Skip to main content

Properties of {FeNO}8 and {CoNO}9 Metal Nitrosyls in Relation to Nitroxyl Coordination Chemistry

  • Chapter
  • First Online:
Molecular Design in Inorganic Biochemistry

Part of the book series: Structure and Bonding ((STRUCTURE,volume 160))

Abstract

While nitric oxide (NO) is an important signaling molecule and contributes to important physiological processes in humans, the one-electron reduced analogue of NO, namely nitroxyl (NO or HNO), is quickly establishing its own unique biological role. For example, HNO has been demonstrated to increase myocardial contractility by interacting with thiols in receptor molecules of heart muscle cells. These types of properties have made this particular nitrogen oxide molecule an attractive target for certain therapeutics. Since most of the underlying chemical biology of nitroxyl is mediated by heme proteins and Fe-nitroxyl intermediates have been proposed as key intermediates in denitrifying enzymes, several iron–porphyrin–NO coordination complexes of the Enemark–Feltham {FeNO}8 notation have been pursued. Herein we describe the collective efforts on the synthetic, structural, spectroscopic, electrochemical, and theoretical work that have been performed on biologically relevant iron- and cobalt–NO complexes that afford the rare {FeNO}8 and {CoNO}9 notations. This compilation has provided a somewhat unifying picture into the electronic structure of this important {MNO} unit as well as the benchmark properties that will enable the bioinorganic community to characterize and determine the fate of these species in biology, especially at the active sites of metalloenzymes involved in the global nitrogen cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ignarro LJ (2000) Nitric oxide biology and pathobiology. Academic, San Diego

    Google Scholar 

  2. Moncada S, Higgs EA (2006) Br J Pharmacol 147:S193

    CAS  Google Scholar 

  3. Ignarro LJ (1999) Angew Chem Int Ed 38:1882

    CAS  Google Scholar 

  4. Furchgott RF (1999) Angew Chem Int Ed 38:1870

    CAS  Google Scholar 

  5. Murad F (1999) Angew Chem Int Ed 38:1856

    CAS  Google Scholar 

  6. Fukuto JM, Dutton AS, Houk KN (2005) Chembiochem 6:612

    CAS  Google Scholar 

  7. Miranda KM (2005) Coord Chem Rev 249:433

    CAS  Google Scholar 

  8. Shafirovich V, Lymar SV (2002) Proc Natl Acad Sci USA 99:7340

    CAS  Google Scholar 

  9. Irvine JC, Ritchie RH, Favaloro JL, Andrews KL, Widdop RE, Kemp-Harper BK (2008) Trends Pharmacol Sci 29:601

    CAS  Google Scholar 

  10. Flores-Santana W, Switzer C, Ridnour LA, Basudhar D, Mancardi D, Donzelli S, Thomas DD, Miranda KM, Fukuto JM, Wink DA (2009) Arch Pharm Res 32:1139

    CAS  Google Scholar 

  11. Miranda KM, Katori T, Torres de Holding CL, Thomas L, Ridnour LA, McLendon WJ, Cologna SM, Dutton AS, Champion HC, Mancardi D, Tocchetti CG, Saavedra JE, Keefer LK, Houk KN, Fukuto JM, Kass DA, Paolocci N, Wink DA (2005) J Med Chem 48:8220

    CAS  Google Scholar 

  12. Fukuto JM, Switzer CH, Miranda KM, Wink DA (2005) Annu Rev Pharmacol Toxicol 45:335

    CAS  Google Scholar 

  13. Miranda KM, Nims RW, Thomas DD, Espey MG, Citrin D, Bartberger MD, Paolocci N, Fukuto JM, Feelisch M, Wink DA (2003) J Inorg Biochem 93:52

    CAS  Google Scholar 

  14. Flores-Santana W, Salmon DJ, Donzelli S, Switzer CH, Basudhar D, Ridnour L, Cheng R, Glynn SA, Paolocci N, Fukuto JM, Miranda KM, Wink DA (2011) Antioxid Redox Signal 14:1659

