eur J Inorg Chem 2463–2469Google Scholar
  36. 36.
    Patwe SJ, Achary SN, Tyagi AK (2005) Synthesis, phase transition and thermal expansion studies on M2MgWO6 (M = Ba2+ and Sr2+) double perovskites. J Alloys Compd 390:100–105Google Scholar
  37. 37.
    Iwakura H, Einaga H, Teraoka Y (2010) Relationship between cation arrangement and photocatalytic activity for Sr–Al–Nb–O double perovskite. Inorg Chem 49:11362–11369Google Scholar
  38. 38.
    Woodward PM (1996) Structural distortions, phase transitions, and cation ordering in the perovskite and tungsten trioxide structures. Oregon State University, CorvallisGoogle Scholar
  39. 39.
    Ouchetto K, Archaimbault F, Pineau A, Choisnet J (1991) Chemical and structural characterization of a new barium ceroplatinate – Ba2CePtO6 a double perovskite mixed-oxide. J Mater Sci Lett 10:1277–1279Google Scholar
  40. 40.
    Azad AK, Ivanov SA, Eriksson SG, Eriksen J, Rundlof H, Mathieu R, Svedlindh P (2001) Synthesis, crystal structure, and magnetic characterization of the double perovskite Ba2MnWO6. Mater Res Bull 36:2215–2228Google Scholar
  41. 41.
    Amador U, Hetherington CJD, Moran E, Alario-Franco MA (1992) Ba2PrPtO6 – a novel double perovskite. J Solid State Chem 96:132–140Google Scholar
  42. 42.
    Dianoux AJ, Poix P (1968) ETude cristallographique et paramagnetique de l’oxyde mixte Ba2UFeO6 comportant de l’uranium U5+. C R Hebd Seances Acad Sci 266:283–285Google Scholar
  43. 43.
    Baldinozzi G, Grebille D, Sciau P, Kiat JM, Moret J, Berar JF (1998) Rietveld refinement of the incommensurate structure of the elpasolite (ordered perovskite) Pb2MgTeO6. J Phys Condens Matter 10:6461–6472Google Scholar
  44. 44.
    Doi Y, Hinatsu Y, Nakamura A, Ishii Y, Morii Y (2003) Magnetic and neutron diffraction studies on double perovskites A2LnRuO6 (A = Sr, Ba; Ln = Tm, Yb). J Mater Chem 13:1758–1763Google Scholar
  45. 45.
    Battle PD, Jones CW (1989) The crystal and magnetic-structures of Sr2LuRuO6, Ba2YRuO6, and Ba2LuRuO6. J Solid State Chem 78:108–116Google Scholar
  46. 46.
    Arulraj A, Ramesha K, Gopalakrishnan J, Rao CNR (2000) Magnetoresistance in the double perovskite Sr2CrMoO6. J Solid State Chem 155:233–237Google Scholar
  47. 47.
    Choy JH, Hong ST, Choi KS (1996) Crystal structure, magnetism and phase transformation in perovskites A2CrNbO6 (A = Ca, Sr, Ba). J Chem Soc-Faraday Trans 92:1051–1059Google Scholar
  48. 48.
    Taira N, Hinatsu Y (2000) Magnetic susceptibility of Ba2YbTaO6 with the ordered perovskite structure and electron paramagnetic resonance of Yb3+ doped in Ba2LuTaO6. J Solid State Chem 150:31–35Google Scholar
  49. 49.
    Izumiyama Y, Doi Y, Wakeshima M, Hinatsu Y, Nakamura A, Ishii I (2002) Magnetic and calorimetric studies on ordered perovskite Ba2ErRuO6. J Solid State Chem 169:125–130Google Scholar
  50. 50.
    Doi Y, Hinatsu Y (2001) Magnetic properties of ordered perovskites Ba2LnTaO6 (Ln = Y, lanthanides). J Phys Condens Matter 13:4191–4202Google Scholar
  51. 51.
    Grenet JC, Poix P, Michel A (1972) Determinations crystallographiques et magnetiques sur l’oxyde mixte de formule Ba2MnUO6. Ann Chim (Paris) 1972:231–234Google Scholar
  52. 52.
