Advertisement

The Recent Development of SRS and SRS SF-Conversion Laser Crystal

  • Chaoyang TuEmail author
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 145)

Abstract

Although tungstates posses lower coefficient of thermal conductivity, tungstates doped with active ions have higher quanta efficiency of fluorescence owing to their higher doping concentration of active ions resulted from the higher covalence of WO 4 2− units. Therefore, they are favorable for the medium of low power laser when doped with active ions. On the other hand, they have higher stimulated Raman scattering (SRS) plus in a general way. Therefore, tungstates doped with active ions can serve as a SRS self-frequency conversion multifunctions laser medium. After wide surveys of known research on the growth, crystal structure, and properties including optical and spectra characteristics and laser property, this chapter reviews the recent advances in the development of KGd(WO4)2 and SrWO4 Raman and SRS self-frequency conversion laser crystal. The SRS self-frequency conversion laser technology was dealt with. As a result, the Raman and self-Raman laser outputs with high efficiency at ~1,180 nm wavelength and its frequency-doubling laser outputs at ~590 nm wavelength have been achieved.

Keywords

Crystal growth KGd(WO4)2 and SrWO4 crystals Optical properties Raman and SRS self-frequency conversion laser properties 

Notes

Acknowledgments

Some works of this chapter were supported by National Nature Science Foundation of China (No.50902129, 61078076, 91122033), Major Projects from FJIRSM (SZD09001), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-EW-H03), Science and Technology Plan Major Project of Fujian Province of China (Grant No. 2010I0015).