    CAS  Google Scholar 

  15. Turk J, Corbett JA, Ramanadham S, Bohrer A, McDaniel ML (1993) Biochem Biophys Res Commun 197:1458

    CAS  Google Scholar 

  16. Wong PS-Y, Hyun J, Fukuto JM, Shirota FN, DeMaster EG, Shoeman DW, Nagasawa HT (1998) Biochemistry 37:5362

    CAS  Google Scholar 

  17. Doyle MP, Mahapatro SN, Broene RD, Guy JK (1988) J Am Chem Soc 110:593

    CAS  Google Scholar 

  18. Paolocci N, Jackson MI, Lopez BE, Miranda K, Tocchetti CG, Wink DA, Hobbs AJ, Fukuto JM (2007) Pharmacol Ther 113:442

    CAS  Google Scholar 

  19. Nagasawa HT, DeMaster EG, Redfern B, Shirota FN, Goon DJW (1990) J Med Chem 33:3120

    CAS  Google Scholar 

  20. Paolocci N, Katori T, Champion HC, St. John ME, Miranda KM, Fukuto JM, Wink DA, Kass DA (2003) Proc Natl Acad Sci USA 100:5537

    CAS  Google Scholar 

  21. Paolocci N, Saavedra WF, Miranda KM, Martignani C, Isoda T, Hare JM, Espey MG, Fukuto JM, Feelisch M, Wink DA, Kass DA (2001) Proc Natl Acad Sci USA 98:10463

    CAS  Google Scholar 

  22. Reisz JA, Bechtold E, King SB (2010) Dalton Trans 39:5203

    CAS  Google Scholar 

  23. Dalby FW (1958) Can J Phys 36:1336

    CAS  Google Scholar 

  24. Farmer PJ, Sulc F (2005) J Inorg Biochem 99:166

    CAS  Google Scholar 

  25. Angeli A, Angelico A, Scurti F (1902) Chem Zentralbl 73:691

    Google Scholar 

  26. Angeli A (1903) Gazz Chim Ital 33:245

    CAS  Google Scholar 

  27. Bartberger MD, Liu W, Ford E, Miranda KM, Switzer C, Fukuto JM, Farmer PJ, Wink DA, Houk KN (2002) Proc Natl Acad Sci USA 99:10958

    CAS  Google Scholar 

  28. Benderskii VA, Krivenko AG, Ponomarev EA (1990) Elektrokhimiya 26:318

    CAS  Google Scholar 

  29. Clough PN, Thrush BA, Ramsay DA, Stamper JG (1973) Chem Phys Lett 23:155

    CAS  Google Scholar 

  30. Johns J, McKellar A (1977) J Chem Phys 66:1217

    CAS  Google Scholar 

  31. Sulc F, Farmer PJ (2008) Bioinorganic chemistry of HNO ligand. In: Ghosh A (ed) The smallest biomolecules: diatomics and their interactions with heme proteins. Elsevier, Amsterdam, p 429

    Google Scholar 

  32. Enemark JH, Feltham RD (1974) Coord Chem Rev 13:339

    CAS  Google Scholar 

  33. Angelo M, Hausladen A, Singel DJ, Stamler JS (2008) Methods Enzymol 436:131

    CAS  Google Scholar 

  34. Gladwin MT, Grubina R, Doyle MP (2009) Acc Chem Res 42:157

    CAS  Google Scholar 

  35. Berto TC, Lehnert N (2011) Inorg Chem 50:7361

    CAS  Google Scholar 

  36. Hopmann KH, Cardey B, Gladwin MT, Kim-Shapiro DB, Ghosh A (2011) Chem Eur J 17:6348

    CAS  Google Scholar 

  37. Tolman WB (ed) (2006) Activation of small molecules: organometallic and bioinorganic perspectives. Wiley-VCH, Weinheim

