Advertisement

Exploration of New Second-Order Nonlinear Optical Compounds Containing Main Group Elements

  • Hua-Jun Zhao
  • Xin-Tao Wu
  • Li-Ming WuEmail author
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 145)

Abstract

This review mainly highlights recent research progress on the exploration syntheses, crystal structures, and nonlinear optical properties of multinary chalcogenides. Some examples show that slight radius change (Ga3+ vs. In3+) leads to different packing patterns of the same asymmetric units that eventually result in NLO properties with different origins. Besides, combination of two types of asymmetric units, SbQ x polyhedron and TrQ4 tetrahedron, not only gives rise to a rich structural chemistry but also yields many NCS compounds with excellent IR NLO performance. Additionally, the studies of the new mid-IR NLO crystal BaGa4S7 developed by a Bridgman–Stockbarger technique and a series new NLO chalcogenides based on TrQ4 and TtQ4 tetrahedra are also included.

Keywords

Antimony Asymmetric unit Chalcogenide Main group element 

Notes

Acknowledgment

This research was supported by the National Natural Science Foundation of China under projects (20973175, 21171168), 973 Program (2010CB933501), and the NSF of Fujian Province (2011J05039).

References

  1. 1.
    Halasyamani PS, Poeppelmeier KR (1998) Chem Mater 10:2753CrossRefGoogle Scholar
  2. 2.
    Chen C, Wu B, Jiang A, You G (1985) Sci Sin B28:235Google Scholar
  3. 3.
    Chen C, Wu Y (1989) J Opt Soc Am B 6:616CrossRefGoogle Scholar
  4. 4.
    Rhodes MA, Woods B, DeYoreo JJ, Roberts D, Atherton LJ (1995) Appl Opt 34:5312CrossRefGoogle Scholar
  5. 5.
    Kato K (1991) IEEE J Quant Electron 27:1137CrossRefGoogle Scholar
  6. 6.
    Hagerman ME, Poeppelmeier KR (1995) Chem Mater 7:602CrossRefGoogle Scholar
  7. 7.
    Chemla DS, Kupecek PJ, Robertson DS, Smith RC (1971) Opt Commun 3:29CrossRefGoogle Scholar
  8. 8.
    Boyd GD, Kasper H, McFee JM (1971) IEEE J Quant Electron QE-7:563CrossRefGoogle Scholar
  9. 9.
    Bhar GC, Smith RC (1972) Phys Status Solidi A 13:157CrossRefGoogle Scholar
  10. 10.
    Boyd GD, Kasper HM, McFee JH, Storz FG (1972) IEEE J Quant Electron 8:900CrossRefGoogle Scholar
  11. 11.
    Boyd GD, Buehler E, Storz FG (1971) Appl Phys Lett 18:301CrossRefGoogle Scholar
  12. 12.
    Jackson AG, Ohmer MC, LeClair SR (1997) Infrared Phys Technol 38:233CrossRefGoogle Scholar
  13. 13.
    Ra HS, Ok KM, Halasyamani PS (2003) J Am Chem Soc 125:7764CrossRefGoogle Scholar
  14. 14.
    Goodey J, Broussard J, Halasyamani PS (2002) Chem Mater 14:3174CrossRefGoogle Scholar
  15. 15.
    Chi EO, Ok KM, Porter Y, Halasyamani PS (2006) Chem Mater 18:2070CrossRefGoogle Scholar
  16. 16.
    Sivakumar T, Chang HY, Baek J, Halasyamani PS (2007) Chem Mater 19:4710CrossRefGoogle Scholar