References

  1. 1.
    Hellwarth RW (1963) Phys Rev 130:1850CrossRefGoogle Scholar
  2. 2.
    Sen PK, Sen P (1986) Phys Rev B 33:5038CrossRefGoogle Scholar
  3. 3.
    Malkin VM, Tsidulko YA, Fisch NJ (2000) Phys Rev Lett 85:4068CrossRefGoogle Scholar
  4. 4.
    Li Z, Li L, Tian H, Zhou G, Spatschek KH (2002) Phys Rev Lett 89:263901CrossRefGoogle Scholar
  5. 5.
    Takahashi J, Matsubara E, Arima T, Hanamura E (2003) Phys Rev B 68:155102CrossRefGoogle Scholar
  6. 6.
    Shen YR (2003) The principles of nonlinear optics. Wiley-Interscience, HobokenGoogle Scholar
  7. 7.
    Levenson MD (1974) IEEEE J Quant Electron QE 10:110CrossRefGoogle Scholar
  8. 8.
    Harris SE, Sokolo AV (1997) Phys Rev A 55:R4019CrossRefGoogle Scholar
  9. 9.
    Zverev PG, Basiev TT, Prokhorov AM (1999) Opt Mater 11:335CrossRefGoogle Scholar
  10. 10.
    Kaminskii AA, Eichler HJ, Grebe D et al (1998) Opt Mater 10:269CrossRefGoogle Scholar
  11. 11.
    Qi X, Luo Z, Liang J (2000) J Cryst Growth 246:363–366CrossRefGoogle Scholar
  12. 12.
    Kaminskii A, Ueda K, Eichler HJ, Lu J et al (2001) Opt Comm 194:201CrossRefGoogle Scholar
  13. 13.
    Chen W, Inagawa Y, Omatsu T et al (2001) Opt Comm 194:401CrossRefGoogle Scholar
  14. 14.
    Kaminskii A, Sarkiso SE, Pavlyuk A, Lyubchenko V (1980) Izv Akad Nauk SSSR Neorg Mater 16:501Google Scholar
  15. 15.
    Jia G (2005) The study on the growth, structure, spectral, and laser properties of TmxGd1−xAl(BO3)4 and rare-earth doped SrWO4 crystals. Master Dissertation, Graduated School of Chinese Academy of SciencesGoogle Scholar
  16. 16.
    Tu C, Luo Z, Chen G, Zhao T (1995) J Cryst Growth 152(3):235–237CrossRefGoogle Scholar
  17. 17.
    Johnson LF, Dietz RE, Guggenheim HJ (1963) Phys Rev Lett 11:318–320CrossRefGoogle Scholar
  18. 18.
    Tu C, Li J, Zhu Z et al (2003) J Cryst Growth 256(1–2):63–66CrossRefGoogle Scholar
  19. 19.
    Tu C, Li J, You Z et al (2004) Chin Laser 31:377Google Scholar
  20. 20.
    Tu C (2005) The study on the growth, structure, spectra and laser characteristics of new rare earth-actived laser crystals. Doctor Dissertation, Graduated School of Chinese Academy of SciencesGoogle Scholar
  21. 21.
    Yingwei W, Haobo C, Jinghe L et al (2004) Opt Tech (Chinese) 30(6):717Google Scholar
  22. 22.
    Brenier A, Tu C, Li J et al (2001) J Phys Condens Matter 13:4097–4103CrossRefGoogle Scholar
  23. 23.
    Zundu Luo, Xueyuan Chen, Tu C (1997) Acta Optica Sinica (Chinese) 17(8):1144Google Scholar
  24. 24.
    Tu C, Li J, Zhaojie Z et al (2003) Opt Comm 227(4–6):383–388CrossRefGoogle Scholar
  25. 25.
    Huang Jianhong, Lin Jipeng, Su Rongbing et al (2007) Opt Lett 32(9):1096CrossRefGoogle Scholar
  26. 26.
    Gurmen E, Daniels E, King JS (1971) J Chem Phys 55:1093–1097CrossRefGoogle Scholar
  27. 27.
    Ivleva LI, Basiev TT, Voronina IS et al (2003) Opt Mater 23:439CrossRefGoogle Scholar
  28. 28.
    Sattler JP, Nemarich J (1970) Phys Rev B1:4249Google Scholar
  29. 29.
    Choosuwan H, Guo R, Bhalla AS et al (2002) J Appl Phys 91:5051CrossRefGoogle Scholar
  30. 30.
    Carvajal JJ, Sole R, Gavalsa J et al (2003) Chem Matter 15:2730CrossRefGoogle Scholar
  31. 31.
    Chauhan AK (2003) J Cryst Growth 254:418CrossRefGoogle Scholar
  32. 32.
    Jia G, Tu C, You Z et al (2005) Solid State Comm 134(9):583–588CrossRefGoogle Scholar
  33. 33.
    Brixner LH, Sleight AW (1973) Mater Res Bull 8:1269CrossRefGoogle Scholar
  34. 34.
    Gongming Wang, Wencheng Wang (1982), Physics 11(3):164Google Scholar
  35. 35.
    Born M, Wolf E (1975) Principles of optics. Pergamon, OxfordGoogle Scholar
  36. 36.
    Jia G, Tu C, Brenier A (2005) Appl Phys B 81:627–633CrossRefGoogle Scholar
  37. 37.
    Métrat G, Muhlstein N, Brenier A et al (1997) Opt Matter 8:75CrossRefGoogle Scholar
  38. 38.
    Zubenko DA, Noginov MA, Semenkov SG et al (1992) Sov J Quant Electron 22:133CrossRefGoogle Scholar
  39. 39.
    Weber MJ, Varitimos TE (1971) J Appl Phys 42:4996CrossRefGoogle Scholar
  40. 40.
    Chen Y, Lin X, Luo Z et al (2003) Chem Phys Lett 381(5–6):598CrossRefGoogle Scholar
  41. 41.
    Chen W, Inagawa Y, Omatsu T et al (2001) Opt Comm 194:201CrossRefGoogle Scholar
  42. 42.
    Ohta K, Saito H, Obara M (1993) J Appl Phys 73:3149CrossRefGoogle Scholar
  43. 43.
    Sokolska I, Ryba-Romanowski W, Golab S et al (2000) J Chem Sol 61:1573CrossRefGoogle Scholar
  44. 44.
    Pujol MC, Guell F, Mateos X et al (2002) Phys Rev B 66:144304CrossRefGoogle Scholar
  45. 45.
    Jia GH, Tu CY, Li JF et al (2004) J Appl Phys 96:6262CrossRefGoogle Scholar
  46. 46.
    Jia G, Tu C, Zhenyu You et al (2005) J Appl Phys 98:093525CrossRefGoogle Scholar
  47. 47.
    Brenier A, Jia G, Tu C (2004) J Phys Condens Matter 16:9103–9108CrossRefGoogle Scholar
  48. 48.
    Fan L, Fan YX, Duan YH et al (2009) Appl Phys B 94:553–557CrossRefGoogle Scholar
  49. 49.
    Fan YX, Liu Y, Duan YH et al (2008) Appl Phys B 93:327–330CrossRefGoogle Scholar
  50. 50.
    Chen X, Zhang X, Wang Q et al (2008) Opt Lett 33(7):705–707CrossRefGoogle Scholar
  51. 51.
    Zhenhua C, Xingyu Z, Qingpu W, Liu Z et al (2009) Opt Lett 34(17):2610–2612CrossRefGoogle Scholar
  52. 52.
    Duan YM, Zhu HY, Zhang G, Huang CH, Wei Y, Tu CY, Zhu ZJ, Yang FG, You ZY (2010) Laser Phys Lett 7(7):491–494CrossRefGoogle Scholar
  53. 53.
    Yang FG, You ZY, Zhu ZJ et al (2010) Laser Phys Lett 7(1):14–16CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Key Laboratory of Photoelectric Materials Chemistry and Physics of CASFujian Institute of Research on the Structure of Matter, Chinese Academy of SciencesFuzhouChina

Personalised recommendations