    Hinatsu Y, Izumiyama Y, Doi Y, Alemi A, Wakeshima M, Nakamura A, Morii Y (2004) Studies on magnetic and calorimetric properties of double perovskites Ba2HoRuO6 and Ba2HoIrO6. J Solid State Chem 177:38–44Google Scholar
  53. 53.
    Barnes PW, Lufaso MW, Woodward PM (2006) Structure determination of A2M3+TaO6 and A2M3+NbO6 ordered perovskites: octahedral tilting and pseudosymmetry. Acta Crystallogr B B62:384–396Google Scholar
  54. 54.
    Fu WT, Ijdo DJW (2005) Re-examination of the structure of Ba2MIrO6 (M = La, Y): space group revised. J Alloys Compd 394:L5–L8Google Scholar
  55. 55.
    Karunadasa H, Huang Q, Ueland BG, Schiffer P, Cava RJ (2003) Ba2LnSbO6 and Sr2LnSbO6 (Ln = Dy, Ho, Gd) double perovskites: lanthanides in the geometrically frustrating fcc lattice. Proc Natl Acad Sci USA 100:8097–8102Google Scholar
  56. 56.
    Fu WT, Ijdo DJW (1997) On the structure of BaTl0.5Sb0.5O3: an ordered perovskite. J Solid State Chem 128:323–325Google Scholar
  57. 57.
    Jung D, Gravereau P, Demazeau G (1993) Stabilization of six-coordinated iridium(VI) in a perovskite oxygen lattice Ba2MIrO6 (M = Ca, Sr. Eur J Solid State Inorg Chem 30:1025–1037Google Scholar
  58. 58.
    Alonso JA, Cascales C, Casado PG, Rasines I (1997) On characterization of barium rare-earth antimonates: ordered perovskites suitable as substrates for superconducting films. J Solid State Chem 128:247–250Google Scholar
  59. 59.
    Fu WT, Ijdo DJW (2005) X-ray and neutron powder diffraction study of the double perovskites Ba2LnSbO6 (Ln = La, Pr, Nd and Sm). J Solid State Chem 178:2363–2367Google Scholar
  60. 60.
    Day BE, Bley ND, Jones HR, McCullough RM, Eng HW, Porter SH, Woodward PM, Barnes PW (2012) Structures of ordered tungsten- or molybdenum-containing quaternary perovskite oxides. J Solid State Chem 185:107–116Google Scholar
  61. 61.
    Woodward PM (1997) Octahedral tilting in perovskites. 1. Geometrical considerations. Acta Crystallogr B 53:32–43Google Scholar
  62. 62.
    Woodward PM (1997) Octahedral tilting in perovskites. 2. Structure stabilizing forces. Acta Crystallogr B 53:44–66Google Scholar
  63. 63.
    Glazer AM (1972) The classification of tilted octahedra in perovskites. Acta Crystallogr B 28:3384–3392Google Scholar
  64. 64.
    Glazer AM (2011) A brief history of tilts. Phase Transitions 84:405–420Google Scholar
  65. 65.
    Howard CJ, Stokes HT (1998) Group-theoretical analysis of octahedral tilting in perovskites. Acta Crystallogr B 54:782–789Google Scholar
  66. 66.
    Woodward PM (1997) POTATO – a program for generating perovskite structures distorted by tilting of rigid octahedra. J Appl Crystallogr 30:206–207Google Scholar
  67. 67.
    O'Keeffe M, Hyde BG (1977) Some structures topologically related to cubic perovskite (E21), ReO3 (D09) and Cu3Au (L12). Acta Crystallogr B B33:3802–3813Google Scholar
  68. 68.
    Lufaso MW (2002) Perovskite synthesis and analysis using structure prediction diagnostic software. The Ohio State University, ColumbusGoogle Scholar
  69. 69.
    Brown ID (2009) Recent developments in the methods and applications of the bond valence model. Chem Rev 109:6858–6919Google Scholar
  70. 70.
    Subramanian MA, Aravamudan G, Rao GVS (1983) Oxide pyrochlores – a review. Prog Solid State Chem 15:55–143Google Scholar
  71. 71.