  17. 17.
    Kong F, Huang SP, Sun ZM, Mao JG, Cheng WD (2006) J Am Chem Soc 128:7750CrossRefGoogle Scholar
  18. 18.
    Jiang HL, Huang SP, Fan Y, Mao JG, Cheng WD (2008) Chem Eur J 14:1972CrossRefGoogle Scholar
  19. 19.
    Zhang M, Sheng TL, Wang X, Wu XT (2010) Cryst Eng Commun 12:73Google Scholar
  20. 20.
    Zhang M, Sheng TL, Huang XH, Fu RB, Wang X, Hu SM, Xiang SC, Wu XT (2007) Eur J Inorg Chem 2007:1606CrossRefGoogle Scholar
  21. 21.
    Wang X, Sheng TL, Hu SM, Fu RB, Wu XT (2009) Inorg Chem Commun 12:399CrossRefGoogle Scholar
  22. 22.
    Wang X, Sheng TL, Chen JS, Hu SM, Fu RB, Wu XT (2009) J Mol Struct 936:142CrossRefGoogle Scholar
  23. 23.
    Gandrud WB, Boyd GD, Mcfee JHN (1970) Appl Phys Lett 16:59CrossRefGoogle Scholar
  24. 24.
    Zhang Q, Chung I, Jang JI, Ketterson JB, Kanatzidis MG (2009) J Am Chem Soc 131:9896CrossRefGoogle Scholar
  25. 25.
    Zhao HJ, Li LH, Wu LM, Chen L (2009) Inorg Chem 48:11518CrossRefGoogle Scholar
  26. 26.
    Zhao HJ, Li LH, Wu LM, Chen L (2010) Inorg Chem 49:5811CrossRefGoogle Scholar
  27. 27.
    Chen MC, Li LH, Chen YB, Chen L (2011) J Am Chem Soc 133:4617CrossRefGoogle Scholar
  28. 28.
    Zhao HJ, Zhang YF, Chen L (2012) J Am Chem Soc 134:1993Google Scholar
  29. 29.
    Kleinman DA (1962) Phys Rev 126:1977CrossRefGoogle Scholar
  30. 30.
    Isaenko L, Yelisseyev A, Lobanov S, Titov A, Petrov V, Zondy JJ, Krinitsin P, Merkulov A, Vedenyapin V, Smirnova J (2003) Cryst Res Technol 38:379CrossRefGoogle Scholar
  31. 31.
    Isaenko L, Krinitsin P, Vedenyapin V, Yelisseyev A, Merkulov A, Zondy JJ, Petrov V (2005) Cryst Growth Des 5:1325CrossRefGoogle Scholar
  32. 32.
    Bai L, Lin ZS, Wang ZZ, Chen CT (2008) J Appl Phys 103:083111–1CrossRefGoogle Scholar
  33. 33.
    Lin XS, Zhang G, Ye N (2009) Cryst Growth Des 9:1186CrossRefGoogle Scholar
  34. 34.
    Boyd GD, Kasper HM, McFee JH (1973) J Appl Phys 44:2809CrossRefGoogle Scholar
  35. 35.
    Isaenko L, Yelisseyev A, Lobanov S (2002) J Appl Phys 91:9475CrossRefGoogle Scholar
  36. 36.
    Chen MC, Li P, Zhou LJ, Li LH, Chen L (2011) Inorg Chem 50:12402Google Scholar
  37. 37.
    Li P, Li LH, Chen L, Wu LM (2010) J Solid State Chem 183:444CrossRefGoogle Scholar
  38. 38.
    Chen JH, Dorhout PK (1997) J Alloys Compd 249:199CrossRefGoogle Scholar
  39. 39.
    Choi KS, Hanko JA, Kanatzidis MG (1999) J Solid State Chem 147:309CrossRefGoogle Scholar
  40. 40.
    Park S, Kim SJ (2001) J Solid State Chem 161:129CrossRefGoogle Scholar
  41. 41.
    Gosselin JR, Townsend MG, Trembly RJ (1976) Solid State Commun 19:799CrossRefGoogle Scholar
  42. 42.
    Kan SH, Felner I, Banin U (2001) Israel J Chem 41:55CrossRefGoogle Scholar
  43. 43.
    Shutov SD, Sobolev VV, Popov YV, Shestatskii SN (1969) Phys Status Solidi 31:K23CrossRefGoogle Scholar