    Google Scholar 

  38. Guilard R, Kadish KM (1988) Chem Rev 88:1121

    CAS  Google Scholar 

  39. Reeder BJ (2010) Antioxid Redox Signal 13:1087

    CAS  Google Scholar 

  40. Stynes DV, Cleary Stynes H, James BR, Ibers JA (1973) J Am Chem Soc 95:4087

    CAS  Google Scholar 

  41. Wayland BB, Olson LW (1974) J Am Chem Soc 96:6037

    CAS  Google Scholar 

  42. Scheidt WR, Frisse ME (1975) J Am Chem Soc 97:17

    CAS  Google Scholar 

  43. Praneeth VKK, Näther C, Peters G, Lehnert N (2006) Inorg Chem 45:2795

    CAS  Google Scholar 

  44. Praneeth VKK, Neese F, Lehnert N (2005) Inorg Chem 44:2570

    CAS  Google Scholar 

  45. Goodrich LE, Paulat F, Praneeth VKK, Lehnert N (2010) Inorg Chem 49:6293

    CAS  Google Scholar 

  46. Olson LW, Schaeper D, Lançon D, Kadish KM (1982) J Am Chem Soc 104:2042

    CAS  Google Scholar 

  47. Choi I-K, Liu Y, Feng D, Paeng K-J, Ryan MD (1991) Inorg Chem 30:1832

    CAS  Google Scholar 

  48. Vogel KM, Kozlowski PM, Zgierski MZ, Spiro TG (1999) J Am Chem Soc 121:9915

    CAS  Google Scholar 

  49. Bayachou M, Lin R, Cho W, Farmer PJ (1998) J Am Chem Soc 120:9888

    CAS  Google Scholar 

  50. Fujita E, Fajer J (1983) J Am Chem Soc 105:6743

    CAS  Google Scholar 

  51. Wei Z, Ryan MD (2010) Inorg Chem 49:6948

    CAS  Google Scholar 

  52. Liu Y, DeSilva C, Ryan MD (1997) Inorg Chim Acta 258:247

    CAS  Google Scholar 

  53. Pellegrino J, Bari SE, Bikiel DE, Doctorovich F (2010) J Am Chem Soc 132:989

    CAS  Google Scholar 

  54. Barley MH, Takeuchi KJ, Meyer TJ (1986) J Am Chem Soc 108:5876

    CAS  Google Scholar 

  55. Barley MH, Rhodes MR, Meyer TJ (1987) Inorg Chem 26:1746

    CAS  Google Scholar 

  56. Immoos CE, Sulc F, Farmer PJ, Czarnecki K, Bocian DF, Levina A, Aitken JB, Armstrong RS, Lay PA (2005) J Am Chem Soc 127:814