    Kennedy BJ, Hunter BA, Howard CJ (1997) Structural and bonding trends in tin pyrochlore oxides. J Solid State Chem 130:58–65Google Scholar
  72. 72.
    Kennedy BJ (1995) Structure refinement of Y2Ru2O7 by neutron powder diffraction. Acta Crystallogr C 51:790–792Google Scholar
  73. 73.
    Haile SM, Wuensch BJ, Prince E (1990) Neutron Rietveld analysis of anion and cation disorder in the fast-ion conducting pyrochlore system yttrium zirconium titanium oxide (Y2(ZrxTi1-x)2O7). In: Materials Research Society symposium proceedings: neutron scattering for materials science, vol. 166, Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, pp 81–86Google Scholar
  74. 74.
    Yamamoto T, Kanno R, Takeda Y, Yamamoto O, Kawamoto Y, Takano M (1994) Crystal structure and metal–semiconductor transition of the Bi2-xLnxRu2O7 pyrochlores (Ln = Pr-Lu). J Solid State Chem 109:372–383Google Scholar
  75. 75.
    Knop O, Brisse F, Castelliz L (1969) Pyrochlores. V. Thermoanalytic, X-ray, neutron, infrared, and dielectric studies of A2Ti2O7 titanates. Can J Chem 47:971–990Google Scholar
  76. 76.
    Chtoun E, Hanebali H, Pierre G (2001) X-ray Rietveld analysis of (1-x)A2Ti2O7-(x)Fe2TiO5 (A = Eu, Y) solid solutions. Ann Chim (Paris) 26:27–32Google Scholar
  77. 77.
    Kobayashi H, Kanno R, Kawamoto Y, Kamiyama T, Izumi F, Sleight AW (1995) Synthesis, crystal structure, and electrical properties of the pyrochlores Pb2-xLnxRu2O7-y(Ln = Nd, Gd). J Solid State Chem 114:15–23Google Scholar
  78. 78.
    Reimers JN, Greedan JE, Sato M (1988) The crystal structure of the spin-glass pyrochlore, Y2Mo2O7. J Solid State Chem 72:390–394Google Scholar
  79. 79.
    Shimakawa Y, Kubo Y, Hamada N, Jorgensen JD, Hu Z, Short S, Nohara M, Takagi H (1999) Crystal structure, magnetic and transport properties, and electronic band structure of A2Mn2O7 pyrochlores (A = Y, In, Lu, and Tl). Phys Rev B 59:1249–1254Google Scholar
  80. 80.
    Subramanian MA, Torardi CC, Johnson DC, Pannetier J, Sleight AW (1988) Ferromagnetic R2Mn2O7 pyrochlores (R = Dy-Lu, Y). J Solid State Chem 72:24–30Google Scholar
  81. 81.
    Soderholm L, Greedan JE (1982) Relationship between crystal structure and magnetic properties of (RE)2V2O7; RE = Lu, Yb, Tm. Mater Res Bull 17:707–713Google Scholar
  82. 82.
    Dem'yanets LN, Radaev SF, Mamin BF, Maksimov BA (1988) Synthesis and atomic structure of pyrochlore-type Yb2Ge2O7 crystals. J Struct Chem 29:485–487Google Scholar
  83. 83.
    Kennedy BJ, Vogt T (1996) Structural and bonding trends in ruthenium pyrochlores. J Solid State Chem 126:261–270Google Scholar
  84. 84.
    Knop O, Brisse F, Castelliz L (1965) Determination of the crystal structure of erbium titanate, Er2Ti2O7, by x-ray and neutron diffraction. Can J Chem 43:2812–2826Google Scholar
  85. 85.
    Kennedy BJ (1996) Structural trends in pyrochlore oxides. Mater Sci Forum 228–231:753–758Google Scholar
  86. 86.
    Isupov VA (1958) Geometric criteria of structures of the pyrochlore type. Kristallografiya 3:99–100Google Scholar
  87. 87.
    Cai L, Arias AL, Nino JC (2011) The tolerance factors of the pyrochlore crystal structure. J Mater Chem 21:3611–3618Google Scholar
  88. 88.
    Vanderah TA, Levin I, Lufaso MW (2005) An unexpected crystal-chemical principle for the pyrochlore structure. Eur J Inorg Chem 14:2895–2901Google Scholar
  89. 89.