  44. 44.
    Gschneidner KA, Beaudry BJ, Takeshita T, Eucker SS, Taher SMA, Ho JC (1981) Phys Rev B 24:7187CrossRefGoogle Scholar
  45. 45.
    Assoud A, Kleinke KM, Kleinke H (2006) Chem Mater 18:1041CrossRefGoogle Scholar
  46. 46.
    Setzler SD, Schunemann PG, Pollak TM, Ohmer MC, Goldstein JT, Hopkins FK, Stevens KT, Halliburton LE, Giles NC (1999) J Appl Phys 86:6677CrossRefGoogle Scholar
  47. 47.
    Levine BF (1973) IEEE J Quant Electron QE-9:946CrossRefGoogle Scholar
  48. 48.
    Singh S, Bonner WA, Van Uitert LG (1972) Phys Lett 38A:407Google Scholar
  49. 49.
    Chemla DS, Jerphagnon J (1972) Appl Phys Lett 20:222CrossRefGoogle Scholar
  50. 50.
    Porter Y, Halasyamani PS (2001) Chem Mater 13:1910CrossRefGoogle Scholar
  51. 51.
    Guo SP, Guo GC, Wang MS, Zou JP, Zeng HY, Cai LZ, Huang JS (2009) Chem Commun 4366Google Scholar
  52. 52.
    Crane GR, Bergman JG (1976) J Chem Phys 64:27CrossRefGoogle Scholar
  53. 53.
    Okada M, Ieiri S (1971) Phys Lett 34A:63Google Scholar
  54. 54.
    Franken PA, Ward JF (1963) Rev Mod Phys 35:23CrossRefGoogle Scholar
  55. 55.
    Wynne JJ (1971) Phys Rev Lett 27:17CrossRefGoogle Scholar
  56. 56.
    Zhang XQ, Tang ZK, Kawasaki M, Ohtomo A, Koinuma H (2003) J Phys Condens Matter 15:5191CrossRefGoogle Scholar
  57. 57.
    Levine BF, Miller RC (1975) Phys Rev B 12:4512CrossRefGoogle Scholar
  58. 58.
    Al-Kuhaili MF, Durrani SMA, Khawaja EE, Shirokoff J (2002) J Phys D: Appl Phys 35:910CrossRefGoogle Scholar
  59. 59.
    Rashkeev SN, Lambrecht WRL (2001) Phys Rev B 63:165212CrossRefGoogle Scholar
  60. 60.
    Nosé S (1984) J Chem Phys 81:511CrossRefGoogle Scholar
  61. 61.
    Dmitriev VG, Gurzadyan GG, Nikogosyan DN (1999) Handbook of nonlinear optical crystals, 3rd edn. Springer, New YorkGoogle Scholar
  62. 62.
    Kim Y, Seo IS, Martin SW, Baek J, Halasyamani PS, Arumugam N, Steinfink H (2008) Chem Mater 20:6048CrossRefGoogle Scholar
  63. 63.
    Eisenmann B, Hofmann A (1990) Z Anor Allg Chem 580:151CrossRefGoogle Scholar
  64. 64.
    Eisenmann B, Jakowski M, Klee W, Schafer H (1983) Rev Chim Miner 20:255Google Scholar
  65. 65.
    Eisenmann B, Jakowski M, Schafer H (1983) Z Naturforsch 38:1581Google Scholar
  66. 66.
    Eisenmann B, Jakowski M, Schafer H (1984) Rev Chim Miner 21:12Google Scholar
  67. 67.
    Eisenmann B, Jakowski M, Schafer H (1984) Z Naturforsch 39:27Google Scholar
  68. 68.
    Ivanov-Emin BN, Ivlieva VI, Filatenko LA, Sarabiya MG, Kaziev GZ, Zaitsev BE (1980) Russ J Inorg Chem 25:515Google Scholar
  69. 69.
    Liu JW, Wang P, Chen L (2011) Inorg Chem 50:5706CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of Matter, Chinese Academy of SciencesFuzhouPeople’s Republic of China

Personalised recommendations