    CAS  Google Scholar 

  57. Connelly NG, Geiger WE (1996) Chem Rev 96:877

    CAS  Google Scholar 

  58. Lançon D, Kadish KM (1983) J Am Chem Soc 105:5610

    Google Scholar 

  59. Waleh A, Ho N, Chantranupong L, Loew GH (1989) J Am Chem Soc 111:2767

    CAS  Google Scholar 

  60. Einsle O, Messerschmidt A, Huber R, Kroneck PMH, Neese F (2002) J Am Chem Soc 124:11737

    CAS  Google Scholar 

  61. Williams PA, Fülöp V, Garman EF, Saunders NFW, Ferguson SJ, Hajdu J (1997) Nature 389:406

    CAS  Google Scholar 

  62. Einsle O, Messerschmidt A, Stach P, Bourenkov GP, Bartunik HD, Huber R, Kroneck PMH (1999) Nature 400:476

    CAS  Google Scholar 

  63. Pellegrino J, Hübner R, Doctorovich F, Kaim W (2011) Chem Eur J 17:7868

    CAS  Google Scholar 

  64. Grinstaff MW, Hill MG, Birnbaum ER, Schaefer WP, Labinger JA, Gray HB (1995) Inorg Chem 34:4896

    CAS  Google Scholar 

  65. Bultitude J, Larkworthy LF, Mason J, Povey DC, Sandell B (1984) Inorg Chem 23:3629

    CAS  Google Scholar 

  66. Mason J, Larkworthy LF, Moore EA (2002) Chem Rev 102:913

    CAS  Google Scholar 

  67. Murphy WR Jr, Takeuchi K, Barley MH, Meyer TJ (1986) Inorg Chem 25:1041

    CAS  Google Scholar 

  68. Murphy WR Jr, Takeuchi KJ, Meyer TJ (1982) J Am Chem Soc 104:5817

    CAS  Google Scholar 

  69. Wilson RD, Ibers JA (1979) Inorg Chem 18:336

    CAS  Google Scholar 

  70. Lin R, Farmer PJ (2000) J Am Chem Soc 122:2393

    CAS  Google Scholar 

  71. Arnold EV, Bohle DS (1996) Methods Enzymol 269:41

    CAS  Google Scholar 

  72. Bazylinski DA, Goretski J, Hollocher TC (1985) J Am Chem Soc 107:7986

    CAS  Google Scholar 

  73. Bazylinski DA, Hollocher TC (1985) J Am Chem Soc 107:7982

    CAS  Google Scholar 

  74. Sulc F, Immoos CE, Pervitsky D, Farmer PJ (2004) J Am Chem Soc 126:1096

    CAS  Google Scholar 

  75. Daiber A, Nauser T, Takaya N, Kudo T, Weber P, Hultschig C, Shoun H, Ullrich V (2002) J Inorg Biochem 88:343

    CAS  Google Scholar 

  76. Sulc F, Fleischer E, Farmer PJ, Ma D, La Mar GN (2003) J Biol Inorg Chem 8:348

    CAS  Google Scholar 

  77. Yu N-T, Kerr EA (1988) In: Spiro TG (ed) Biological applications of Raman spectroscopy, vol 3. Wiley, New York

    Google Scholar 

  78. Silvernail NJ, Olmstead MM, Noll BC, Scheidt WR (2009) Inorg Chem 48:971

    CAS  Google Scholar 

  79. Wyllie GRA, Schulz CE, Scheidt WR (2003) Inorg Chem 42:5722

    CAS  Google Scholar 

  80. Lehnert N, Praneeth VKK, Paulat F (2006) J Comput Chem 27:1338

    CAS  Google Scholar 

  81. Rich AM, Armstrong RS, Ellis PJ, Lay PA (1998) J Am Chem Soc 120:10827

    CAS  Google Scholar 

  82. Linder DP, Rodgers KR (2005) Inorg Chem 44:8259

    CAS  Google Scholar 

  83. Brucker EA, Olson JS, Ikeda-Saito M, Phillips GN Jr (1998) Proteins Struct Funct Genet 30:352

    CAS  Google Scholar 

  84. Copeland DM, West AH, Richter-Addo GB (2003) Proteins Struct Funct Genet 53:182

    CAS  Google Scholar 

  85. Copeland DM, Soares AS, West AH, Richter-Addo GB (2006) J Inorg Biochem 100:1413

    CAS  Google Scholar 

  86. Scheidt WR, Barabanschikov A, Pavlik JW, Silvernail NJ, Sage JT (2010) Inorg Chem 49:6240

    CAS  Google Scholar 

  87. Ye S, Price JC, Barr EW, Green MT, Bollinger JM Jr, Krebs C, Neese F (2010) J Am Chem Soc 132:4739