    Nakatsuka A, Ikeda Y, Yamasaki Y, Nakayama N, Mizota T (2003) Cation distribution and bond lengths in CoAl2O4 spinel. Solid State Commun 128:85–90Google Scholar
  90. 90.
    Redfern SA, Harrison RJ, O'Neill HSC, Wood DRR (1999) Thermodynamics and kinetics of cation ordering in MgAl2O4 up to 1600 C from in situ neutron diffraction. Am Mineral 84:299–310Google Scholar
  91. 91.
    O'Neill HSC, Dollase WA (1994) Crystal structures and cation distributions in simple spinels from powder XRD structural refinements: MgCr2O4, ZnCr2O4, Fe3O4 and the temperature dependence of the cation distribution in ZnAl2O4. Phys Chem Minerals 20:541–555Google Scholar
  92. 92.
    Harrison RJ, Redfern SAT, O'Neill HSC (1998) The temperature dependence of the cation distribution in synthetic hercynite (FeAl2O4) from in-situ neutron structure refinements. Am Mineral 83:1092–1099Google Scholar
  93. 93.
    Ueno G, Sato S, Kino Y (1999) The low-temperature phase of NiCr2O4. Acta Crystallogr C 39:1963–1966Google Scholar
  94. 94.
    Sawada H (1997) Electron density study of spinels: zinc chromium oxide. Mater Res Bull 32:873–879Google Scholar
  95. 95.
    Wendschuh-Josties M, O'Neill HSC, Bente K, Brey G (1995) Lattice and oxygen parameters of ZnGa2O4 as a function of equilibriation temperature. Neus Jahrbuch Mineralogie 1995(6):273–280Google Scholar
  96. 96.
    Shirane G, Cox DE (1964) Magnetic structure in FeCr2S4 and FeCr2O4. J Appl Phys 35:954–955Google Scholar
  97. 97.
    Hirota K, Inoue T, Mochida N, Ohtsuka A (1990) Study of germanium spinels (Part 3). J Ceram Soc Japan (Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi) 98:976–986Google Scholar
  98. 98.
    Liu X, Prewitt CT (1990) High-temperature X-ray diffraction study of Co3O4: transition from normal to disordered spinel. Phys Chem Minerals 17:168–172Google Scholar
  99. 99.
    Reuter B, Riedel E, Hug P, Arndt D, Geisler U, Behnke J (1969) Zur kristallochemie der vanadin(III)-spinelle. Z Anorg Allgemeine Chem 369:306–312Google Scholar
  100. 100.
    Rueedorff W, Reuter B (1947) Die struktur der magnesium- und zink-vanadinspinelle. Z Anorg Allgemeine Chem 253:194–208Google Scholar
  101. 101.
    Schaefer W, Kockelmann W, Potzel W, Martin A, Campbell SJ (1997) Neutron diffraction data on preparation dependent variations of structural and magnetic order in ZnFe2O4 spinels. Z Kristallogr 15:167Google Scholar
  102. 102.
    Stone SF, Arean CO, Diez Vinuela JS, Platero EE (1985) Structural characterization of cadmium-copper gallium oxide (CdxCu1-xGa2O4) spinels. J Chem Soc-Faraday Trans 81:1255–1261Google Scholar
  103. 103.
    Wessels AL, Czekalla R, Jeitschko W (1998) Structure of the mercury(II) chromate(III) HgCr2O4 and lattice constants of isotypic mercury(I) compounds Hg2MoO4 and Hg2WO4. Mater Res Bull 33:95–101Google Scholar
  104. 104.
    Arean CO, Diaz EG, Gonzales JMR, Garcia MAV (1988) Crystal structure of cadmium-zinc ferrites. J Solid State Chem 77:275–280Google Scholar
  105. 105.
    Agarwala RP (1961) Structure of cadmium rhodite, CdRh2O4. Z Anorg Allgemeine Chem 307:205–207Google Scholar
  106. 106.
    Yagi T, Marumo F, Akimoto SI (1974) Crystal structures of spinel polymorphs of Fe2SiO4 and Ni2SiO4. Am Mineral 59:486–490Google Scholar
  107. 107.
    Marumo F, Isobe M, Akimoto S (1977) Electron-density distributions in crystals of gamma-Fe2SiO4 and gamma-Co2SiO4. Acta Crystallogr B 33:713–716Google Scholar
  108. 108.
    Welch MD, Cooper MA, Hawthorne FC (2001) The crystal structure of brunogeierite, Fe2GeO4. Mineral Mag 65:441–444Google Scholar
  109. 109.
    von Dreele RB, Navrotsky A (1977) Refinement of the crystal structure of Mg2GeO4. Acta Crystallogr B 33:2287–2288Google Scholar
  110. 110.
    Marumo F, Isobe M (1974) Electron-density distribution in crystals of gamma Ni2SiO4. Acta Crystallogr B 30:1904–1906Google Scholar
  111. 111.
    Geller S (1967) Crystal chemistry of the garnets. Z Kristallogr 125:1–47Google Scholar
  112. 112.
    Rodic D, Mitric M, Tellgren R, Rundlof H (2001) The cation distribution and magnetic structure of Y3Fe(5−x)AlxO12. J Magn Magn Mater 232:1–8Google Scholar
  113. 113.
    Rodic D, Mitric M, Tellgren R, Rundlof H, Kremenovic A (1999) True magnetic structure of the ferrimagnetic garnet Y3Fe5O12 and magnetic moments of iron ions. J Magn Magn Mater 191:137–145Google Scholar
  114. 114.
    Euler F, Bruce JA (1965) Oxygen coordinates of compounds with garnet structure. Acta Crystallogr 19:971–978Google Scholar
  115. 115.
    Weidenborner JE (1961) Least squares refinement of the structure of gadolinium-iron garnet, Gd3Fe2Fe3O12. Acta Crystallogr 14:1051–1056Google Scholar
  116. 116.
    Dukhovskaya EL, Saksonov YG, Titova AG (1973) Oxygen parameters of certain compounds with the garnet structure. Izvestiya Akad Nauk SSSR Neorganicheskie Mater 9:809–813Google Scholar
  117. 117.
    Guo L, Huang K, Chen Y, Li G, Yuan L, Peng W, Yuan H, Feng S (2011) Mild hydrothermal synthesis and ferrimagnetism of Pr3Fe5O12 and Nd3Fe5O12 garnets. J Solid State Chem 184:1048–1053Google Scholar
  118. 118.
    Nakatsuka A, Yoshiasa A, Takeno S (1995) Site preference of cations and structural variation in Y3Fe5-xGaxO12 (0 < x < 5) solid solutions with garnet structure. Acta Crystallogr B 51:737–745Google Scholar
  119. 119.
    Sawada H (1997) Electron density study of garnets: Z3Ga5O12; Z = Nd, Sm, Gd, Tb. J Solid State Chem 132:300–307Google Scholar
  120. 120.
    Patzke G, Wartchow R, Binnewies M (1999) Crystal structure of triholmium pentagallium dodecaoxide, Ho3Ga2(GaO4)3 and of tridysprosium pentagallium dodecaoxide, Dy3Ga2(GaO4)3. New Cryst Struct (Z Kristallogr) 214:143–144Google Scholar
  121. 121.
    Lipp C, Strobel S, Lissner F, Niewa R (2012) Garnet-type Mn3Cr2(GeO4)3. Acta Crystallogr E 68:35Google Scholar
  122. 122.
    Novak GA, Gibbs GV (1971) The crystal chemistry of the silicate garnets. Am Mineral 56:791–825Google Scholar
  123. 123.
    De Pape R, Portier J, Gauthier G, Hagenmuller P (1967) Fluorinated garnets of the transition elements, Na3Li3M2F12 (M = titanium, vanadium, chromium, iron, or cobalt). C R Hebd Seances Acad Sci 265:1244–1246Google Scholar
  124. 124.
    Bouzemi B, Boughzala H, Jouini T (2002) Na3Cr2(AsO4)3 trisodium dichromium(III) triarsenate. Acta Crystallogr E 58:117–118Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of North FloridaJacksonvilleUSA
  2. 2.Department of ChemistryThe Ohio State UniversityColumbusUSA

Personalised recommendations