    CAS  Google Scholar 

  88. Di Vaira M, Ghilardi CA, Sacconi L (1976) Inorg Chem 15:1555

    Google Scholar 

  89. Di Vaira M, Tarli A, Stoppioni P, Sacconi L (1975) Cryst Struct Commun 4:653

    Google Scholar 

  90. Stephens FS (1972) J Chem Soc Dalton Trans 2257

    Google Scholar 

  91. Mašek J, Mášlová E (1974) Collect Czech Chem Commun 39:2141

    Google Scholar 

  92. González-Lebrero MC, Scherlis DA, Estiú GL, Olabe JA, Estrin DA (2001) Inorg Chem 40:4127

    Google Scholar 

  93. Serres RG, Grapperhaus CA, Bothe E, Bill E, Weyhermüller T, Neese F, Wieghardt K (2004) J Am Chem Soc 126:5138

    CAS  Google Scholar 

  94. Hauser C, Glaser T, Bill E, Weyhermüller T, Wieghardt K (2000) J Am Chem Soc 122:4352

    CAS  Google Scholar 

  95. Schwane JD, Ashby MT (2002) J Am Chem Soc 124:6822

    CAS  Google Scholar 

  96. Patra AK, Dube KS, Sanders BC, Papaefthymiou GC, Conradie J, Ghosh A, Harrop TC (2012) Chem Sci 3:364

    CAS  Google Scholar 

  97. Montenegro AC, Amorebieta VT, Slep LD, Martín DF, Roncaroli F, Murgida DH, Bari SE, Olabe JA (2009) Angew Chem Int Ed 48:4213

    CAS  Google Scholar 

  98. McCleverty JA (2004) Chem Rev 104:403

    CAS  Google Scholar 

  99. Conradie J, Ghosh A (2011) Inorg Chem 50:4223

    CAS  Google Scholar 

  100. Boulet P, Buchs M, Chermette H, Daul C, Gilardoni F, Rogemond F, Schläpfer CW, Weber J (2001) J Chem Phys A 105:8991

    CAS  Google Scholar 

  101. Boulet P, Buchs M, Chermette H, Daul C, Furet E, Gilardoni F, Rogemond F, Schläpfer CW, Weber J (2001) J Chem Phys A 105:8999

    CAS  Google Scholar 

  102. Wyllie GRA, Scheidt WR (2002) Chem Rev 102:1067

    CAS  Google Scholar 

  103. Richter-Addo GB, Legzdins P (1992) Metal nitrosyls. Oxford University Press, New York

    Google Scholar 

  104. Scheidt WR, Hoard JL (1973) J Am Chem Soc 95:8281

    CAS  Google Scholar 

  105. Kadish KM, Mu XH, Lin XQ (1988) Inorg Chem 27:1489

    CAS  Google Scholar 

  106. Hess JL, Conder HL, Green KN, Darensbourg MY (2008) Inorg Chem 47:2056

    CAS  Google Scholar 

  107. Wang X, Andrews L (2001) J Phys Chem A 105:4403

    CAS  Google Scholar 

  108. Feltham RD, Enemark JH (1981) Structures of metal nitrosyls, vol 12. Topics in inorganic and organometallic stereochemistry. Wiley, New York

    Google Scholar 

  109. Thyagarajan S, Incarvito CD, Rheingold AL, Theopold KH (2003) Inorg Chim Acta 345:333

    CAS  Google Scholar 

  110. Tomson NC, Crimmin MR, Petrenko T, Rosebrugh LE, Sproules S, Boyd WC, Bergman RG, DeBeer S, Toste FD, Wieghardt K (2011) J Am Chem Soc 133:18785

    CAS  Google Scholar 

  111. Blanchard AA, Rafter JR, Adams WB Jr (1934) J Am Chem Soc 56:16

    CAS  Google Scholar 

  112. Coleman GW, Blanchard AA (1936) J Am Chem Soc 58:2160

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd C. Harrop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sanders, B.C., Rhine, M.A., Harrop, T.C. (2013). Properties of {FeNO}8 and {CoNO}9 Metal Nitrosyls in Relation to Nitroxyl Coordination Chemistry. In: Rabinovich, D. (eds) Molecular Design in Inorganic Biochemistry. Structure and Bonding, vol 160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2012_87

Download citation

Publish with us

Policies and ethics